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Abstract Consider a distribution of pebbles on the vertices of graph G. A pebbling move
means to remove two pebbles from a vertex and place one pebble on the adjacent vertex. The
pebbling number of a vertex v in a graph G is the smallest number f(G, v) such that for every
placement of f(G, v) pebbles, it is possible to move a pebble to v by a sequence of pebbling
moves. The pebbling number of G is the smallest number, f(G), such that from any distribution
of f(G) pebbles, it is possible to move a pebble to any specified target vertex by a sequence
of pebbling moves. Thus, f(G) is the maximum value of f(G, v) overall vertices v. Consider
the property that from every placement of certain number of pebbles we can move t pebbles to
any vertex of the graph through a sequence of pebbling moves. The least positive integer ft (G)
which satisfies the above property is known as the t-pebbling number of G. This paper discusses
ft (G) for shadow graph of cycles.

1 Introduction

One recent development in graph theory suggested by, Lagarias and Saks on pebbling, has been
the subject of much research. It was first introduced into the literature by Chung [1] and has
been developed by many others including Hulbert, who published a survey of graph pebbling
[2]. There have been many developments since Hulbert’s survey appeared in graph pebbling.
For the past 30 years, graph pebbling is an essential tool for the transportation of consumable
resources. Lourdusamy. et.al introduced the some new variants in graph pebbling and labeling.
(for example [7, 10, 11, 12]

Throughout the paper, G stands for a simple connected graph. Let us now explain the peb-
bling number of a vertex v in a graph G. It is the least positive integer f (G, v) with the following
property: with every possible configuration of f (G, v) pebbles there is a possibility to move a
pebble to v where pebbling move is defined as removal of two pebbles from a vertex throwing
one pebble away and placing another on the adjacent vertex.

This paper is organized as follows. In section 2, we give some preliminaries which we need
for the subsequent sections. In section 3, we find the pebbling number of shadow graph of a
cycle. In section 4, we find the t-pebbling number of shadow graph of a cycle.

2 Preliminaries

Definition 2.1. [4] Shadow graph of a graph G, denoted by D2(G), is obtained by having 2 copies
of a graph G and adding edges between the vertices of copies if their corresponding vertices are
adjacent in G. The Shadow graph of a cycle with n vertices is denoted by D2(Cn). Let us
denote the vertices of the first copy of Cn by u1, u2, · · · , un and the second copy of Cn by
v1, v2, · · · , vn.
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Definition 2.2. [5] Given a pebbling of G, a transmitting subgraph of G is a path x0, x1, x2, · · · ,
xk such that there are at least two pebbles on x0 and at least one pebble on each of the other
vertices in the path, except possibly xk. In this case, we can transmit a pebble from x0 to xk.

Theorem 2.3. [3] Let G be a graph with diam(G) = 2, then f(G) = n or n+ 1.
Fact 1. For any vertex v of a graph G, f(v,G) ≥ n where n = |V (G)|.

Lemma 2.4. [9] Let G be a simple connected graph |V (G)| ≥ 2. Then f(G[K̄n]) ≤ nf(G)

Definition 2.5. [6] The t-pebbling number, ft(G), of a graph G, is the least n such that, for
any configuration of n pebbles on the vertices of G, we can move t pebbles to any vertex by a
sequence of moves, each move taking two pebbles off one vertex and placing one on an adjacent
vertex. Clearly, f1(G) = f(G), the pebbling number of G.

Theorem 2.6. [3] For k ≥ 1, f(C2k) = 2k and f (C2k+1) = 2
⌊

2k+1

3

⌋
+ 1.

Remark 2.7. Consider the graph G with n vertices and f(G) pebbles on it. We select u as the
target vertex from G. If p(u) = 1 or p(v) ≥ 2 where uv ∈ E(G), then we aer done. As a result,
when u is the target vertex, we always assume that p(u) = 0 and p(v) ≤ 1 for all uv ∈ E(G).

Remark 2.8. Let p(u) represents the number of pebbles on the vertex u. Let p(V1) represents
the total number of pebbles placed on all the vertices of the set V1 ⊆ V where V is the vertex set
of the graph.

Theorem 2.9. [8] For the shadow graph of a path P2, the t-pebbling number is ft (D2 (P2)) =
2t+ 2.

