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Abstract In this article, we consider the Matsumoto-Randers change on m-th root Finsler
metric. The necessary and sufficient conditions for the Matsumoto-Randers change on m-th root
Finsler metric to be locally dually flat is obtained. Finally, we discuss the condition for which
the Finsler metric is projectively flat.

1 Introduction

The class of Finsler metrics is a natural generalization of the class of Riemannian metrics.
Compared to Riemannian metrics, Finsler metrics do not always exhibit reversibility condition.
If one considers the reversibility of certain Finsler metrics, it can be simplified to a Riemannian
metric, namely Randers-type metric [8]. This demonstrates the complexity of the Finsler metric
in comparison to the Riemannian metric. On the other hand, an investigation into the geometrical
structure of a family of probability distributions led to the development of information geometry.
Amari and Nagaoka [2] initially established the concept of dually flat metrics while investigating
the information geometry on Riemannian spaces. Later, Z. Shen [9] expanded the concept of
dually flatness to Finsler metrics. In Finsler information geometry, dually flat Finsler metrics
constitute a distinct and valuable class of Finsler metrics that are crucial for the study of flat
Finsler information structure [9].
A Finsler metric F = F (x, y) on a manifold is considered locally dually flat if at every point,
there exists a coordinate system (xi) in which the spray coefficients Gi can be expressed as

Gi =
−1
2

gijHyj , (1.1)

where H = H(x, y) is a local scalar function [4]. In this case, H = H(x, y) in (1.1) is given by
H = −1

6 [F 2]xmym. Such a coordinate system refers to an adapted coordinate system. In other
words, a Riemannian metric F =

√
gij(x)yiyj is locally dually flat if and only if in an adapted

coordinate system,

gij(x) =
∂2 ϕ

∂xi∂xj
(x)

where ϕ = ϕ(x) is a C∞ function [1, 2]. There are many non Riemannian metrics which are
dually flat, for example [5]

F =

√
|y|2 − (|x|2|y|2− < x, y >2)

1 − |x|2
± < x, y >

1 − |x|2

On the unit ball Bn ⊂ Rn, the above metric is the Funk metric.
H. Shimada [10] developed the notion of m-th root Finsler metrics, which has been utilized in
the field of Biology as an ecological metric. For a Finsler manifold (M,F ) of dimension n, let
TM denote its tangent bundle, and (xi, yi) represent the coordinates in a local chart on TM .
The Finsler metric F : TM → R be defined as F = A

1
m , where A := ai1i2...im(x)yi1yi2 ...yim

and ai1i2...im is symmetric in all indices. Then F is called an m-th root Finsler metric on M . The
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second root metric (m = 2) is simply the Riemannian metric. The third root metric (m = 3) is
referred to as the cubic metric, whereas the fourth root metric (m = 4) is known as the quartic
metric. Recent researches indicate that the theory of m-th root Finsler metrics is highly signif-
icant in the fields of physics, space-time structure theory, seismic ray theory, general relativity
and gravitation.
A Finsler metric is considered locally projectively flat if, for any given point, there exists a local
coordinate system where the geodesics are represented as straight lines. The condition for the
projective flatness is the existence of a local coordinate system on the base manifold in which
the Finsler function satisfies the system of partial differential equations [3]

∂2F

∂2xkyl
yk − ∂F

∂xl
= 0 (1.2)

Tayebi et al. studied the Randers change [12] and Matsumoto change [11] of m-th root metric
and found the conditions for different kinds of flatness of Finsler metric. Gupta et al. [6] obtained
the results regarding projectively flatness and locally dually flatness of Finsler metric. They also
studied the curvature properties of the conformal Matsumoto metric. Motivated by the work
done in this field, we have considered the Matsumoto and Randers change simultaneously on a
m-th root Finsler metric F , resulting in a new metric denoted as F . We refer this metric as the
Matsumoto-Randers change of the m-th root Finsler metric and defined as

F =
F 2

F − β
+ β (1.3)

where β is one form and F = A
1
m be an m-th root Finsler metric, with A being irreducible. In

this article, we will prove the following theorems

Theorem 1.1. Let F = A
1
m (m > 2) be m-th root Finsler metric and F (x, y) be the Matsumoto-

Randers change of F given in (1.3). Then F is projectively flat if and only if the following
conditions holds

β0l − βxl = 0, mA(A0l −Axl) = (m− 1)A0Al, and β0 = β θ.

