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Abstract For A ∈ L(X), B ∈ L(Y ), and C ∈ L(Y,X) we denote by MC the operator matrix

defined on X ⊕ Y by MC =

(
A C

0 B

)
, where X and Y are Banach spaces. In this paper, we

study the ergodicity of MC with respect to those of its diagonal terms A and B.

1 Introduction

Throughout this paper, X and Y denote infinite dimensional complex Banach spaces, and L(X,Y )
denotes the set of all bounded linear operators from X into Y . If X = Y we write L(X) instead
of L(X,X). For T ∈ L(X), we denote by N(T ) the kernel of T , R(T ) the range of T , σ(T ) the
spectrum of T , ⊕ the external direct sum and ⊕i the internal direct sum. The reduced minimum
modulus of T is defined by [1]

γ(T ) =

{
inf{∥Tx∥ : dist(x,N(T )) = 1} if T ̸= 0
0 if T = 0

.

Let n ∈ N and T ∈ L(X). We define Mn(T ), the Cesàro averages of T , by:

Mn(T ) =
I + T + T 2 + ...+ Tn−1

n
.

An operator T ∈ L(X) is called mean ergodic if the Cesàro averages Mn(T ) converges in
the strong operator topology. If Mn(T ) converges in the uniform operator topology, T is called
uniform ergodic operator.

In ergodic theory and functional analysis, the term "ergodic" often refers to properties related
to the long-term behavior of dynamical systems or linear operators. An operator is said to be
"mean ergodic" if it possesses certain properties related to convergence and averaging. The
mean ergodic property is significant in the study of the long-term behavior of dynamical systems
and linear operators. It ensures that, on average, the orbits of the system get closer to a fixed
point (or converge to some limit) over time. This property has applications in various fields such
as probability theory, functional analysis, and statistical physics.

In [8], J.V. Neumann prove that if T is an ergodic unitary operator, then the temporal av-
erages of successive powers of T converge to an orthogonal projection operator of rank one.
This is an important result, it is a one of the cornerstones of ergodic theory and has applications
in various areas of mathematics and physics. K. Yosida [13] extended this concept to the set-
ting of Banach spaces, this extension is important because it generalizes the concept of ergodic
theorems from Hilbert spaces to more general spaces.

Through their papers [12, 13], Kakutani and Yoshida developed the mean ergodic theorem.
Firstly, by generalizing the result of J.V. Neumann and by working on (real or complex) Banach
spaces. Secondly, the strong limit of Mn(T ) is the projection of X onto the subspace N(I − T ),
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corresponding to the ergodic decomposition X = N(I − T ) ⊕i R(I − T ) and the conditions
imposed on an operator T ∈ L(X) for it to be mean ergodic always hold for any bounded linear
operator in Lp with p > 1.

In 1943, Nelson Dunford [3] studied the necessary and sufficient conditions for the conver-
gence of a sequence of linear operators towards a projection, he treated the convergence, in
different topologies (Uniform, strong, weak and almost everywhere convergence), of a sequence
of polynomial operators towards a projection.

Based on Dunford’s results, M.Lin [6] developed an uniform ergodic theorem, through which
an operator T ∈ L(X) verifying ∥T∥n

n → 0 is uniformly ergodic if and only if (I − T )X is
closed if and only if 1 is a simple pole of the resolvent of T . Mbekhta and Zemanek [7] general-
ized this result by replacing the closure of (I−T )X by that of (I−T )kX for some integer k > 0.

In his paper [14], M. Yahdi introduced a concept known as super-ergodicity, which occupies
a position between mean ergodicity and uniform ergodicity in terms of strength. This concept
will be elaborated upon in the third section.

Let’s consider the upper triangular operator matrix MC defined, on X ⊕ Y , by :

MC =

(
A C

0 B

)
,

with A ∈ L(X), B ∈ L(Y ) and C ∈ L(Y,X).