Theorem 2.10. [8] For the shadow graph of a path Pn, ft (D2 (Pn)) = t2n−1 + 2, n ≥ 3.

Theorem 2.11. [3] Let Pn be a path on n vertices. Then f (Pn) = 2n−1.

3 Pebbling number for shadow graph of cycles

Theorem 3.1. For D2 (Cn) where 3 ≤ n ≤ 5, f (D2 (Cn)) = 2n.

Proof. Let V (D2 (Cn)) be {u1, u2, · · · , un, v1, v2, · · · , vn}. Since D2 (Cn) contains 2n
vertices. Therefore by 2.3, f (D2 (Cn)) ≥ 2n and by lemma 2.4, f (D2 (Cn)) ≤ 2n. Hence,
f (D2 (Cn)) = 2n.

Theorem 3.2. For D2 (C6) , f (D2 (C6)) = 12.

Proof. Let V (D2 (C6)) = {u1, u2, · · · , u6, v1, v2, · · · , v6} and the edge set of D2 (C6)
be E(D2 (C6)) = {ujuj+1, u1u6, vjvj+1, v1v6, ujvj+1, u6v1, vjuj+1, v6u1} where j =
1, 2, · · · , 5. Without loss of generality, let the target be u1. Consider the paths PA : u2, u3
and PB : u5, u6. In the given graph D2 (C6), there are two shadow graphs of paths PA and
PB . Then the vertex set of D2 (PA) is {u2, u3, v2, v3} and that of D2 (PB) is {u5, u6, v5, v6}.
Let S = {v4, u4}, N ′[S] = {u3, v3} and N ′′[S] = {u5, v5}. Note that d (u1, w) ≤ 3
where w ∈ V (D2 (C6)). By Theorem 2.3, f (D2 (C6)) ≥ 12. Now we will show that
f (D2 (C6)) ≤ 12. If we move 2 pebbles to either one of the vertices in {u2, v2} in D2 (PA)
or one of the vertices in {v6, u6} in D2 (PB), then we are done.

Case 1: Let p(V (D2(PA))) = p(V (D2(PB))) = 0 and p (v1) ≤ 1.
It is easy to see that at least 5 pebbles can be transfered to any one of the vertices of either

D2 (PA) or D2 (PB). The distance from D2 (PA) or D2 (PB) to the target is ≤ 2. Thus by The-
orem 2.11, we are able to pebble the target.

Case 2: Suppose 1 ≤ p(v1) ≤ 3.
If p(V (D2(PA))) ≥ 6 or p(V (D2(PB))) ≥ 6, then we are done by Theorem 2.10. Otherwise

if any one of the following inequalities holds,⌊
p (v1)

2

⌋
+ p (V (D2 (PA))) +

⌊
p (v4)

2

⌋
+

⌊
p (u4)

2

⌋
≥ 4 (3.1)
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⌊
p (v1)

2

⌋
+ p (V (D2 (PB))) +

⌊
p (v4)

2

⌋
+

⌊
p (u4)

2

⌋
≥ 4 (3.2)

then we are done by Theorem 2.11.
Thus, the configurations for which we cannot reach the target satisfy⌊

p (v1)

2

⌋
+ p (V (D2 (PA))) +

⌊
p (v4)

2

⌋
+

⌊
p (u4)

2

⌋
≤ 3 (3.3)

⌊
p (v1)

2

⌋
+ p (V (D2 (PB))) +

⌊
p (v4)

2

⌋
+

⌊
p (u4)

2

⌋
≤ 3 (3.4)

Adding (3.3) and (3.4), we get

2
⌊
p (v1)

2

⌋
+ p (V (D2 (PA))) + p (V (D2 (PB))) + 2

⌊
p (v4)

2

⌋
+ 2

⌊
p (u4)

2

⌋
≤ 6 (3.5)

Note that p (v1) + p (V (D2 (PA))) + p (V (D2 (PB))) + p (v4) + p (u4) = 12. Thus, to
minimize the LHS of (3.5) it is sufficient to assume p (V (D2 (PA))) + p (V (D2 (PB))) = 0
and p (v1) = 1 or 3. So, the remaining pebbles will be distributed on u4, v4 and exactly one
of p (v4) , p (u4) is even. Consider p(v1) = 3. Now suppose that as many pebbles as possible
are moved from u4 and v4 to any one of the vertices in {u3, v3} in D2 (PA) or any one of the
vertices in {u5, v5} in D2 (PB) and from the vertex v1 to any one of the vertices in W where
W = {u2, u6, v2, v6}. After completing all these pebbling moves we still have a pebble left at
u4 or v4 and a pebble at v1. Thus, from (3.5), we have 1 + p (v4) + p (u4) − 1 ≤ 6 and this is
a contradiction. If p(v1) = 1, then from (3.5), we have p (v4) + p (u4) − 1 ≤ 6 which is also a
contradiction.