Theorem 1.2. Let F = A
1
m (m > 2) be m-th root Finsler metric. Assume that F (x, y) be the

Matsumoto-Randers change of F given in (1.3). Then the necessary and sufficient condition for
F to be locally dually flat is Axj = 0 and bj are constant.

2 Locally Projectively flat

A Finsler metric F (x, y) on an open domain U ⊂ Rn is said to be locally projectively flat if
and only if its geodesic coefficients Gi can be expressed as Gi(x, y) = P (x, y)yi where P is a
positively homogeneous function of degree one i.e. P (x, λy) = λP (x, y), for λ > 0. The term
P (x, y) refers to “projective factor" [7]. Alternatively stated, a Finsler metric F = F (x, y) is
considered locally projectively flat on a manifold Mn if and only if [3]

[F ]xkyly
k − [F ]xl = 0 (2.1)

For an m-th root metric F = A
1
m , we have used the following notations

Ai =
∂A

∂yi
, Axi =

∂A

∂xi
, A0l = Axkylyk =

∂2A

∂xkyl
yk , β0l = βxkyly

k, βl =
∂β

∂yl
.

Proof of Theorem 1.1: Differentiating equation (1.3) with respect to xk, we have

[F ]xk =
1

m(A
1
m − β)2

{
A

3
m−1Axk − 2β A

2
m−1Axk +mA

2
m βxk

}
+ βxk . (2.2)
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Again differentiating with respect to yl and multiplying the result by yk gives us

[F ]xkylyk = 1
m(A

1
m −β)3

{( 1
m − 1

)
A0AlA

4
m−2 +A0lA

4
m−1 + [Alβ0 − βlA0 − βA0l]A

3
m−1

+mβ0lA
3
m + 3

(
1 − 1

m

)
βA0AlA

3
m−2 − 2βAlβ0A

2
m−1 (2.3)

+2
( 2
m − 1

)
β2A0AlA

2
m−2 +m[β0βl]− ββ0lA

2
m + β0l

}
.

Substituting the value of equation (2.2) and (2.3) in equation (2.1), we obtain( 1
m − 1

)
A0AlA

4
m−2 + (A0l −Axl

)A
4
m−1 + 3(1 − 1

m)βA0AlA
3
m−2 + (3βAxl

− 3βA0l)A
3
m−1

+
(
2mβ0l − 2mβxl

)
A

3
m +

(
2β2A0l − 2ββ0Al − 2ββlA0 − 2β2Axl

)
A

2
m−1

+2β2
( 2
m − 1

)
A0AlA

2
m−2 +

(
2mβ0βl − 4mββ0l + 4mββxl

)
A

2
m + 3mβ2(β0l − βxl)A

1
m

−3mβ3(β0l − βxl) = 0.

Separating the rational and irrational terms, we get

mβ3(β0l − βxl) = 0, (2.4)

and ( 1
m − 1

)
A0AlA

4
m−2 + (A0l −Axl

)A
4
m−1 + 3(1 − 1

m)βA0AlA
3
m−2

+(3βAxl
− 3βA0l)A

3
m−1 +

(
2mβ0l − 2mβxl

)
A

3
m + 2β2

( 2
m − 1

)
A0AlA

2
m−2 (2.5)

+
(
2β2A0l − 2ββ0Al − 2ββlA0 − 2β2Axl

)
A

2
m−1

+
(
2mβ0βl − 4mββ0l + 4mββxl

)
A

2
m + 3mβ2(β0l − βxl)A

1
m = 0.

