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Abstract In the present work, we examine trans-Sasakian 3-manifolds admitting ∗-conformal
Einstein solitons satisfying certain curvature conditions.

1 Introduction

The study of Ricci soliton (in short, RS) is of great importance due to its wide spread usage in
quantum field theory, cosmology, general relativity, string theory, etc. In the beginning of 2016,
Catino and Mazzieri [4] proposed a new notion on a Riemannian manifold M called “Einstein-
soliton", which generates self-similar solution to Einstein flow ∂

∂tg = 2( r2g−S), and is governed
through the equation

(£Kg)(ζ1, ζ2) + (2Λ− r)g(ζ1, ζ2) + 2S(ζ1, ζ2) = 0 (1.1)

for any vector fields ζ1, ζ2 on M , where £K denotes the Lie derivative operator in the direction
of vector field K, S is the Ricci tensor, r is the scalar curvature of the Riemannian metric g and
Λ ∈ R (the set of real numbers). The Einstein soliton is called shrinking, steady or expanding if
Λ < 0,= 0 or > 0, respectively.

In [19], the authors Kaimakamis and Panagiotidou studied ∗-Ricci soliton in real hypersur-
faces of complex space forms and is defined by the equation

(£Kg)(ζ1, ζ2) + 2Λg(ζ1, ζ2) + 2S∗(ζ1, ζ2) = 0, (1.2)

where

S∗(ζ1, ζ2) = Trace {φ ◦R(ζ1, φζ2)} ,

where S∗ is a tensor field of type (0, 2); R represents the curvature tensor and φ is a tensor field
of type (1, 1). It is to be noted that the notion of ∗-Ricci tensor was first introduced by Tachibana
[25] on almost Hermitian manifolds and further studied by Hamada [13] on real hypersurfaces
of non-flat complex space forms.

Recently, the authors Gazala, Ahmad and Jamal [9] proposed the notion of ∗-Einstein soliton
(in short, ∗-ES) and is defined by the following equation

(£ξg)(ζ1, ζ2) + (2Λ− r∗)g(ζ1, ζ2) + 2S∗(ζ1, ζ2) = 0, (1.3)

where £ξ denotes the Lie derivative operator in the direction of vector field ξ and r∗ is the ∗-
scalar curvature of the manifold. Likewise Einstein soliton, the nature of ∗-ES depends on the
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values of Λ such that if Λ > 0,= 0 or < 0, then the soliton is said to be expanding, steady or
shrinking, respectively. We remark that the notions of ∗-Ricci soliton and ∗-ES are different for
the manifolds of non-constant scalar curvature and if the scalar curvature is constant, then these
notions coincide.

As a generalization of the classical Ricci flow [14], the concept of conformal Ricci flow was
introduced by Fischer [8], which is defined on an n-dimensional Riemannian manifold M by the
equations

∂g

∂t
= −2(S +

g

n
)− pg, r(g) = −1,

where p defines a time dependent non-dynamical scalar field (also called the conformal pressure)
and g is the Riemannian metric. The term −pg plays a role of constraint force to maintain r in
the above equation.

In [2], the authors Basu and Bhattacharyya initiated the study of conformal Ricci soliton on
M and is defined by

(£Kg)(ζ1, ζ2) + 2S(ζ1, ζ2) + (2Λ − (p+
2
n
))g(ζ1, ζ2) = 0,

for any vector fields ζ1, ζ2 on M .
Now, we introduce a new notion in an n-dimensional Riemannian manifold called ∗-conformal

Einstein soliton (in short, ∗-CES) and is defined through the equation

(£ξg)(ζ1, ζ2) + 2S∗(ζ1, ζ2) + (2Λ− r∗ + (p+
2
n
))g(ζ1, ζ2) = 0, (1.4)

where the symbols £ξ and Λ are defined in (1.3).
In [23], Oubina defined a new class of almost contact manifolds called “trans-Sasakian man-

ifold" with the product manifold M × R belonging to the class W4. The local structures of
trans-Sasakian manifolds was carried by Marrero [21]. It is to be noticed that the trans-Sasakian
structures of kind (α, 0), (0, β) and (0, 0) are α-Sasakian [18], β-Kenmotsu [18] and cosymplec-
tic [3], respectively.

The study of Ricci solitons and its generalizations has been carried out by many geometers
in several ways to a different extent, for instance, we refer the papers [7, 10, 15, 17, 20, 26] and
references therein.