Case 3: p (v1) ≥ 4.
Then obviously the target will receive a pebble because the distance from v1 to the target is 2.
Thus, f (D2 (C6)) ≤ 12.
Hence, f (D2 (C6)) = 12.

Theorem 3.3. For D2 (C2k) where k ≥ 4, f (D2 (C2k)) = 2k + 2.

Proof. Let V (D2 (C2k)) = {u1, u2, · · · , u2k, v1, v2, · · · , v2k} and E(D2(C2k)) = {ujuj+1,
u2ku1, vjvj+1, v2kv1, ujvj+1, u2kv1, vjuj+1, v2ku1} where j = 1, 2, · · · , 2k − 1. Without
loss of generality, let the target vertex be u1. Note that d (u1, w) ≤ k where w ∈ V (D2 (C2k)).
Consider the paths PA = u2, u3, · · · , uk and PB = uk+2, uk+3, . . . , u2k. In the given graph
D2 (C2k) there are two shadow graphs of paths PA and PB . Then the vertex set of D2 (PA) is
{u2, u3, . . . , uk, v2, v3, · · · , vk} and that of D2 (PB) is {uk+2, uk+3, · · · , u2k, vk+2, vk+3, · · · ,
v2k}. Let S = {uk+1, vk+1}, N ′[S] = {uk, vk} and N ′′[S] = {uk+2, vk+2}. Note that the ver-
tices of S are at equidistance from the target. First, we will show the necessity. Placing one
pebble each on v1, vk+1 and 2k − 1 pebbles on uk+1, we cannot reach the target u1. Hence,
f (D2 (C2k)) ≥ 2k + 2. Now we prove the sufficient part.

Case 1: Let p (V (D2 (PA))) = p (V (D2 (PB))) = 0 and p (v1) ≤ 3.
Subcase 1.1: Let p (V (D2 (PA))) = p (V (D2 (PB))) = 0 and p (v1) = 0 or 2.
Then distribute all 2k + 2 − p (v1) pebbles on uk+1 and vk+1. Note that the total number of
pebbles is even. Thus, there will be two types of pebble distribution.

Subcase 1.1. (A): Let both p (uk+1) and p(vk+1 ) be even.
It is easy to see that we can transfer at least 2k−1 pebbles to either one of the vertices in {uk , vk}
in D2 (PA) or one of the vertice in {uk+2, vk+2} in D2 (PB) which is at the distance k− 1 and at
most one pebble from v1 to W where W = {u2, u2k, v2, v2k}. By Theorem 2.11, we can move
two pebbles to the vertex adjacent to the target, and hence we are done.



272 S. Kither iammal, I. Dhivviyanandam and A.Lourdusamy

Subcase 1.1. (B): Let both p(uk+1) and p(vk+1) be odd.
Then after the pebbling moves at least 2k−1 − 1 pebbles will be moved to any one of the vertices
of either in {uk, vk} in D2 (PA) or in {uk+1, vk+1} in D2 (PB) and one pebble from v1 to W .
The distance from D2 (PA) or D2 (PB) to the target is ≤ k − 1. By Theorem 2.11, we are able
to pebble u1.

Subcase 1.2: Let p (V (D2 (PA))) = p (V (D2 (PB))) = 0 and p (v1) = 1 or 3.
Then S will receive the odd number of pebbles. So exactly one of vk+1 or uk+1 is even and the
other is odd. After the sequence of pebbling moves, one of the vertices of either D2 (PA) or
D2 (PB) will receive 2k−1 pebbles. Thus, by Theorem 2.11, we are able to pebble the target.

