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Abstract In this paper, we construct a class of ideals of By(X) from proper ideals of C(X),
establishing a one-to-one correspondence between the class of real maximal ideals of C(X)
and those of B1(X). The collection of all real maximal ideals of By(X), with the hull-kernel
topology, is shown to be homeomorphic to the space of real maximal ideals of C(X), endowed
with a topology finer than the subspace topology induced from its structure space. It is also
proven that a Tychonoff space is real compact if and only if every real maximal ideal of By (X)
is fixed. As a consequence, within the class of real compact Ty spaces whose points are G,
B (X) = B1*(X) if and only if X is finite.

1 Introduction

Baire one functions are named in honor of René-Louis Baire (1874-1932), a French mathemati-
cian. Let X be a topological space. A function f : X — R is called a Baire one function
if f is the pointwise limit of a sequence of continuous functions, that is, if there is a sequence
{fn} of real-valued continuous functions on X such that for every x € X, f(z) = nl;rrgo fn(z).

Various characterizations of Baire one functions defined on metric spaces have been established
by different authors [3], [5]. Inspired by the research on rings of continuous functions, in [1],
we introduced two rings B1(X) and By*(X) consisting respectively of real valued Baire one
functions and bounded Baire one functions on a topological space X. It has been observed in
[1] that By(X) is a commutative lattice ordered ring with unity with respect to the usual addi-
tion and multiplication of functions and it is an over-ring of the ring C(X) of all real valued
continuous functions on X. The main purpose of this paper is to establish that the class of all
real maximal ideals of By(X) is in one-one correspondence with the class of all real maximal
ideals of C(X). In fact, defining a sort of ‘extension’ of an ideal I of C(X) in B;(X) (denoted
by Ig), we show that the contraction I N C(X) coincides with I if and only if I is a real max-
imal ideal in C(X). That Ig is a real maximal ideal in B (X), for any real maximal ideal T in
C(X) determines the said one-to-one correspondence. Moreover, it is proved that the collection
RM(B(X)) of all real maximal ideals of By(X) with the subspace topology of the structure
space of B1(X) (i.e., the hull-kernel topology) is homeomorphic to the collection RM(C (X))
of all real maximal ideals of C'(X ) equipped with a topology finer than the subspace topology of
the structure space of C(X).

The class of topological spaces on which every Baire one function is bounded, is yet to be de-
termined completely. In Section 3, we prove a necessary and sufficient condition for B(X) to
coincide with By*(X) within the class of all Ty, real compact spaces whose points are Gs.
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To ensure this paper is self-contained, we now recall some known terminologies and facts. A
zero set of f € Bi(X) is defined as usual by a set of the form Z(f) = {x € X : f(z) = 0}.
As an analogue of z-filter (or, z-ultrafilter) on X, we introduced in [2] the Zg-filter (or respec-
tively, Z g-ultrafilter) on X, thereby investigating the duality between ideals (maximal ideals) of
B (X) and Z g-filters (respectively, Z g-ultrafilters) on X. The above mentioned duality existing
between ideals in By(X) and Zg-filters on X is manifested by the fact that if I is an ideal in
Bi(X) then Zg[I] = {Z(f) : f € B\(X)} is a Zg-filter on X and dually for a Zg-filter F
on X, Z5'|F] = {f € Bi(X) : Z(f) € F} is a proper ideal in B\(X). The assignment
M — Zg[M] is a bijection from the set of all maximal ideals in By(X) and to the family of all
Zp-ultrafilters on X. In the same paper [2], defining suitably the residue class fields By (X)/M,
the concept of real and hyper-real maximal ideals of B1(X) was introduced. A maximal ideal
M of By(X) is called real if Bi(X)/M = R and in such case Bi(X)/M is called real residue
class field [2]. If M is not real then it is called hyper-real and By(X)/M is called hyper-real
residue class field [2]. Considering the structure space M(B1(X)) of B1(X), i.e., the collection
M(B1(X)) of all maximal ideals of By(X) with respect to the hull-kernel topology, we get the
subspace topology on the collection RM(B1(X)) of all real maximal ideals of By(X). We show
that the subspace topology via the aforesaid bijection induces a topology on RM(C(X)) of all
real maximal ideals of C (X)) which is finer than the hull-kernel topology on RM(C(X)).

Throughout this paper, unless stated otherwise, we consider X to be any Hausdorff topologi-
cal space. We use the notation f, 22 f to denote {fn} pointwise converges to f.

Theorem 1.1 ([4, Theorem 5.14]). For a maximal ideal M of C(X) the following statements are
equivalent:
(i) M is a real maximal ideal.

(ii) Z[M] is closed under countable intersection.