In the present work, we handle the study of trans-Sasakian 3-manifolds admitting a ∗-CES.
The article is structured as follows: Preliminaries on trans-Sasakian 3-manifolds are the focus
of Section 2. In Section 3, we confer the ∗-CES in trans-Sasakian 3-manifolds. Section 4
deals with the study of ∗-CES in trans-Sasakian 3-manifolds admitting Codazzi type Ricci tensor
and cyclic η-recurrent Ricci tensor. In Section 4, we also study pseudo Ricci symmetric trans-
Sasakian 3-manifolds admitting ∗-CES. Section 5 is dedicated to the study of φ-Ricci symmetric
trans-Sasakian 3-manifolds admitting ∗-CES. In section 6, we have shown that trans-Sasakian
3-manifolds admitting ∗-CES satisfying R(ξ, ζ1)·S∗ = 0 and R·E∗ = 0 are Ricci flat manifolds.
Section 7 is devoted to the study M -projectively flat and φ-M -projectively semisymmetric trans-
Sasakian 3-manifolds admitting ∗-CES.

2 Preliminaries

A manifold M2n+1 (dimension M = 2n + 1) is said to be an almost contact metric manifold
if there is a (1, 1) tensor field φ, a vector field ξ, a 1-form η and g is a Riemannian metric
(compatible) such that [3]

φ2ζ1 = −ζ1 + η(ζ1)ξ, η(ξ)− 1 = 0, φξ = 0, η(φζ1) = 0, (2.1)

g(φζ1, φζ2) = g(ζ1, ζ2)− η(ζ1)η(ζ2), (2.2)

g(ζ1, φζ2) = −g(φζ1, ζ2), g(ζ1, ξ) = η(ζ1) (2.3)
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for all ζ1, ζ2 ∈ χ(M2n+1); where χ(M2n+1) is the Lie algebra of vector fields on M2n+1. The
fundamental 2-form Φ of M2n+1 is defined by

Φ(ζ1, ζ2) = g(ζ1, φζ2) (2.4)

for any ζ1, ζ2 ∈ χ(M2n+1).
A structure (φ, ξ, η, g) on M2n+1 is known as a trans-Sasakian structure [23], if (M2n+1 ×

R, J,G) belongs to the class W4[12], where J is the almost complex structure on M2n+1 × R
demarcated by smooth functions f on M2n+1 × R and J(ζ1, f

d
dt) = (φζ1 − fξ, η(ζ1)

d
dt) for all

ζ1 on M2n+1. The condition that might be used to express this is as follows:

(∇ζ1φ)ζ2 = α(g(ζ1, ζ2)ξ − η(ζ2)ζ1) + β(g(φζ1, ζ2)ξ − η(ζ2)φζ1). (2.5)

Here, we assume that α and β are the smooth functions on M2n+1 with trans-Sasakian struc-
ture of type (α, β). From (2.5), it follows that

∇ζ1ξ = −αφζ1 + β(ζ1 − η(ζ1)ξ), (2.6)

(∇ζ1η)ζ2 = −αg(φζ1, ζ2) + βg(φζ1, φζ2), (2.7)

where ∇ stands for the Levi-Civita connection of g.
In a trans-Sasakian 3-manifold (say M3), we have [6]

R(ζ1, ζ2)ξ = (α2 − β2)(η(ζ2)ζ1 − η(ζ1)ζ2) (2.8)

+2αβ((η(ζ2)φζ1 − η(ζ1)φζ2)

+(ζ2α)φζ1 − (ζ1α)φζ2

+(ζ2β)φ
2ζ1 − (ζ1β)φ

2ζ2,

R(ξ, ζ1)ζ2 = (α2 − β2)(g(ζ1, ζ2)ξ − η(ζ2)ζ1) (2.9)

+2αβ(g(φζ1, ζ2)ξ − η(ζ2)φζ1)

+(ζ2α)φζ1 + g(φζ2, ζ1)(grad α)

+(ζ2β)(ζ1 − η(ζ1)ξ)− g(φζ1, φζ2)(grad β),

2αβ + ξα = 0, (2.10)

S(ζ1, ξ) = (2(α2 − β2)− ξβ)η(ζ1)− ζ1β − (φζ1)α, (2.11)

where R and S represent the curvature tensor and the Ricci tensor of M3, respectively. Moreover,
in an M3 of type (α, β), we have [6]

grad β = φ(grad α). (2.12)

For constants α and β, we obtain from (2.10) and (2.12) that

R(ξ, ζ1)ζ2 = (α2 − β2)(g(ζ1, ζ2)ξ − η(ζ2)ζ1), (2.13)

R(ξ, ζ1)ξ = (α2 − β2)(η(ζ1)ξ − ζ1), (2.14)

R(ζ1, ζ2)ξ = (α2 − β2)(η(ζ2)ζ1 − η(ζ1)ζ2), (2.15)

η(R(ζ1, ζ2)ζ3) = (α2 − β2)(g(ζ2, ζ3)η(ζ1)− g(ζ1, ζ3)η(ζ2)), (2.16)

S(ζ1, ξ) = 2(α2 − β2)η(ζ1) ⇐⇒ Qξ = 2(α2 − β2)ξ, (2.17)

for all ζ1, ζ2, ζ3 ∈ χ(M3). In the paper, throughout we consider α = β =constant.
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Definition 2.1. [27] A trans-Sasakian 3-manifold M3 is said to be an η-Einstein if its S(̸= 0) is
of the form

S(ζ1, ζ2) = ρ1g(ζ1, ζ2) + ρ2η(ζ1)η(ζ2),

where ρ1 and ρ2 are smooth functions on M3. Furthermore, the manifold M3 is said to be an
Einstein if ρ2 = 0.