Thus, the configurations for which we cannot place a pebble on u1 satisfy⌊
p (v1)

2

⌋
+ p (V (D2 (PA))) +

⌊
p (uk+1)

2

⌋
+

⌊
p (vk+1)

2

⌋
≤ 2k−1 − 1 (3.6)

⌊
p (v1)

2

⌋
+ p (V (D2 (PB))) +

⌊
p (uk+1)

2

⌋
+

⌊
p (vk+1)

2

⌋
≤ 2k−1 − 1 (3.7)

Adding (3.6) and (3.7), we get

2
⌊
p (v1)

2

⌋
+p (V (D2 (PA)))+p (V (D2 (PB))) + 2

⌊
p (uk+1)

2

⌋
+2

⌊
p (vk+1)

2

⌋
≤ 2k−2 (3.8)

Note that p (v1) + p (V (D2 (PA))) + p (V (D2 (PB))) +
⌊
p(uk+1)

2

⌋
+

⌊
p(vk+1)

2

⌋
= 2k + 2.

To minimize the LHS of (3.8) it is sufficient to assume p (v1) = 3 and p (V (D2 (PA))) =
p (V (D2 (PB))) = 0. Now the remaining pebbles will be distributed on S and exactly one of
p (uk+1) , p (vk+1) is even. Now suppose that as many pebbles as possible are moved from the
vertices uk+1 and vk+1 to either uk or vk in D2 (PA) or uk+2 or vk+2 in D2 (PB) and from the
vertex v1 to any one of the vertices in W . When we are done we could still have a pebble left at
either uk+1 or vk+1 and a pebble in v1. Then in LHS of (3.8), we have p (v1)− 1 + p (uk+1) +
p (vk+1)− 1 = 2k ≤ 2k − 2 and this is a contradiction.

Case 2: Suppose 1 ≤ p (V (D2 (PA))) + p (V (D2 (PB))) < 2k and p (v1) ≤ 1.
If p (V (D2 (PA))) ≥ 2k−1 + 2 or p (V (D2 (PB))) ≥ 2k−1 + 2, then by Theorem 2.10, we
are able to pebble the target. If we distribute one pebble each on the vertices in N ′[S] and
2k−1 − 1 pebbles in V (D2 (PA) or one pebble each on the vertices in N ′′[S] and 2k−1 − 1 peb-
bles in V (D2 (PB) then by Theorem 2.11, we are done. (i.e. If p (D2 (PA)) = 2k−1 + 1
or p (D2 (PB)) = 2k−1 + 1, then by Theorem 2.11, we are able to pebble the target). If
p (v1) ≤ 1, 1 ≤ p (V (D2 (PA))) ≤ 2k−1 and 1 ≤ p (V (D2 (PB))) ≤ 2k−1 then p (S) ≥ 2.
Consider the pebbling moves towards D2 (PA). After the sequence of pebbling moves from
D2 (PB) and S to D2 (PA) and together with the pebbles already on D2 (PA) there will be at
least 2k−1 + 1 pebbles on D2 (PA) and so by Theorem 2.11, we are able to pebble the target.
The case of moving pebbles towards D2 (PB) is symmetric to the case with that of D2 (PA).

Case 3: If p (v1) ≥ 4.
By Theorem 2.11, we are able to pebble the target by using the pebbling moves since the distance
from v1 to the target is 2. Thus, f (D2 (C2k)) ≤ 2k + 2.
Therefore, the pebbling number of the shadow graph of the cycle C2K is f (D2 (C2K)) = 2k+2.

Theorem 3.4. For D2 (C2k+1) where k ≥ 3, f (D2 (C2k+1)) = 2
⌊

2k+1

3

⌋
+ 4.

Proof. Let V (D2 (C2k+1)) = {u1, u2, · · · , u2k+1, v1, v2, . . . , v2k+1} and E (D2 (C2K+1)) =
{ujuj+1, u2k+1u1, vjvj+1, v2k+1v1, ujvj+1, u2k+1v1, vjuj+1, v2k+1u1} where j = 1, 2, · · · , 2k.
Without loss of generality, let the target vertex be u1. Note that d (u1, w) ≤ k where w ∈
V (D2 (C2k+1)). Consider the paths PA = u2, u3, . . . , uk and PB = uk+3, uk+4, . . . , uk+2. In
the given graph D2 (C2k+1) there are two shadow graphs of paths PA and PB . Let V (D2 (PA)) =
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{u2, u3, · · · , uk, v2, v3, . . . , vk}, V (D2 (PB)) = {uk+3, uk+4, . . . , u2k+1,
vk+3, vk+4, · · · , v2k+1} and S = {uk+1, uk+2, vk+1, vk+2}, N ′[S] = {uk, vk} and N ′′[S] =
{uk+3, vk+3}.