Since the article of P. Jin and H.K. Du [4], several papers have studied the upper triangular
operator matrices MC . Most of them have treated the perturbation of different type of spectra of
the matrix MC in relation to those of its diagonal terms A and B, see [2], [9].

In this paper, we propose to study some dynamic aspects of the matrix MC . So, we investigate
the uniform ergodicity (resp. mean ergodicity and super-ergodicity) of MC .

2 Uniform ergodicity of MC

In the sequel, we consider X and Y as complex infinite dimensional Banach spaces.
The following results are valid for any lp norm on the direct sum X ⊕ Y , where 1 ≤ p < ∞.

Let A ∈ L(X), B ∈ L(Y ), and C ∈ L(Y,X). For n ∈ N such that n ≥ 2, we have:

Mn
C =

(
An

∑n−1
k=0 An−1−kCBk

0 Bn

)
.

Then

Mn(MC) =

(
Mn(A) Sn

0 Mn(B)

)
.

with

Sn =
n−2∑
k=0

k∑
i=0

1
n
(Ak−iCBi).

Theorem 2.1. Let A ∈ L(X), B ∈ L(Y ), and C ∈ L(Y,X). A and B must be uniformly ergodic
if MC is.

Proof. Assume that MC is uniformly ergodic, then there exists P =

(
P1 P3

P4 P2

)
∈ L(X ⊕ Y )

such that ∥Mn(MC)− P∥ → 0. Hence

Supx⊕y ̸=0⊕0
∥[(Mn(A)− P1)x+ (Sn − P3)y]⊕ [P4x− (Mn(B)− P2)y]∥

∥x⊕ y∥
→ 0.
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So,

Supx̸=0
∥(Mn(A)− P1)x⊕ P4x∥

∥x∥
→ 0.

Let p ≥ 1 be an integer. Hence

Supx ̸=0
1

∥x∥
(∥(Mn(A)− P1)x∥p + ∥P4x∥p)

1
p → 0.

If P4 ̸= 0, then there exists x0 ∈ X such that ∥P4x0∥ ≠ 0. Hence

Supx ̸=0
1

∥x∥
(∥(Mn(A)−P1)x∥p + ∥P4x∥p)

1
p ≥ 1

∥x0∥
(∥(Mn(A)−P1)x0∥p + ∥P4x0∥p)

1
p ̸→ 0,

which is absurd. Consequently, P4 = 0.
Let us show the uniform ergodicity of A and B. We have

∥Mn(MC)− P∥ = Sup∥x⊕y∥≤1∥(Mn(MC)− P )x⊕ y∥
≥ Sup∥x∥≤1∥(Mn(MC)− P )x⊕ 0∥
= Sup∥x∥≤1∥(Mn(A)− P1)x∥
= ∥Mn(A)− P1∥.

Since ∥Mn(MC)−P∥ → 0, ∥Mn(A)−P1∥ → 0. As a result, A is uniformly ergodic. Moreover,
we have

∥Mn(MC)− P∥ = Sup∥x⊕y∥≤1∥(Mn(MC)− P )x⊕ y∥
≥ Sup∥y∥≤1∥(Mn(MC)− P )0 ⊕ y∥
= Sup∥y∥≤1∥(Sn − P3)y ⊕ (Mn(B)− P2)y∥

= Sup∥y∥≤1(∥(Sn − P3)y∥p + ∥(Mn(B)− P2)y∥p)
1
p .

Then Sup∥y∥≤1(∥(Sn − P3)y∥p + ∥(Mn(B)− P2)y∥p) → 0.
If ∥Mn(B)− P2∥ ̸→ 0, then

Sup∥y∥≤1∥(Mn(B)− P2)y∥p ̸→ 0.

Thus
Sup∥y∥≤1(∥(Sn − P3)y∥p + ∥(Mn(B)− P2)y∥p) ̸→ 0,

which is absurd. Therefore ∥Mn(B)− P2∥ → 0. As a result, B is uniformly ergodic.