Definition 2.2. [5, 22] The M -projective curvature tensor H in a trans-Sasakian 3-manifold M3

is defined by

H(ζ1, ζ2)ζ3 = R(ζ1, ζ2)ζ3 −
1
4
[S(ζ2, ζ3)ζ1 − S(ζ1, ζ3)ζ2 (2.18)

+g(ζ2, ζ3)Qζ1 − g(ζ1, ζ3)Qζ2],

where ζ1, ζ2, ζ3 ∈ χ(M3).

Now, we recall the following result on a trans-Sasakian 3-manifold admitting ∗-Ricci soliton:

Lemma 2.3. [16] In a trans-Sasakian 3-manifold M3, the ∗-Ricci tensor S∗ is given by

S∗(ζ1, ζ2) = S(ζ1, ζ2)− (α2 − β2)g(ζ1, ζ2)− (α2 − β2)η(ζ1)η(ζ2), (2.19)

for any ζ1, ζ2 ∈ χ(M3).

From (2.19), it follows that

r∗ = r − 4(α2 − β2). (2.20)

3 ∗-CES in trans-Sasakian 3-manifolds

Let a trans-Sasakian 3-manifold M3 admit a ∗-CES. Then (1.4) holds, and thus we have

(£ξg)(ζ1, ζ2) + 2S∗(ζ1, ζ2) + {2Λ− r∗ + (p+
2
3
)}g(ζ1, ζ2) = 0. (3.1)

As we know that

(£ξg)(ζ1, ζ2) = g(∇ζ1ξ, ζ2) + g(ζ1,∇ζ2ξ) = 2βg(ζ1, ζ2)− 2βη(ζ1)η(ζ2).

Thus, (3.1) takes the form

S∗(ζ1, ζ2) = A1g(ζ1, ζ2) +A2η(ζ1)η(ζ2), (3.2)

where A1 = −{β + Λ− r∗

2 + 1
2(p+

2
3)} and A2 = β.

By putting ζ2 = ξ in (3.2), then using (2.1) and (2.3), we have

S∗(ζ1, ξ) = −{Λ− r∗

2
+

1
2
(p+

2
3
)}η(ζ1), (3.3)

The equation (3.2) yields
Q∗ζ1 = A1ζ1 +A2η(ζ1)ξ. (3.4)

From (2.17), (2.19) and (3.3), we get the following relation

Λ =
r∗

2
− 1

2
(p+

2
3
). (3.5)

In view of (3.5), (3.3) reduces to
S∗(ζ1, ξ) = 0. (3.6)

Also, by contracting (3.2) over ζ1 and ζ2, we find

r∗

2
= 2β + 3Λ+

3
2
(p+

2
3
). (3.7)

Thus, from (3.5) and (3.7), it follows that

Λ = −β − 1
2
(p+

2
3
). (3.8)

Now, we have the following result:
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Theorem 3.1. If a 3-dimensional trans-Sasakian manifold M3 admits a ∗-CES, then M3 is an
η-Einstein manifold of the form (3.2) and the soliton constant is given by Λ = −β − 1

2(p +
2
3).

Moreover, the soliton is expanding, steady or shrinking according to β < − 1
2(p+

2
3), = − 1

2(p+
2
3)

or > − 1
2(p+

2
3).

We have the following corollary:

Corollary 3.2. Let the metric of a 3-dimensional trans-Sasakain manifold M3 be a ∗-CES. Then
we have

Manifold Soliton constant Conditions for the ∗-CES to be expanding,
shrinking or steady

Sasakian and
Cosymplectic Λ = − 1

2(p+
2
3)

expanding, steady or shrinking if p < − 2
3 ,

= − 2
3 or > − 2

3 .

Kenmotsu Λ = − (3p+8)
6

expanding, steady or shrinking if p < − 8
3 ,

= − 8
3 or > − 8

3 .