Case 1: k is odd.
Place

⌊
2k+1

3

⌋
pebbles at uk+1 and

⌊
2k+1

3

⌋
pebbles at uk+2 and 1 pebble each on vk+1, vk+2 and

v1. It is easy to see that at most 2k−1 − 1 pebbles can be moved to uk or vk (respectively uk+3 or
vk+3) which is at the distance k− 1 from the target and so we cannot reach the target u1. Hence,
f (D2 (C2k+1)) ≥ 2

⌊
2k+1

3

⌋
+ 4. Now we show that f (D2 (C2k+1)) ≤ 2

⌊
2k+1

3

⌋
+ 4.

Subcase 1.1: Let p (V (D2 (PA))) = p (V (D2 (PB))) = 0 and p (v1) ≤ 3.
Then p (S) ≥ 2

⌊
2k+1

3

⌋
+ 1. Then distribute all 2

⌊
2k+1

3

⌋
+ 4 − p (v1) pebbles on S. Note that

p (S) is even when p (v1) = 0 or 2 and p (S) is odd when p (v1) = 1 or 3.
If one of the following inequalities holds,⌊
p (v1)

2

⌋
+ p (V (D2 (PA))) +

⌊
p (uk+2)

4

⌋
+

⌊
p (vk+2)

4

⌋
+

⌊
p (uk+1)

2

⌋
+

⌊
p (vk+1)

2

⌋
≥ 2k−1

(3.9)

⌊
p (v1)

2

⌋
+ p (V (D2 (PB))) +

⌊
p (uk+2)

2

⌋
+

⌊
p (vk+2)

2

⌋
+

⌊
p (uk+1)

4

⌋
+

⌊
p (vk+1)

4

⌋
≥ 2k−1

(3.10)
Then by Theorem 2.11, we are done.
Thus, the configurations for which we cannot reach the target satisfy⌊
p (v1)

2

⌋
+ p (V (D2 (PA)))+

⌊
p (uk+2)

4

⌋
+

⌊
p (vk+2)

4

⌋
+

⌊
p (uk+1)

2

⌋
+

⌊
p (vk+1)

2

⌋
≤ 2k−1−1

(3.11)

⌊
p (v1)

2

⌋
+ p (V (D2 (PB)))+

⌊
p (uk+2)

2

⌋
+

⌊
p (vk+2)

2

⌋
+

⌊
p (uk+1)

4

⌋
+

⌊
p (vk+1)

4

⌋
≤ 2k−1−1

(3.12)
Adding (3.11) and (3.12), we get

2
⌊
p (v1)

2

⌋
+p (V (D2 (PA)))+p (V (D2 (PB)))+

3
4
⌊p (uk+1) + p (vk+1) + p (uk+2) + p (vk+2)⌋

≤ 2k − 2. (3.13)

Note that p (v1) + p (V (D2 (PA))) + p (V (D2 (PB))) + p (S) = 2
⌊

2k+1

3

⌋
+ 4. To mini-

mize the LHS of (3.13) it is sufficient to assume p (v1) = 3. Now the remaining pebbles will be
distributed in S and so at most 3 vertices in S will be distributed with an odd number of pebbles
and the remaining vertices will receive an even number of pebbles.

Now suppose that as many pebbles as possible are moved from the vertices in S to either uk

or vk in D2 (PA) or uk+2 or vk+2 in D2 (PB) and from the vertex v1 to any one of the vertices
in W where W = {u2, u2k, v2, v2k}. When we are done we could still have a pebble left
in S and a pebble at v1. Without loss of generality, assume p (vk+2) is even. Then we move
as many pebbles as possible from S to D2 (PA). Thus, p (uk+2) ≡ 1 (mod 4), p (uk+1) ≡
1 (mod 2) and p (vk+1) ≡ 1 (mod 2) and if we move as many pebbles as possible from S to
D2 (PB) , p (uk+2) ≡ 1 (mod 2), p (uk+1) ≡ 1 (mod 4), and p (vk+1) ≡ 3 (mod 4) also p (v1) ≡
1 (mod 2). Thus, from (13) we have 3