On rewritting equations (2.4), we get the first condition of the theorem as

β0l − βxl = 0. (2.6)

Substituting above relation in equation (2.5), and simplyfying we obtain( 1
m − 1

)
A0AlA

4
m−2 + (A0l −Axl

)A
4
m−1 + 3(1 − 1

m)βA0AlA
3
m−2 + (3βAxl

−3βA0l)A
3
m−1 +

(
2β2A0l− 2ββ0Al− 2ββlA0− 2β2Axl

)
A

2
m−1 (2.7)

+2β2
( 2
m− 1

)
A0AlA

2
m−2 + 2mβ0βlA

2
m = 0.

Taking irrational and rational parts separately from above equation, we get

( 1
m

− 1
)
A0AlA

2
m +(A0l−Axl

)A
2
m+1+ 3(1− 1

m
)βA0AlA

1
m + (3βAxl

− 3βA0l)A
1
m+1=0 (2.8)

and (
2β2A0l− 2ββ0Al− 2ββlA0− 2β2Axl

)
A+ 2β2

(
2
m

− 1
)
A0Al + 2mβ0βlA

2 = 0 (2.9)

Simplifying equation (2.8), we obtain(
1
m

− 1
)
A0Al + (A0l −Axl)A = 0. (2.10)

On rewritten above equation, we have second condition of the theorem as

mA(A0l −Axl) = (m− 1)A0Al. (2.11)
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Since, A is irreducible and deg (Al) = m − 1 < deg (A). Thus their exists a one-form θ = θly
l

on U such that

A0 = mθA. (2.12)

Substituting above value of A0 in equation (2.9), and using (2.11), we have

(β θ − β0) {β Al −mβlA} = 0. (2.13)

Since β Al −mβlA ̸= 0, we have

β0 = β θ, (2.14)

which is the last condition of theorem. The converse part is direct computation. This completes
the proof.

3 Locally Dually Flat

In this section, we will prove the necessary and sufficient condtion under which Finsler metric
change into the Matsumoto-Randers m-th root metric to be locally dually flat. A Finsler metric
is locally dually flat if and only if, the following condition holds

[F
2
]xkyly

k − 2[F
2
]xl = 0 (3.1)

Proof of Theorem 1.2: On squaring the Matsumoto-Randers m-th root Finsler metric F (1.3),
we have

[F
2
] =

[
A

2
m

A
1
m −β

+ β

]2

Differentiating above equation with respect to xk, we obtain

[F
2
]xk = 2

(A
1
m −β)4

{
AxlA

6
m−1 − 2βAxlA

5
m−1 + 2mβxlA

5
m − 2mββxlA

4
m

−2β2AxlA
4
m−1 + 5β3AxlA

3
m−1 − 3mβ2βxlA

3
m + 6mβ3βxlA

2
m (3.2)

−4mβ4βxlA
1
m +mβ5βxl

}
.

Again differentiating above equation with respect to yl, and multiplying the result by yk, we get

[F
2
]xkyly

k = 2
m(A

1
m

−β)4

{( 2
m − 1

)
A0AlA

6
m−2 +A0lA

6
m−1 + 2

(
1 − 3

m

)
βA0AlA

5
m−2

+2 (βlA0 +Alβ0 − βA0l)A
5
m−1 + 2mβ0lA

5
m + 2β2A0AlA

4
m−2(

−8ββ0Al − 8ββlA0 − 2β2A0l

)
A

4
m−1 + (6mβ0βl − 2mββ0l)A

4
m

+
(
3β2β0Al + 3β2A0βl + 5β3A0l

)
A

3
m−1 +

(
−6mββ0βl − 3mβ2β0l

)
A

3
m

−3β3
(
1 − 1

m

)
A0AlA

3
m−2 − 2β4A0lA

2
m−1 +

(
6mβ2β0βl + 6mβ3β0l

)
A

2
m

−4mβ (β0βl + ββ0l)A
1
m +mβ4β0βl +mβ5β0l

}
. (3.3)