Now, let a 3-dimensional trans-Sasakian manifold M3 admit a ∗-CES such that K is point-
wise collinear with ξ, i.e., K = fξ, where f is a function. Then (1.4) holds, and thus we have

(£fξg)(ζ1, ζ2) + 2S∗(ζ1, ζ2) + (2Λ− r∗ + (p+
2
3
))g(ζ1, ζ2) = 0. (3.9)

Applying the properties of the Lie derivative and the Levi-Civita connection in (3.9), we have

fg(∇ζ1ξ, ζ2) + (ζ1f)η(ζ2) + fg(ζ1,∇ζ2ξ) + (ζ2f)η(ζ1)

+2S∗(ζ1, ζ2) + (2Λ− r∗ + (p+
2
3
))g(ζ1, ζ2) = 0,

which by using (2.6) takes the form

2fβ[g(ζ1, ζ2)− η(ζ1)η(ζ2)] + (ζ1f)η(ζ2) + (ζ2f)η(ζ1) (3.10)

+2S∗(ζ1, ζ2) + (2Λ− r∗ + (p+
2
3
))g(ζ1, ζ2) = 0.

Now, by replacing ζ2 = ξ and using (2.1), (2.3) and (3.3), (3.10) reduces to

(ζ1f) + (ξf)η(ζ1) = 0. (3.11)

Again replacing ζ1 = ξ and using (2.1), (3.11) yields

(ξf) = 0. (3.12)

By combining (3.11) and (3.12), we lead to ζ1(f) = 0, that is, f is constant. Thus from (3.10),
we obtain

S∗(ζ1, ζ2) = −[Λ− r∗

2
+ fβ +

1
2
(p+

2
3
)]g(ζ1, ζ2) + fβη(ζ1)η(ζ2). (3.13)

Now by virtue of (3.5), (3.13) turns to

S∗(ζ1, ζ2) = −fβg(ζ1, ζ2) + fβη(ζ1)η(ζ2). (3.14)

Therefore, we have the following theorem:

Theorem 3.3. If a 3-dimensional trans-Sasakian manifold M3 admits a ∗-CES such that K is
pointwise collinear with ξ, then K is a constant multiple of ξ and M3 is an η-Einstein manifold
of the form (3.14).

By contracting (3.14), we lead to r∗ = −2fβ. Using this value of r∗ in (3.5), we find

Λ = −fβ − 1
2
(p+

2
3
). (3.15)

Thus, we have the following corollary:

Corollary 3.4. If a 3-dimensional trans-Sasakian manifold M3 admits a ∗-CES such that K
is pointwise collinear with ξ, then the soilton is expanding, steady or shrinking according as
β < − 1

2f (p+
2
3), = − 1

2f (p+
2
3) or > − 1

2f (p+
2
3).
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4 ∗-CES in trans-Sasakian 3-manifolds admitting certain types of Ricci
tensors

Definition 4.1. A trans-Sasakian 3-manifold M3 with ∗-CES is said to admit
(i) Codazzi type Ricci tensor if [11]

(∇ζ1S
∗)(ζ2, ζ3) = (∇ζ2S

∗)(ζ1, ζ3), (4.1)

(ii) cyclic η-recurrent Ricci tensor if

(∇ζ1S
∗)(ζ2, ζ3) + (∇ζ2S

∗)(ζ1, ζ3) + (∇ζ3S
∗)(ζ1, ζ2) (4.2)

= η(ζ1)S
∗(ζ2, ζ3) + η(ζ2)S

∗(ζ1, ζ3) + η(ζ3)S
∗(ζ1, ζ2),

for all ζ1, ζ2, ζ3 ∈ χ(M3).

First, we consider a trans-Sasakian 3-manifold that has Codazzi type Ricci tensor and admits
a ∗-CES, thus (4.1) holds. By taking the covariant derivative of (3.2) respecting to ζ1 we lead to

(∇ζ1S
∗)(ζ2, ζ3) = β{(∇ζ1η)(ζ2)η(ζ3) + η(ζ2)(∇ζ1η)(ζ3)}. (4.3)

By using (2.7) in (4.3), we have

(∇ζ1S
∗)(ζ2, ζ3) = β{−αg(φζ1, ζ2)η(ζ3)− αg(φζ1, ζ3)η(ζ2) (4.4)

+βg(ζ1, ζ2)η(ζ3) + βg(ζ1, ζ3)η(ζ2)− 2βη(ζ1)η(ζ2)η(ζ3)}.

By virtue of (4.4), the relation (4.1) takes the form

β{2αg(φζ1, ζ2)η(ζ3) + αg(φζ1, ζ3)η(ζ2)

−αg(φζ2, ζ3)η(ζ1)− βg(ζ1, ζ3)η(ζ2) + βg(ζ2, ζ3)η(ζ1)} = 0,

which by putting ζ2 = ξ and using (2.1), (2.2) and (2.3) reduces to

β{αg(φζ1, ζ3)− βg(φζ1, φζ3)} = 0.

By interchanging ζ1 and ζ3 in the foregoing equation, we have

β{αg(φζ3, ζ1)− βg(φζ1, φζ3)} = 0.