In the context of the study of the matrix MC , an important question arises regarding the
relationship between the projection associated to MC and the projections associated to A and
B. In light of the demonstration of the aforementioned theorem, it is established that both A
and B are uniformly ergodic operators, where Mn(A) uniformly converges to P1 and Mn(B)
uniformly converges to P2. In the subsequent corollary, we add a condition ensuring that the
limit of Mn(MC) is exclusively formulated by those of Mn(A) and Mn(B).

Corollary 2.2. Let A ∈ L(X), B ∈ L(Y ), and C ∈ L(Y,X) such that N(I − B) ⊆ N(C).

If MC is uniformly ergodic, then Mn(MC) converges uniformly to

(
P1 0
0 P2

)
where Mn(A)

converges uniformly to P1 and Mn(B) converges uniformly to P2.

Proof. Suppose that MC is uniformly ergodic, then there exists P =

(
P1 P3

0 P2

)
∈ L(X ⊕ Y )

such that ∥Mn(MC)− P∥ → 0 and P is the projection of X ⊕ Y on the subspace N(I −MC),
corresponding to the ergodic decomposition X ⊕ Y = N(I −MC) ⊕i (I −MC)(X ⊕ Y ). So,
for all x ⊕ y = (z ⊕ t) + (s ⊕ q) ∈ N(I − MC) ⊕i (I −MC)(X ⊕ Y ) = X ⊕ Y we have
P (x⊕ y) = z ⊕ t.
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Let x ⊕ y = (z ⊕ t) + (s ⊕ q) ∈ N(I − MC) ⊕i (I −MC)(X ⊕ Y ) = X ⊕ Y . Hence
P (x⊕y) = (P1x+P3y)⊕P2y = z⊕t. By Theorem 2.1, P1 is the projection of X on the subspace
N(I − A) and P2 is the projection of Y on the subspace N(I − B). Since N(I − B) ⊆ N(C),
N(I−A)⊕N(I−B) = N(I−MC). Hence (z+P3y)⊕ t = z⊕ t, which implies that P3y = 0,

for all y ∈ Y . Therefore P3 = 0. Consequently, P =

(
P1 0
0 P2

)
.

Through the subsequent example, we illustrate that the uniform ergodicity of A and B does
not necessarily entails the same property for MC .

Example 2.3. Let A = IX , B = IY
2 , and C (̸= 0) ∈ L(Y,X). Evidently A and B are uniformly

ergodic operators, then Mn(A) and Mn(B) converge. Hence, if MC is uniformly ergodic, then
(by Corollary 2.2) Sn converges to 0. Therefore to show that MC is not uniformly ergodic, it
suffices to show that Sn ̸→ 0. For n ≥ 2, we have

∥Sn∥ = ∥
n−2∑
k=0

k∑
i=0

Ak−iCBi

n
∥

= ∥C
n

n−2∑
k=0

k∑
i=0

1
2i
∥

= ∥C
n

n−2∑
k=0

1
2
×

1 − ( 1
2)

k+1

1 − 1
2

∥

= ∥C
n

n−2∑
k=0

(1 − (
1
2
)k+1)∥

= ∥C
n
[
n−2∑
k=0

1 −
n−2∑
k=0

(
1
2
)k+1]∥

= ∥C
n
(n− 1)− C

n
(

1 − ( 1
2)

n−1

1 − 1
2

)
1
2
∥

= ∥C
n
(n− 1)− C

n
(1 − (

1
2
)n−1)∥

= ∥C
n
(n− 1)− C

n
+

2C
n

(
1
2
)n−1∥

= |n− 1
n

− 1
n
+

1
n
(

1
2
)n−1|∥C∥.

Therefore Sn → ∥C∥ ≠ 0. As a result, MC is not uniformly ergodic.

Theorem 2.4. Given A ∈ L(X), B ∈ L(Y ), and C ∈ L(Y,X). If MC is mean ergodic, this
implies the mean ergodicity of both A and B.