4 (p (uk+1) + p (vk+1) + p (uk+2) + p (vk+2)) + p (v1) −
13
4 ≤ 2k − 2. (The - 13

4 comes from the possible pebbles left behind at v1 and S). But p (v1) +

p (S) ≥ 2
⌊

2k+1

3

⌋
+ 4 ≥ 2

(
2k+1−2

3

)
+4 = 4

3

(
2k − 1

)
+4. So 3

4 (p (uk+1) + p (vk+1) + p (uk+2) + p (vk+2))+
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p (v1)− 13
4 = 3

4 (p (uk+1) + p (vk+1) + p (uk+2) + p (vk+2) + p (v1))+
1
4p (v1) − 13

4 ≥ 2k−1+
3 + 3

4 − 13
4 = 2k − 1

2 and this is a contradiction. Thus, we are able to pebble the target.

Subcase 1.2: Let 1 ≤ p (V (D2 (PA))) + p (V (D2 (PB))) ≤ 2k + 1 and p (v1) ≤ 1.
If p (V (D2 (PA))) ≥ 2k−1 + 2 or p (V (D2 (PB))) ≥ 2k−1 + 2 then we are able to pebble
the target by Theorem 2.11. If we distribute one pebble each on the vertices in N ′[S] and
2k−1 − 1 pebbles in V (D2 (PA) or one pebble each on the vertices in N ′′[S] and 2k−1 − 1
pebbles in V (D2 (PB) then by Theorem 2.11, we are done. (i.e. If p (V (D2 (PA))) = 2k−1 + 1
or p (V (D2 (PB))) = 2k−1 + 1 then we move a pebble to the target by Theorem 2.11). If
p (v1) ≤ 1, 1 ≤ p (V (D2 (PA))) ≤ 2k−1 and 1 ≤ p (V (D2 (PB))) ≤ 2k−1 then p (S) ≥ 2.
Consider the pebbling moves towards D2 (PA). After the sequence of pebbling moves from
D2 (PB) and S to D2 (PA) and together with the pebbles already on D2 (PA) there will be at
least 2k−1+1 pebbles on D2 (PA) and so by Theorem 2.11, we are able to pebble the target. The
case of moving pebbles to the vertices in D2 (PB) is symmetric to the case with that of D2 (PA).

Subcase 1.3: Let p (v1) ≥ 4.
Then obviously the target will receive a pebble. Since the distance from v1 to the target is 2.
Hence, the pebbling number of the shadow graph of the odd cycle is f (D2 (C2k+1)) = 2

⌊
2k+1

3

⌋
+

4 when k is odd.

case 2: When k is even.
Place

⌊
2k+1

3

⌋
− 1 pebbles at uk+1 and

⌊
2k+1

3

⌋
− 1 pebbles at uk+2, 3 pebbles at vk+1 and 1

pebble each on v1, vk+2. It is easy to see that at most 2k−1 − 1 pebbles can be moved to ukorvk
(respectively uk+3 or vk+3) which is at the distance k−1 from the target and we cannot reach the
target. Hence, (D2 (C2k+1)) ≥ 2

⌊
2k+1

3

⌋
+ 4. Now we show that f (D2 (C2k+1)) ≤ 2

⌊
2k+1

3

⌋
+ 4.

The proof follows from case 1.

4 The t-pebbling number for shadow graph of cycles.

In this section, we find the t-pebbling number for D2 (Cn) graphs.

Theorem 4.1. For D2 (C2k) where k ≥ 4, the t-pebbling number is ft (D2 (C2k)) = t2k + 2.

Proof. Suppose we have t2k + 1 pebbles. Placing t2k − 1 pebbles on uk+1 and one pebble
each on the vertices v1 and vk+1, we cannot move t pebbles to the target vertex u1. Hence,
ft (D2 (C2k)) ≥ t2k + 2. Now we prove ft (D2 (C2k)) ≤ t2k + 2 by induction on t. Let us con-
sider any distribution of t2k + 2 pebbles on the vertices of D2 (C2k). If t = 1, then the theorem
is true by Theorem 3.3. Assume that the theorem is true for 2 ≤ t‘ < t. Let w be any target vertex.