On adding the last two equations and using (2.3), we find β = 0, where g(φζ1, φζ3) ̸= 0. Thus,
we have the following theorem:

Theorem 4.2. Let a 3-dimensional trans-Sasakian manifold M3 admit a ∗-CES. If the manifold
M3 has a Codazzi type Ricci tensor, then M3 reduces to an α-Sasakian manifold.

In view of (3.2) and (4.4), (4.2) takes the form

2βA2[g(ζ1, ζ2)η(ζ3) + g(ζ1, ζ3)η(ζ2) + g(ζ2, ζ2)η(ζ1)− 3η(ζ1)η(ζ2)η(ζ3)]

= η(ζ1)[A1g(ζ2, ζ3) +A2η(ζ2)η(ζ3)] + η(ζ2)[A1g(ζ1, ζ3) +A2η(ζ1)η(ζ3)]

+ η(ζ3)[A1g(ζ1, ζ2) +A2η(ζ1)η(ζ2)],

which by putting ζ2 = ζ3 = ξ, and using (2.2) and (2.3) it follows that A1+A2 = 0. This implies
that Λ = r∗

2 − 1
2(p+

2
3). Consequently, (3.2) turns to

S∗(ζ1, ζ2) = −βg(ζ1, ζ2) + βη(ζ1)η(ζ2). (4.5)

By contracting (4.5), we have r∗ = −2β. By using this value of r∗ in (3.5), we find Λ =
−β − 1

2(p+
2
3). Thus, we have the following theorem:

Theorem 4.3. Let a 3-dimensional trans-Sasakian manifold M3 admit a ∗-CES. If M3 has a
cyclic η-recurrent Ricci tensor, then M3 is an η-Einstein manifold of the form (4.5). Moreover,
the soliton is expanding, steady or shrinking according to β < − 1

2(p + 2
3), = − 1

2(p + 2
3) or

> − 1
2(p+

2
3).
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Definition 4.4. A 3-dimensional trans-Sasakian manifold M3 admitting a ∗-CES is called pseudo
Ricci symmetric and is denoted by (PRS)3 if its Ricci tensor S∗(̸= 0) of type (0, 2) satisfies the
condition [1]

(∇ζ1S
∗)(ζ2, ζ3) = 2A(ζ1)S

∗(ζ2, ζ3) +A(ζ2)S
∗(ζ1, ζ3) +A(ζ3)S

∗(ζ1, ζ2), (4.6)

where A is a non-zero 1-form such that g(ζ1, σ) = A(ζ1), for all vector fields ζ1;σ being the
vector field corresponding to the associated 1-form A. In particular, if A = 0, then the manifold
is called Ricci symmetric.

Let the manifold M3 admitting a ∗-CES be a pseudo Ricci symmetric. Therefore, (4.6) holds.
By using (3.2) and (4.4), (4.6) transforms to

A2{−αg(φζ1, ζ2)η(ζ3)− αg(φζ1, ζ3)η(ζ2) + βg(ζ1, ζ2)η(ζ3) + βg(ζ1, ζ3)η(ζ2)

−2βη(ζ1)η(ζ2)η(ζ3)} = 2A(ζ1)[A1g(ζ2, ζ3) +A2η(ζ2)η(ζ3)]

+A(ζ2)[A1g(ζ1, ζ3) +A2η(ζ1)η(ζ3)] +A(ζ3)[A1g(ζ1, ζ2) +A2η(ζ1)η(ζ2)],

which by putting ζ1 = ζ3 = ξ and using (2.1) and (2.3) reduces to

(A1 +A2)(3A(ξ)η(ζ2) +A(ζ2)) = 0. (4.7)

Again putting ζ2 = ξ in the foregoing equation, we lead to

A(ξ)(A1 +A2) = 0.

Thus, either we have A(ξ) = 0, or (A1 + A2) = 0. By using the first case in (4.7), we find
A(ζ2) = 0, where A1 + A2 ̸= 0 and hence the manifold M3 reduces to the Ricci symmetric
manifold. Now, from the second case it follows that Λ = r∗

2 − 1
2(p + 2

3), thus (3.2) turns to
S∗(ζ1, ζ2) = −βg(ζ1, ζ2) + βη(ζ1)η(ζ2). This gives r∗ = −2β. By using this value of r∗, we
have Λ = −β − 1

2(p+
2
3). Now, we state the following theorem:

Theorem 4.5. A (PRS)3 admitting a ∗-CES is either Ricci symmetric, or is an η-Einstein man-
ifold. Moreover, the soliton is expanding, steady or shrinking according to β < − 1

2(p + 2
3),

= − 1
2(p+

2
3) or > − 1

2(p+
2
3).