Proof. It is similar to the proof of Theorem 2.1.

Also, we have the following corollary.

Corollary 2.5. Let A ∈ L(X), B ∈ L(Y ), and C ∈ L(Y,X). Assuming either I −B is injective

or N(C) ⊂ N(I −B). If MC is mean ergodic, then Mn(MC) converges strongly to

(
P1 0
0 P2

)
where Mn(A) converges strongly to P1 and Mn(B) converges strongly to P2.

By revisiting Example 2.3 once more and following the same procedure, it becomes evident
that the mean ergodicity of A and B does not implies that of MC . In light of this, we formulated
the following theorem.
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Theorem 2.6. Let A ∈ L(X), B ∈ L(Y ), and C ∈ L(Y,X). If ∥A∥ < 1 and ∥B∥ < 1, then MC

is uniformly ergodic.

Proof. Assume that ∥A∥ < 1 and ∥B∥ < 1, then they are uniformly ergodic. We have

Mn(MC) =

(
Mn(A)

∑n−2
k=0

∑k
i=0

1
n(A

k−iCBi)

0 Mn(B)

)
,

Since A and B are uniformly ergodic, Mn(A) and Mn(B) converges. So, to show that MC is
uniformly ergodic, it suffices to show that Sn converges. We have

∥
n−2∑
k=0

k∑
i=0

Ak−iCBi

n
∥ ≤

n−2∑
k=0

k∑
i=0

∥Ak−i∥∥C∥∥Bi∥
n

.

Without loss of generality, we suppose that ∥B∥ ≤ ∥A∥. Then

∥
n−2∑
k=0

k∑
i=0

Ak−iCBi

n
∥ ≤

n−2∑
k=0

k∑
i=0

∥A∥k∥C∥
n

.

For all k ∈ N, we pose Uk =
∑k

i=0
∥A∥k∥C∥

n and ak = ∥A∥. Then we have

lim
k→∞

(ak
Uk

Uk+1
− ak+1) = 1 − ∥A∥ > 0.

Then Kummer’s test ensures the convergence of the series
∑

n≥0 Un. Consequently, ∥
∑n−2

k=0
∑k

i=0
Ak−iCBi

n ∥
converges. Which implies that MC is uniformly ergodic.

Next, we present the subsequent proposition.

Proposition 2.7. Let A ∈ L(X), B ∈ L(Y ), and C ∈ L(Y,X). The following statements holds.

(1) Suppose that ∥A∥ ̸= ∥B∥. If ∥An∥
n → 0 and ∥Bn∥

n → 0 when n → ∞, and the sequences
∥A∥n

n and ∥B∥n

n tend to the same limit in R, when n → ∞. Then ∥Mn
C∥
n → 0 when n → ∞.

(2) Suppose that ∥A∥ = ∥B∥. If ∥A∥n → 0 when n → ∞, then ∥Mn
C∥
n → 0, when n → ∞.

Proof. (1) We have

∥
n−1∑
k=0

An−1−kCBk

n
∥ ≤ ∥C∥

n

n−1∑
k=0

∥An−1−k∥∥Bk∥.

Hence

∥
n−1∑
k=0

An−1−kCBk

n
∥ ≤ ∥C∥

n

∥A∥n − ∥B∥n

∥A∥ − ∥B∥
.

We have
∥Mn

C∥
n

≤ 1
n
(∥An∥+ ∥

n−1∑
k=0

An−1−kCBk∥) + ∥Bn∥
n

.

Indeed, we have

∥Mn
C∥ = Sup∥x⊕y∥≤1∥Mn

C(x⊕ y)∥

= Sup∥x⊕y∥≤1∥Anx+
n−1∑
k=0

An−1−kCBk ⊕Bny∥

= Sup∥x⊕y∥≤1(∥Anx+
n−1∑
k=0

An−1−kCBk∥p + ∥Bny∥p)
1
p .
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Hence

∥Mn
C∥p = Sup∥x⊕y∥≤1(∥Anx+

n−1∑
k=0

An−1−kCBk∥p + ∥Bny∥p).