(iii) Z[M)] has countable intersection property.
An analogue of this theorem in the context of Baire one functions is the following:

Theorem 1.2 ([2, Theorem 4.26]). For a maximal ideal M of Bi(X) the following statements
are equivalent:

(i) M is a real maximal ideal.
(ii) Zp[M] is closed under countable intersection.

(iii) Zg[M)] has countable intersection property.

2 A one-one correspondence between the real maximal ideals of C'(X) and
the real maximal ideals of B, (X)

It is easy to observe that for each proper ideal I of C(X), Ip = {f € Bi(X) : H{fn} C
I such that f,, 2% f} is an ideal of By(X) such that I C Iz NC(X). As a natural example, we
obtain that (M,) g is a fixed maximal ideal of By(X) [2], where M,, = {f € C(X) : f(p) =0}
is a fixed maximal ideal of C(X) [4] and this example prompts us to prove a more general result
later in this section.

Example 2.1. Foreachp € X, (M,,), = M, ={f € Bi(X) : f(p) = 0}.

For each f € (M,) , there exists {f,} C M, such that f, = f. This implies f,(p) = 0,
for all n € N and therefore, f(p) = 0, i.e., (M,)5 C J/\/[\p. On the other hand, f € ]\//Tp implies
f(p) = 0. Since f € B;(X), there exists a sequence {g,,} C C(X) such that g,, £ f. Define
fn = gn — gn(p), for all n € N. Clearly, f,(p) = 0, for all n € N. Also, f,, £ f. Therefore,
f € (M), and M, C (M,) 5. Hence, (M,) ; = M,.
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Theorem 2.2. [f I is an absolutely convex ideal in C(X) then Ig is an absolutely convex ideal
in By (X).

Proof. We first prove that I is a convex ideal in B (X). If so, then f € Ip implies that there

is {f,} C I such that f,, £ f and hence, |f,| 2= |f|. As I is absolutely convex, we have
{|fn|} € I, which ensures | f| € I. In such a case, I becomes absolutely convex.
Let f,g € Bi(X) such that 0 < f < gand g € Ig. Then there is a sequence {f,} in C(X)

and {g,} C I such that f, £%% f and g, == g. Choosing h, = fn A gn., We observe the
following:

@) hy 225 fAg = f.
(i) Foreachn € N,0 < h,, < ¢g,, and g,, € I implies that h,, € I (since I is absolutely convex).

Hence, f € I and this proves that I is a convex ideal in By(X). O

For any proper ideal I of C(X), it is clear that I C I N C(X). In the following theorem we
show that the equality holds precisely for the class of all real maximal ideals of C(X).

Theorem 2.3. M € RM(C(X)) ifand only if M = Mp N C(X).

Proof. Let M be a real maximal ideal of C'(X). Clearly, M C MpnC(X). Now let g €
MpnC ( ). There exists {g, } C M such that g, 25 ¢. Since M is real and g,, € M, for all

n e N, ﬂ Z(gn) € Z[M]. Also, ﬂ Z(gn) C Z(g). Hence, Z(g) € Z[M]. By maximality of
=1 =1

M it follows that g € M. Therefore MpNC(X)C M and it implies that M = Mp N C(X).

Conversely, let M be a maximal ideal of C'(X) such that M = Mp N C(X).

Consider any countable family {Z(g,,) : n € N} of Z[M]. By maximality of M, g,, € M, for all

n € N. .

We now construct a sequence {s,, } as follows : s,, = Z (35 A lgjl), for each n € N. Certainly,
;=1

for each j, Z(g;) = Z (55 A |g;|) implies that > A |g;| € M. M being an ideal, finite sum of

each such member will also lie within M. This means sp € M, foralln € N.

o0
Now s = > (3 A |gn|) is the uniform limit of the sequence {s,,} of continuous functions and

therefore, s € C(X). Again, {s,} C M ensures that s € MpNC(X) = M. So, Z(s) # 0.
Following the arguments used in [4, 1.14 (a)] we obtain ﬂ Z(gn) = Z(s) # 0. Therefore, by

n=1

Theorem 1.1 M is real. O

That Mg is not even a proper ideal of B1(X) when M is hyper-real in C(X) is observed in the
next theorem.

Theorem 2.4. If M is a hyper-real maximal ideal in C(X ) then Mp = B;(X).

Proof. If M is hyper-real then by Theorem 2.3 Mp N C(X) # M. But for any ideal I, I C
Ip N C(X) holds. Therefore, M C Mp N C(X). Since M is maximal, Mp N C(X) = C(X).
Hence, C(X) C Mg, i.e., 1 € Mp. This proves Mp = Bi(X).

O

Theorem 2.5. If M € RM(C(X)) then Mp € RM(B;(X)).

Proof. Let f € B1(X) \ Mp. Consider the ideal J generated by Mg U {f}.

Now f € B;(X) implies that there exists {f,,} € C(X) such that f,, £ f.