Substituting the values of equation (3.2) and (3.3), in equation (3.1), we have( 2
m − 1

)
A0AlA

6
m−2 +

(
A0l − 2Axl

)
A

6
m−1 + 2

(
1 − 3

m

)
βA0AlA

5
m−2

+2m(Alβ0 − β0Al − βA0l + 2βAxl)A
5
m−1 + 2m(β0l − 2βxl)A

5
m + 2β2A0AlA

4
m−2

+
(
4β2Axl − 8ββ0Al − 8ββlA0 − 2β3A0l

)
A

4
m−1 +

(
6mβ0βl − 2mββ0l + 4mββxl

)
A

4
m

+
(
3β2A0βl + 3β2β0Al + 5β3A0l − 10β3Axl

)
A

3
m−1 − 3β3

(
1 − 1

m

)
A0AlA

3
m−2

−3β4A0lA
2
m−1 +

(
6mβ2β0βl + 6mβ3β0l − 12mβ3βxl

)
A

2
m

+
(
6mβ2βxl − 6mββ0βl − 3mβ2β0l

)
A

3
m +

(
8mβ4βxl − 4mββ0βl − 4mβ2β0l

)
A

1
m

+mβ4β0βl +mβ5β0l − 2mβ5βxl = 0.
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On separating rational and irrational terms, we get

mβ4β0βl +mβ5β0l − 2mβ5βxl = 0,

and ( 2
m − 1

)
A0AlA

6
m−2 +

(
A0l − 2Axl

)
A

6
m−1 + 2

(
1 − 3

m

)
βA0AlA

5
m−2

+2m(Alβ0 − β0Al − βA0l + 2βAxl)A
5
m−1 + 2m(β0l − 2βxl)A

5
m + 2β2A0AlA

4
m−2

+
(
4β2Axl − 8ββ0Al − 8ββlA0 − 2β3A0l

)
A

4
m−1 +

(
6mβ0βl − 2mββ0l + 4mββxl

)
A

4
m

+
(
3β2A0βl + 3β2β0Al + 5β3A0l − 10β3Axl

)
A

3
m−1 − 3β3

(
1 − 1

m

)
A0AlA

3
m−2

−3β4A0lA
2
m−1 +

(
6mβ2β0βl + 6mβ3β0l − 12mβ3βxl

)
A

2
m

+
(
6mβ2βxl − 6mββ0βl − 3mβ2β0l

)
A

3
m +

(
8mβ4βxl − 4mββ0βl − 4mβ2β0l

)
A

1
m = 0.

On simplifying the above equations, we obtain

β0βl + ββ0l − 2ββxl = 0 (3.4)

and( 2
m − 1

)
A0AlA

4
m−1 +

(
A0l − 2Axl

)
A

4
m + 2

(
1 − 3

m

)
βA0AlA

3
m−1 + 2m(β0l − 2βxl)A

3
m+1

+2m(Alβ0 − β0Al − βA0l + 2βAxl)A
3
m + 2β2A0AlA

2
m−1 + 4mβ0βlA

2
m+1

+
(
4β2Axl − 8ββ0Al − 8ββlA0 − 2β3A0l

)
A

2
m − 3β3

(
1 − 1

m

)
A0AlA

1
m−1

+
(
3β2A0βl + 3β2β0Al + 5β3A0l − 10β3Axl

)
A

1
m − 3mββ0βlA

1
m+1 − 3β4A0l = 0 (3.5)

Taking rational and irrational terms separately from above equation, and simplyfing it, gives us

A0l = 0 (3.6)

and ( 2
m − 1

)
A0AlA

3
m +

(
A0l − 2Axl

)
A

3
m+1 + 2

(
1 − 3

m

)
βA0AlA

2
m

+2m(Alβ0 − β0Al − βA0l + 2βAxl)A
2
m+1 + 2m(β0l − 2βxl)A

2
m+2 + 2β2A0AlA

1
m

+
(
4β2Axl − 8ββ0Al − 8ββlA0 − 2β3A0l

)
A

1
m+1 − 3β3

(
1 − 1

m

)
A0Al

+
(
3β2A0βl + 3β2β0Al + 5β3A0l − 10β3Axl

)
A− 3mββ0βlA

2 + 4mβ0βlA
1
m+2 = 0 (3.7)