Moreover we have

Sup∥x⊕y∥≤1∥Anx+
n−1∑
k=0

An−1−kCBky∥p ≤ Sup∥x⊕y∥≤1(∥Anx∥+ ∥
n−1∑
k=0

An−1−kCBky∥)p

= [Sup∥x⊕y∥≤1(∥Anx∥+ ∥
n−1∑
k=0

An−1−kCBky∥)]p

≤ (Sup∥x∥≤1∥Anx∥+ Sup∥y∥≤1∥
n−1∑
k=0

An−1−kCBky∥)p

= (∥An∥+ ∥
n−1∑
k=0

An−1−kCBk∥)p.

Assume that ∥A∥n

n and ∥B∥n

n tend to the same limit in R, when n → ∞. Hence ∥
∑n−1

k=0
An−1−kCBk

n ∥ →
0, when n → ∞. As a consequence, we have ∥Mn

C∥
n → 0.

(2) Assume that ∥A∥n → 0, when n → ∞ and ∥A∥ = ∥B∥. We have

∥
n−1∑
k=0

An−1−kCBk

n
∥ ≤ ∥C∥

n

n−1∑
k=0

∥A∥n−1−k∥B∥k.

Since ∥A∥ = ∥B∥,

∥
n−1∑
k=0

An−1−kCBk

n
∥ ≤ ∥C∥

n

n−1∑
k=0

∥A∥n−1−k∥B∥k = ∥C∥∥A∥n−1.

Moreover ∥A∥n → 0, when n → ∞, then ∥
∑n−1

k=0
An−1−kCBk

n ∥ → 0, when n → ∞.
Consequently, ∥Mn

C∥
n → 0, when n → ∞.

By Proposition 2.7, we can subsequently replace the condition ∥Mn
C∥
n → 0 when n → ∞,

with specific requirements that exclusively involve the operators A and B.

Proposition 2.8. Let A ∈ L(H), B ∈ L(K), and C ∈ L(K,H), where H and K are two
complex infinite dimensional separable Hilbert spaces. If either I − B or (I − A)∗ is injective
and ∥Mn

C∥
n → 0 when n → ∞. Then the following statements are equivalent:

(1) MC is uniformly ergodic.

(2) A and B are uniformly ergodic.

(3) The subspace N(I−A)+R(I−A) is closed in X , and the subspace N(I−B)+R(I−B)
is closed in Y .

(4) The point 1 is a pole of order at most equal to 1 of resolvant of A and resolvant of B.

(5) The range R((I − A)m) is closed for certain m = 1, 2, ..., and the range R((I − B)m) is
closed for certain m = 1, 2, ...

Proof. (1) =⇒ (2) from Theorem 2.1. (2) =⇒ (3), (3) =⇒ (4) and (4) =⇒ (5) from [7,
Theorem 1].
(5) =⇒ (1): We have ∥Mn

C∥
n → 0, then it is easy to see that ∥An∥

n → 0 and ∥Bn∥
n → 0. Assume

that there exist n,m = 1, 2, ... such that R((I−A)m) and R((I−B)m) are closed. So, according
to [7, Theorem 1], A and B are uniformly ergodic. Then [6, Theorem] R(I − A) and R(I −B)
are closed, which is equivalent to γ(I − A) and γ(I − B) are strictly positive. Since I − B or
(I−A)∗ is injective, [5, Theorem 3] ensures that γ(I−MC) is stricly positive. As consequence,
R(I −MC) is closed. Thus MC is uniformly ergodic.
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If we take the example 2.3, the sequences (An)n∈N and (Bn)n∈N converge uniformly but
(Mn

C)n∈N does not. By the following Theorem we give some conditions that ensure the equiva-
lence between the uniform convergence of (Mn

C)n∈N and that of (An)n∈N and (Bn)n∈N.
Let us denote the unit circle by T.