Since M is a real maximal ideal in C(X), for each f,, € C(X), there exists some 7, € R such
that M(f,,) = M(r,) and so, f,, = rp, on Z, = Z(fp, —rn) € Z[M]. As Z = ﬂ Zn, € Z[M],

foreachn € N, f,, = r, on Z. As aconsequence, f is constant (say,r) on Z € Z[M] C Zp[Mp],

where r = lim r,,.
n— o0

Since Z C Z(f, — ry) implies that Z(f,, — r,) € Z[M] and M is a z-ideal in C'(X), we have
fn —rn € M. By definition of Mp, f —r € Mp. Now r will be a non-zero real number as
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f ¢ Mp.Butr = f—(f —r) € Jand r # 0 implies that J = B;(X). So, Mp is a maximal
ideal of By (X) such that f — r € Mp, i.e., Mg(f) = Mg(r), for some r € R. If f € Mp then
Mp(f) = Mp(0) and this proves that Mg € RM(B;(X)). i

Theorem 2.6. If M € RM (B, (X)) then M N C(X) € RM(C(X)).

Proof. Let M € RM(B(X)). Then for each f € B;(X), there exists ry € R such that
f—ry e M. In particular, for any f € C(X), there is ry € R such that f —ry € M. So,
f—rye M N C(X) = M (say). We now define a function ¢ : C(X)/M — R by M(f) — Y,
whenever f —ry € M. We claim that ¢ is an isomorphism.

M(f)=M(g) < f—ge M. If ¢(M(f)) =rsand p(M(g)) =rgthen f —rs, g —ry € M,
ie,(f—g)—(rf—ry) € M. Since, f —g € M and M is an ideal, it follows that 7y —r, € M
- a contradiction to the fact that M is proper, unless r — r, = 0. Hence, ¢ is well defined.

Now ¢(M(f)) = ¢(M(g)) implies that ry = r,, where f — ry,g — ry, € M. Therefore,
f—g9g=(f—rf)—(g—ry) € M which in turn gives M(f) = M(g), proving ¢ to be one-one.
The function ¢ is clearly onto, as ¢(M(r)) = r, for each r € R. By routine arguments we

easily see that ¢ is indeed a ring homomorphism. Hence, ¢ is a ring isomorphism and therefore,
M € RM(C(X)). |

Corollary 2.7. If M € RM(B, (X)) then (M N C(X))p = M.

Proof. As M € RM(B,(X)), M N C(X) € RM(C(X)) (by Theorem 2.6). Using Theo-
rem 2.5, (M N C(X))p € RM(B;(X)). Since (M N C(X))p is a maximal ideal, it is enough

—

to show that (M N C(X))g C M.

—~

Let g € (M N C(X))p . Then there exists {g,} € M N C(X) such that g, 2% g. So,
Z(g) 2 N Z(gn)- As Zp []\/4\] is a Zp-ultrafilter and M is real, it follows that Z(g) € Zp [JT/[\]

i=1

Hence, g € M and therefore (M N C(X))5 C M. o

In view of Corollary 2.7, Theorem 2.5 and Theorem 2.6, we get a one-one correspondence be-
tween RM(C (X)) and RM(B; (X))

Theorem 2.8. If ) : RM(C(X)) — RM(B;(X)) is defined by M — Mp then 1) is a bijection.

Proof. Let M be any member of RM(B;(X)). Therefore, by Corollary 2.7 we get (]\/4\ N
C(X))p = M, where MNC(X) € RM(C(X)) (By Theorem 2.6). Hence, for M € RM(B;(X))
we get MNC(X) € RM(C(X)) such that »(MNC(X)) = M. This proves that 1) is surjective.
To show that 4 is injective we assume (M) = ¢(N). This implies (M) = (N)g. Now by
applying Theorem 2.3, we get M = (M) N C(X) = (N)g N C(X) = N. Therefore, 1 is
injective and hence, it is a bijection. O

Corollary 2.9. | RM(C(X))| = |[RM(B1(X))].

It is well known that {////; : f € Bi(X)}, where each ////; ={M € M(B(X)) : [ €
M}, forms a base for closed sets for the hull-kernel topology on M(B;(X)) and certainly
RM(Bi (X)) is a subspace of M(B(X)). In the following theorem we show that the bijection
Y obtained above becomes a homeomorphism if RM(C(X)) is endowed with a finer topology
than the subspace topology induced from the hull-kernel topology of M(C(X)).

Theorem 2.10. Let (X, 7) be a Tychonoff space. Then for each f € Bi(X), the collection
Mi* = {M € RM(C(X)) : f € Mp} forms a base for closed sets for some topology o
on RM(C(X)) which is finer than the subspace topology of the structure space of M(C(X)).
Moreover, ¢ : (RM(C(X)),0) = RM(B(X)) given by M — Mg is a homeomorphism.