Equation (3.7) again splits into two equations( 2
m − 1

)
A0AlA

3
m +

(
A0l − 2Axl

)
A

3
m+1 + 2

(
1 − 3

m

)
βA0AlA

2
m

+2m(Alβ0 − β0Al − βA0l + 2βAxl)A
2
m+1 + 2m(β0l − 2βxl)A

2
m+2 + 2β2A0AlA

1
m

+
(
4β2Axl − 8ββ0Al − 8ββlA0 − 2β3A0l

)
A

1
m+1 + 4mβ0βlA

1
m+2 = 0, (3.8)

and

−3β3(1− 1
m

)
A0Al+

(
3β2A0βl+3β2β0Al+ 5β3A0l− 10β3Axl

)
A− 3mββ0βlA

2= 0. (3.9)

Equation (3.8) can be rewritten as( 2
m − 1

)
A0AlA

2
m +

(
A0l − 2Axl

)
A

2
m+1 + 2

(
1 − 3

m

)
βA0AlA

1
m

+2m(Alβ0 − β0Al − βA0l + 2βAxl)A
1
m+1 + 2m(β0l − 2βxl)A

1
m+2 + 2β2A0Al

+
(
4β2Axl − 8ββ0Al − 8ββlA0 − 2β3A0l

)
A+ 4mβ0βlA

2 = 0, (3.10)
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which on separating rational and irrational terms, we get( 2
m − 1

)
A0AlA

2
m +

(
A0l − 2Axl

)
A

2
m+1 + 2

(
1 − 3

m

)
βA0AlA

1
m

+2m(Alβ0 − β0Al − βA0l + 2βAxl)A
1
m+1 + 2m(β0l − 2βxl)A

1
m+2 = 0, (3.11)

and

4mβ0βlA
2 +

(
4β2Axl − 8ββ0Al − 8ββlA0 − 2β3A0l

)
A+ 2β2A0Al = 0. (3.12)

Equation (3.11) can be rewritten as( 2
m − 1

)
A0AlA

1
m +

(
A0l − 2Axl

)
A

1
m+1 + 2

(
1 − 3

m

)
βA0Al

+2m(Alβ0 − β0Al − βA0l + 2βAxl)A+ 2m(β0l − 2βxl)A2 = 0. (3.13)

Separating rational and irrational terms from the above equation, we get( 2
m − 1

)
A0AlA

1
m +

(
A0l − 2Axl

)
A

1
m+1 = 0, (3.14)

and

2
(

1 − 3
m

)
βA0Al + 2m(Alβ0 − β0Al − βA0l + 2βAxl)A+ 2m(β0l − 2βxl)A2 = 0. (3.15)

From equation (3.14), we have the following relation(
2
m

− 1
)
A0Al = − (A0l − 2Axl)A (3.16)

In view of equations (3.4), (3.9), and (3.15), we have the relation

A0Al = 0 (3.17)

and then equation (3.16) gives

A0l − 2Axl = 0 (3.18)

Solving equation (3.9) and (3.12), with the help of equation (3.17) and (3.18), gives us

βlA0 +Alβ0 = 0, and β0βl = 0 (3.19)

Using above equations in (3.15), we have

β0l − 2βxl = 0 (3.20)

Since, Al ̸= 0, equation (3.17) gives A0 = 0. In view of equation (3.6) and (3.18), we have
Axl = 0. Using the fact A0 = 0 in equation (3.19), it follows that β0 = 0. Taking vertical
derivation of of the expression yields the result βxl + β0l = 0. Thus βxl = 0, by equation (3.20),
indicating that bi are constants. The converse part is direct computation. This completes the
proof of the theorem.
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