Theorem 2.9. Let A ∈ L(H), B ∈ L(K), and C ∈ L(K,H), where H and K are two complex
infinite dimensional separable Hilbert spaces. If either I − B or (I − A)∗ is injective and
∥Mn

C∥
n → 0, then the following statements are equivalent:

(i) (Mn
C)n∈N converges uniformly;

(ii) (An)n∈N and (Bn)n∈N converge uniformly.

Proof. (1) =⇒ (2): Assume that (Mn
C)n∈N converges uniformly. Hence there exists Q =(

Q1 Q3

Q4 Q2

)
∈ L(H ⊕K) such that ∥Mn

C −Q∥ → 0. Hence

Supx⊕y ̸=0⊕0
∥[(An −Q1)x+ (

∑n
k=0 A

n−1−kCBk −Q3)y]⊕ [Q4x− (Bn −Q2)y]∥
∥x⊕ y∥

→ 0.

Hence

Supx ̸=0
∥(An −Q1)x⊕Q4x∥

∥x∥
→ 0.

So, it is easy to see that Q4 = 0.
Let us show that (An)n∈N and (Bn)n∈N converges uniformly. We have

∥Mn
C −Q∥ = Sup∥x⊕y∥≤1∥(Mn

C −Q)x⊕ y∥
≥ Sup∥x∥≤1∥(Mn

C −Q)x⊕ 0∥
= Sup∥x∥≤1∥(An −Q1)x∥
= ∥An −Q1∥.

Since ∥Mn
C −Q∥ → 0, ∥An −Q1∥ → 0. Hence (An)n∈N converges uniformly to Q1.

Moreover, we have

∥Mn
C −Q∥ = Sup∥x⊕y∥≤1∥(Mn

C −Q)x⊕ y∥
≥ Sup∥y∥≤1∥(Mn

C −Q)0 ⊕ y∥
= Sup∥y∥≤1∥(Sn − P3)y ⊕ (Bn −Q2)y∥

= Sup∥y∥≤1(∥(
n−1∑
k=0

An−1−kCBk −D3)y∥p + ∥Bn −D2)y∥p)
1
p .

Hence

Sup∥y∥≤1(∥(
n−1∑
k=0

An−1−kCBk −Q3)y∥p + ∥(Bn −Q2)y∥p) → 0.

If ∥Bn −Q2∥U ̸→ 0, then
Sup∥y∥≤1∥(Bn −Q2)y∥p ̸→ 0.

Consequently,

Sup∥y∥≤1(∥(
n−1∑
k=0

An−1−kCBk −Q3)y∥p + ∥Bn −Q2)y∥p) ̸→ 0,

which is absurd. Hence ∥Bn −Q2∥ → 0. Therefore (Bn)n∈N converges uniformly to Q2.
(2) =⇒ (1): Assume that (An)n and (Bn)n converge uniformly. According to [7, Corollary

3], A and B are uniformly ergodic and

{
σ(A) ∩ T ⊂ {1}
σ(B) ∩ T ⊂ {1}

. By [7, Corollary 3], we have
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{
|σ(A)| ≤ 1
|σ(B)| ≤ 1

with

{
σ(A) ∩ T ⊂ {1}
σ(B) ∩ T ⊂ {1}

and the point 1 is a pole of order at most equal to 1 of

resolvant of A and resolvant of B. Since either I −B or (I −A)∗ is injective and ∥Mn
C∥
n → 0, by

Proposition 2.8 and [7, Theorem 1], the point 1 is a pole of order at most equal to 1 of resolvant of
MC . Furthermore, we have σ(MC) ⊂ σ(A)∪σ(B). Hence |σ(MC)| ≤ 1 and σ(MC)∩T ⊂ {1}.
So, in virtue of [7, Corollary 3], (MC)n≥1 converges uniformly.