5 φ-Ricci symmetric trans-Sasakian 3-manifolds admitting ∗-CES

Definition 5.1. A trans-Sasakian 3-manifold M3 is said to be φ-Ricci symmetric if [24]

φ2(∇ζ2Q
∗)ζ1 = 0, (5.1)

for all ζ1, ζ2 on M3.

Let a trans-Sasakian 3-manifold M3 be a φ-Ricci symmetric, therefore (5.1) holds. By the
covariant differentiation of (3.4) with respect to ζ2, we have

(∇ζ2Q
∗)ζ1 +Q∗(∇ζ2ζ1) = A1(∇ζ2ζ1) +A2[(∇ζ2η)(ζ1)ξ + η(∇ζ2ζ1)ξ + η(ζ1)∇ζ2ξ],

which by using (2.6), (2.7) and (3.4) transforms to

(∇ζ2Q
∗)ζ1 = A2[−αg(φζ2, ζ1)ξ − αη(ζ1)φζ2 + βg(ζ1, ζ2)ξ + βη(ζ1)ζ2 − 2βη(ζ1)η(ζ2)ξ].

By operating φ2 on both the sides of the foregoing equation and using (2.1), we have

φ2(∇ζ2Q
∗)ζ1 = A2[αη(ζ1)φζ2 + βη(ζ1)φ

2ζ2]. (5.2)

From (5.1) and (5.2) it follows that

A2η(ζ1)[αφζ2 + βφ2ζ2] = 0. (5.3)

Thus, we have A2 = 0. By using A2 = 0 and (3.5), (3.2) reduces S∗(ζ1, ζ2) = 0. Thus, we have
the following theorem:

Theorem 5.2. A trans-Sasakian 3-manifold M3 admitting a ∗-CES is φ-Ricci symmetric if and
only if the manifold is ∗-Ricci flat.
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6 Trans-Sasakian 3-manifolds admitting ∗-CES satisfying R(ξ, ζ1) · S∗ = 0
and R · E∗ = 0

In this section, first we consider a trans-Sasakian 3-manifold admitting a ∗-CES that satisfies the
condition R(ξ, ζ1) · S∗ = 0. Therefore, we have

S∗(R(ξ, ζ1)ζ2, ζ3) + S∗(ζ2, R(ξ, ζ1)ζ3) = 0, (6.1)

for any ζ1, ζ2, ζ3 on M3.
By using (2.13) in (6.1), we have

S∗(ξ, ζ3)g(ζ1, ζ2)− η(ζ2)S
∗(ζ1, ζ3) + S∗(ζ2, ξ)g(ζ1, ζ3)− η(ζ3)S

∗(ζ1, ζ2) = 0,

where α2 − β2 ̸= 0, which in view of (3.6) reduces to

η(ζ2)S
∗(ζ1, ζ3) + η(ζ3)S

∗(ζ1, ζ2) = 0. (6.2)

Now by putting ζ2 = ξ in (6.2) then using (2.1) and (3.6) we obtain S∗(ζ1, ζ3) = 0, from which
it follows that r∗ = 0. Thus (3.5) gives

Λ = −1
2
(p+

2
3
). (6.3)

Now, we have the following result:

Theorem 6.1. If a 3-dimensional trans-Sasakian manifold M3 admits a ∗-CES and satisfies the
condition R(ξ, ζ1) · S∗ = 0, then the manifold is ∗-Ricci flat and the soliton constant is given by
Λ = − 1

2(p+
2
3). Moreover, the soliton is expanding, steady or shrinking according to p < − 2

3 ,
= − 2

3 or > − 2
3 .

Next, we consider a 3-dimensional trans-Sasakian manifold admitting a ∗-CES that satisfies
the condition R · E∗ = 0, where E∗ is the ∗-Einstein tensor given by

E∗(ζ1, ζ2) = S∗(ζ1, ζ2)−
r∗

3
g(ζ1, ζ2). (6.4)

Thus, the condition R · E∗ = 0 is expressed as

S∗(R(ζ1, ζ2)ζ3, ζ4) + S∗(ζ3, R(ζ1, ζ2)ζ4) =
r∗

3
[g(R(ζ1, ζ2)ζ3, ζ4) + g(ζ3, R(ζ1, ζ2)ζ4)],

which by putting ζ1 = ζ3 = ξ and using (2.1), (2.3), (2.13) and (2.14) takes the form

η(ζ2)S
∗(ξ, ζ4)− S∗(ζ2, ζ4) + g(ζ2, ζ4)S

∗(ξ, ξ)− η(ζ4)S
∗(ξ, ζ2) = 0,

where α2 − β2 ̸= 0.
In view of (3.6), the foregoing equation reduces to S∗(ζ2, ζ4) = 0, from which it follows that
r∗ = 0. Thus (3.5) gives

Λ = −1
2
(p+

2
3
). (6.5)

Thus, we have the following theorem:

Theorem 6.2. If a 3-dimensional trans-Sasakian manifold M3 admits a ∗-CES and satisfies the
condition R · E∗ = 0, then the manifold is ∗-Ricci flat and the soliton constant is given by
Λ = − 1

2(p+
2
3). Moreover, the soliton is expanding, steady or shrinking according to p < − 2

3 ,
= − 2

3 or > − 2
3 .
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7 M -projectively flat and φ-M -projectively semisymmetric trans-Sasakian
3-manifolds admitting ∗-CES

In this section, first we consider an M -projectively flat trans-Sasakian 3-manifold admitting ∗-
CES, that is, H(ζ1, ζ2)ζ3 = 0. Thus, from (2.18) it follows that

R(ζ1, ζ2)ζ3 =
1
4
[S(ζ2, ζ3)ζ1 − S(ζ1, ζ3)ζ2 + g(ζ2, ζ3)Qζ1 − g(ζ1, ζ3)Qζ2]. (7.1)

By putting ζ1 = ξ in (7.1) and using (2.3), (2.13) and (2.17), we have

4(α2 − β2)(g(ζ2, ζ3)ξ − η(ζ3)ζ2) = S(ζ2, ζ3)ξ − S(ξ, ζ3)ζ2 + g(ζ2, ζ3)Qξ − η(ζ2)Qζ2.

Taking the inner product of the foregoing equation with ξ and using (2.1), (2.3) and (2.17), we
obtain

S(ζ2, ζ3) = 2(α2 − β2)g(ζ2, ζ3). (7.2)

By contracting (7.2) over ζ2 and ζ3, we obtain r = 6(α2 − β2). Thus, from (2.20) and (3.5), we
obtain

Λ = (α2 − β2)− 1
2
(p+

2
3
).

Thus, we have the following theorem:

Theorem 7.1. An M -projectively flat trans-Sasakian 3-manifold admitting ∗-CES is an Einstein
manifold and the soliton constant is given by Λ = (α2 − β2)− 1

2(p+
2
3).

Next, we consider a φ-M -projectively semisymmetric trans-Sasakian 3-manifold admitting
∗-CES, that is, H · φ = 0. Thus, it follows that

(H(ζ1, ζ2) · φ)ζ3 = H(ζ1, ζ2)φζ3 − φH(ζ1, ζ2)ζ3 = 0, (7.3)

for any ζ1, ζ2, ζ3 on M3.
From (2.18), we find

H(ζ1, ζ2)φζ3 = R(ζ1, ζ2)φζ3 −
1
4
[S(ζ2, φζ3)ζ1 − S(ζ1, φζ3)ζ2 (7.4)

+g(ζ2, φζ3)Qζ1 − g(ζ1, φζ3)Qζ2],

and

φH(ζ1, ζ2)ζ3 = φR(ζ1, ζ2)ζ3 −
1
4
[S(ζ2, ζ3)φζ1 − S(ζ1, ζ3)φζ2 (7.5)

+g(ζ2, ζ3)φQζ1 − g(ζ1, ζ3)φQζ2].

Thus, from (7.3)-(7.5), we arrive at

R(ζ1, ζ2)φζ3 − φR(ζ1, ζ2)ζ3 = −1
4
[S(ζ2, ζ3)φζ1 − S(ζ1, ζ3)φζ2 + g(ζ2, ζ3)φQζ1

−g(ζ1, ζ3)φQζ2 − S(ζ2, φζ3)ζ1 + S(ζ1, φζ3)ζ2

−g(ζ2, φζ3)Qζ1 + g(ζ1, φζ3)Qζ2],

which by putting ζ1 = ξ and using (2.1), (2.3), (2.13) and (2.17), we arrive at

2(α2 − β2)g(ζ2, φζ3)ξ + 2(α2 − β2)η(ζ3)φζ2 − η(ζ3)φQζ2 = S(ζ2, φζ3)ξ. (7.6)

By taking the inner product of (7.6) with ξ and using (2.1), we find

S(ζ2, φζ3) = 2(α2 − β2)g(ζ2, φζ3). (7.7)
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By replacing ζ3 by φζ3 in (7.7) then using (2.1) and (2.17), we obtain

S(ζ2, ζ3) = 2(α2 − β2)g(ζ2, ζ3). (7.8)

Contracting (7.8) over ζ2 and ζ3 gives r = 6(α2 − β2). Thus, from (2.20) and (3.5), we obtain

Λ = (α2 − β2)− 1
2
(p+

2
3
).

Thus, we have the following theorem:

Theorem 7.2. Let a trans-Sasakian 3-manifold admitting a ∗-CES be a φ-M -projectively semisym-
metric, then the manifold is an Einstein manifold and the soliton constant is given by Λ =
(α2 − β2)− 1

2(p+
2
3).