Case 1: Let p (w) = 0.
As the graph D2 (C2k) contains at least 2k+1 + 2 pebbles we can move one pebble to any target
vertex at a cost of at most 2k pebbles. Hence, the remaining number of pebbles distributed on the
vertices of the graph other than the vertex w is at least ft (D2 (C2k))− 2k = t2k + 2 − 2k =
(t− 1) 2k + 2 = ft−1 (D2 (C2k)). Therefore, by induction, we can move t− 1 additional peb-
bles to w.

Case 2: Suppose p (w) = y, where 1 ≤ y ≤ t− 1.
Then the total number of pebbles distributed on the vertices of the graph is ft (D2 (C2k))− y =
t2k + 2 − y. Since 1 ≤ y ≤ t− 1. t2k + 2 − y ≥ 2k (t− y) + 2 = ft−y (D2 (C2k)). Thus, we
can move t− y additional pebbles to the target. Hence, we are done.

Theorem 4.2. For D2 (C2k+1) where k ≥ 3, the t-pebbling number is ft (D2 (C2k+1)) = 2
⌊

2k+1

3

⌋
+

4 + (t − 1)2k.

Proof. To prove this theorem let us consider the following 2 cases.
Case 1: When k is odd.
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Suppose we have a distribution of 2
⌊

2k+1

3

⌋
+ 3 + (t− 1) 2k pebbles. Placing

⌊
2k+1

3

⌋
pebbles

on uk+1,
⌊

2k+1

3

⌋
+(t− 1) 2k on uk+2 and 1 pebble each on the vertices vk+1, vk+2, v1, we cannot

move t pebbles to the target vertex u1. Hence, ft (D2 (C2k+1)) ≥ 2
⌊

2k+1

3

⌋
+ 4 + (t − 1)2k.

Now we prove ft (D2 (C2k+1)) ≤ 2
⌊

2k+1

3

⌋
+ 4 + (t − 1)2k by induction on t. Let us consider

any distribution 2
⌊

2k+1

3

⌋
+ 4 + (t − 1)2k of pebbles on the vertices of D2 (C2k+1). If t = 1, then

the theorem is true by Case 1 in Theorem 3.4. Assume that the theorem is true for 2 ≤ t‘ < t.
Let w be any target vertex.

Subcase 1.1: Let p (w) = 0.
As the graph D2 (C2k+1) contains at least 2

⌊
2k+1

3

⌋
+ 4 + (t − 1)2k pebbles and we use 2k

pebbles to place a pebble at our target vertex w, the remaining number of pebbles is 2
⌊

2k+1

3

⌋
+

4 + (t− 1) 2k − 2k = 2
⌊

2k+1

3

⌋
+ 4 + (t− 2) 2k = ft−1 (D2 (C2k+1)). By induction we place

t− 1 pebbles at w.

Subcase 1.2: Suppose p (w) = y, where 1 ≤ y ≤ t− 1.
Then the total number of pebbles distributed on the vertices of the graph is ft (D2 (C2k+1))− y =

2
⌊

2k+1

3

⌋
+ 4 + (t− 1) 2k − y. Since 1 ≤ y ≤ t − 1. 2

⌊
2k+1

3

⌋
+ 4 + (t− 1) 2k − y ≥

2
⌊

2k+1

3

⌋
+ 4 + (t− (y + 1))2k = ft−y (D2 (C2k+1)). Thus, we can move t − y additional

pebbles to the target. Hence, we are done.

Case 2: When k is even.
Placing

⌊
2k+1

3

⌋
− 1 pebbles on uk+1 ,

⌊
2k+1

3

⌋
− 1+(t − 1)2k on uk+2, 3 pebbles at vk+1 and 1 peb-

ble each on v1, vk+2, we cannot move t pebbles to the target vertex u1. Hence, ft (D2 (C2k+1)) ≥
2
⌊

2k+1

3

⌋
+ 4 + (t − 1)2k. Now we prove ft (D2 (C2k)) ≤ 2

⌊
2k+1

3

⌋
+ 4 + (t − 1)2k. Proof

follows from Case 1.

5 Conclusion

This paper aims is to obtain the pebbling and t-pebbling number of shadow graph of cycles.
Using this results we can find the pebbling number monophonic pebbling number of different
types of shadow graphs. Therefore, the results of this work is interesting and capable to develop
its study in the future.
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