3 Super-ergodicity of MC

Let X be a Banach space and U be an ultrafilter on N. We denote by

(i) l∞(X) the space of all bounded sequences in X .

(ii) CU(X) the subspace of l∞(X), of all sequences (xn)n such that limU ∥xn∥ = 0.

(iii) XU = l∞(X)/CU(X) the quotient space called the U-ultrapower of X , with the canonical
norm

∥(xn)n∥ = lim
U

∥xn∥.

(iv) TU the ultrapower operator of T defined on XU by

TU((xn)n) = (Txn)n = (Txn)n + CU(X).

Recall that [15, pp 451] for every ultrafilter U there is an isometry between (X ⊕ Y )U and
XU ⊕ Y U . Exactly, for all (xn)n ∈ XU and (yn)n ∈ XU we have

∥(xn)n ⊕ (yn)n∥XU⊕Y U = ∥(xn)n ⊕ (yn)n∥(X⊕Y )U = lim
U

∥xn ⊕ yn∥,

where X ⊕ Y is equipped by lp-norm with 1 ≤ p < ∞.
Due to that we can identify each of (X ⊕ Y )U and XU ⊕ Y U by the other space.

Definition 3.1. [14] Let T ∈ L(X). We say that T is super-ergodic if the operator TU is mean
ergodic on XU .

Recall that we have

T is uniformly ergodic =⇒ T is super-ergodic =⇒ T is mean ergodic.

But the inverse implications are not necessarily true (See [14]).

The key to this section lies in the following lemma.

Lemma 3.2. Let A ∈ L(X), B ∈ L(Y ), and C ∈ L(Y,X). We have

MU
C =

(
AU CU

0 BU

)
.

Proof. Assume that MU
C =

(
T D

Q S

)
.

We claim that Q = 0. In fact, by way of contradiction, we suppose that there exists (x0
n)n ∈

XU such that Q(x0
n)n ̸= 0. So, we have

MU
C ((x

0
n)n ⊕ 0) = (MC(x0

n ⊕ 0))n.

Since (X ⊕ Y )U = XU ⊕ Y U , we deduce that

T (x0
n)n ⊕Q(x0

n)n = (Ax0
n)n ⊕ 0,



32 M. Ech-Cherif El Kettani, I. El Ouali and M. Karmouni

which is absurd. Consequently, Q = 0.
Let (yn)n ∈ Y U . We have

MU
C (0 ⊕ (yn)n) = (MC(0 ⊕ yn))n.

Since (X ⊕ Y )U = XU ⊕ Y U , we have

D(yn)n ⊕ S(yn)n = (Cyn ⊕Byn)n = (Cyn)n ⊕ (Byn)n.

Therefore S = BU and D = CU . In a similar manner, we have T = AU .

Theorem 3.3. Let A ∈ L(X), B ∈ L(Y ), and C ∈ L(Y,X). If MC is super-ergodic, then A and
B are super-ergodic.

Proof. Assume that MC is super-ergodic. Hence MU
C is mean ergodic. Moreover, by Lemma

3.2, we have MU
C =

(
AU CU

0 BU

)
. In accordance with Theorem 2.4, AU and BU are mean

ergodic. Consequently, A and B are super-ergodic operators.

Remark 3.4. If ∥A∥ < 1 and ∥B∥ < 1, then MC is super-ergodic. Indeed: Theorem 2.6 ensures
that MC is uniformly ergodic. As a result, MC is super-ergodic.

Based on Corollary 2.5 and Lemma 3.2, we notice the following.

Remark 3.5. Assume that N((I −B)U) ⊆ N(CU). So, if MC is super-ergodic, then Mn(MU
C )

converges strongly to

(
P1 0
0 P2

)
where Mn(AU)

Strongly−−−−→ P1 and Mn(BU)
Strongly−−−−→ P2.
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