References
[1] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulg. J. Phys., 15 (6), 526-531, (1988).

[2] N. Basu and A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Global Journal of Ad-
vanced Research on Classical and Modern Geometries, 4, 15-21, (2015).

[3] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., Springer Verlag, 509,
(1976).

[4] G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal., 132, 66-94, (2016).

[5] U. C. De and A. Haseeb, On generalized Sasakian-space-forms with M -projective curvature tensor, Adv.
Pure Appl. Math., 9(1), 67-73, (2018).

[6] U. C. De and M. M., Tripathi, Ricci Tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math.
J., 43, 247-255, (2003).

[7] D. Dey and P. Majhi, ∗-Ricci solitons and ∗-gradient Ricci solitons on 3-dimensional trans-Sasakian
manifolds, Commun. Korean Math. Soc., 35(2), 625-637, (2020).

[8] A. E. Fischer, An introduction to conformal Ricci flow, Classical and Quantum Gravity, 21(3), 171-218,
(2004).

[9] Gazala, M. Ahmad and N. Jamal, LP -Sasakian manifold admitting ∗-Einstein soliton, J. Appl. Math. &
Informatics, 41, 577-589, (2023).

[10] A. Ghosh and D. S. Patra, ∗-Ricci soliton within the frame-work of Sasakian and (K,µ)-contact manifold,
Int. J. Geom. Methods in Mod. Phys., 15, 1-21, (2018).

[11] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7, 259-280, (1978).

[12] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants,
Ann. Mat. Pura Appl., (4) 123, 35-58, (1980).

[13] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci ∗-tensor, Tokyo J. Math., 25,
473-483, (2002).

[14] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986),
237-262, Contemp. Math. 71, American Math. Soc., (1988).

[15] A. Haseeb and M. A. Akyol, On ϵ-Kenmotsu 3-manifolds admitting ∗-conformal η-Ricci solitons, Balkan
Journal of Geometry and Its Applications, 26 (1), 1-11, (2021).

[16] A. Haseeb, H. Harish and D. G. Prakasha, On 3-dimensional trans-Sasakian manifolds admitting ∗-Ricci
solitons, Jordan J. Math. Stat., 15(1), 105-121, (2022).

[17] A. Haseeb, D. G. Prakasha and H. Harish, ∗-Conformal η-Ricci solitons on α-cosymplectic manifolds,
International Journal of Analysis and Applications, 19, 165-179, (2021).

[18] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4, 1-27,
(1981).

[19] G. Kaimakamis and K. Panagiotidou, ∗-Ricci solitons of real hypersurfaces in non-flat complex space
forms, J. Geom. Phys., 86, 408-413, (2014).

[20] P. Majhi, U. C. De and Y. J. Suh, ∗-Ricci solitons on Sasakian 3-manifolds, Publ. Math. Debrecen, 93,
241-252, (2018).

[21] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl., (4) 162, 77-86,
(1992).

[22] R. H. Ojha, A note on the M -projective curvature tensor, Indian J. Pure Appl. Math., 8, 1531-1534,
(1977).



A study of ∗-conformal Einstein solitons 243

[23] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32, no.3-4, 187-193,
(1985).

[24] S. S. Shukla and M. K. Shukla, On ϕ-Ricci symmetric Kenmotsu manifolds, Novi Sad J. Math., 39(2),
89-95, (2009).

[25] S. Tachibana, On almost-analytic vectors in almost-Kählerian manifolds, Tohoku Math. J., (2) 11, 247-
265, (1959).

[26] Venkatesha, D. M. Naik and H. A. Kumara, ∗-Ricci solitons and gradient almost ∗-Ricci solitons on
Kenmotsu manifolds, Mathematica Slovaca, 69 (6), 1447-1458, (2019).

[27] K. Yano and M. Kon, Structures on Manifolds, World Scientific, Singapore, (1984).

Author information
Mobin Ahmad*, Department of Mathematics and Statistics, Integral University, Kursi Road, Lucknow-226026.,
India.
E-mail: mobinahmad68@gmail.com

Gazala, Department of Mathematics and Statistics, Integral University, Kursi Road, Lucknow-226026., India.
E-mail: gazala.math@gmail.com

Received: 2024-01-20

Accepted: 2024-04-08


	1 Introduction
	2 Preliminaries
	3 *-CES in trans-Sasakian 3-manifolds
	4 *-CES in trans-Sasakian 3-manifolds admitting certain types of Ricci tensors
	5 -Ricci symmetric trans-Sasakian 3-manifolds admitting *-CES
	6  Trans-Sasakian 3-manifolds admitting *-CES satisfying R(,1)S*=0 and RE*=0 
	7 M-projectively flat and -M-projectively semisymmetric trans-Sasakian 3-manifolds admitting *-CES