Proof. To prove #* = {#;" : f € B)(X)} forms a base for closed sets for some topology o
on RM(C(X)), it is enough to show that () € #* and %* is closed under finite union. It is easy
to observe that, ) = .#," € 2*. Now let 4;", #," € $*, for some f,g € Bi(X). Take any
M e M J .M, Therefore, gf € Mp and M € .#;,". This implies A" U 4, C My,
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On the other hand, if we take any memeber M € .#;," then we get fg € Mp. Now by
Theorem 2.5 Mp is a maximal ideal and hence f € Mp or g € Mp, ie., M € 4" U 4"
So My C MU M. This proves that 4" U . #," = My," and hence #* is closed under
finite union.

Now to prove that ¢ is a homeomorphism, we need to show ¢ is bijective and exchanges the basic
closed sets of (RM(C(X)),o) and RM(B;(X)). The map ¢ is bijective is already proved in
Thoeorem 2.8. Now for any f € By(X), (#;") = {¢(M) : f € M} = {Mp : f €
Mp} = {N € RM(B(X)) : f e N} = ////;HRM(BI(X)), which is a basic closed set of
RM(B;(X)) for the subspace topology induced from the hull-kernel topology on M(B;(X)).
As 1) exchanges the basic closed sets, it is a homeomorphism. O

Before we conclude this section, we show that an injective map exists from H(C (X)) into
H(B (X)), where H(C(X)) and H(B,(X)) represent the collections of all hyper-real maxi-
mal ideals in C(X) and By(X) respectively. In what follows, we use the notation I* for the
ideal of Bi(X) generated by the subset I of By(X) and m(I*) for its maximal extension. The
next theorem ensures that the ideal of By(X) generated by a proper ideal of C(X) is indeed
proper, so that it has a maximal extension, say m(I*).

Theorem 2.11. For any proper ideal I of C(X), I* is a proper ideal of By(X), where I* denotes
the ideal of B\ (X)) generated by I as a subset of By (X).

Proof. Tf possible let, I* is not proper. Then I* = B;(X) and hence 1 (the constant function with
value 1) can be written as 1 = Z a; fi, where a; € B1(X) and f; € I, foralls = 1,2,..,n. For
i=1

eachz € X, 3k € {1,2,...,n}, such that f,(z) # 0, otherwise it contradicts that 1 = " «a; f;.

i=1

We consider the map g(z) = 3 f?(x),Vx € X. Clearly,g € I C C(z) and g(z) # 0,V x € X.
=1

So gisaunitin I, ie., I = C(X) - a contradiction. Hence, [* is a proper ideal of B;(X). O

S

Theorem 2.12. If M is a hyper-real maximal ideal of C(X) then m(M™*) is a hyper-real maximal
ideal of By (X).

Proof. If m(M*) is a real maximal ideal of B;(X) then by Theorem 2.6, m(M*) N C(X) is
a real maximal ideal of C'(X). Since M C m(M*) N C(X) and M is maximal it follows that
M = m(M*) N C(X) - a contradiction to the fact that M is hyper-real. i

Theorem 2.13. The function ( : H(C(X)) — H(Bi(X)) given by ((M) = m(M*) is an
injective function.

Proof. Let M, N € H(C(X)) be such that m(M*) = m(N*). Then by maximality of M and N

it follows that M = m(M*)NC(X) =m(N*)NC(X) = o
Corollary 2.14. |M(C(X))| < |[M(Bi(X))].
Proof. This is immediate from Theorem 2.8 and Theorem 2.13. O

3 Characterization of Real compact spaces

From the discussion of the last section it follows that there is a one-one correspondence between
the collections RM(C(X)) and RM(B; (X)) given by M +— Mpg. It is well known in [4] that
a Tychonoff space X is real compact if and only if every real maximal ideal of C(X) is fixed.
Utilizing the one-to-one correspondence as mentioned above, we get a characterization of real
compact spaces via real maximal ideals of By(X).
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Theorem 3.1. A Tychonoff space X is real compact if and only if every real maximal ideal of
By (X) is fixed.

Proof. Let X be a real compact space and M € RM(B;(X)). By Theorem 2.8, there exists
M € RM(C(X)) such that M= Mp. Since X is real compact, M is fixed; i.e., M = M, for
some p € X. Hence, M = Mp = (M) = M\p (by Example 2.1).

Conversely, let M be any real maximal ideal of C(X). Then Mp € RM(B;(X)) and so, Mp
is fixed. Therefore, M (C Mp) is a fixed ideal. Hence, X is real compact. O

In [2, Theorem 3.9], we proved a result for perfectly normal T\-spaces, though the same proof
applies to a larger class of spaces. The following lemma states the result for a broader class of
spaces without providing the proof.

Lemma 3.2. If X is a Ty-space in which every point is a Gs point then the following statements
are equivalent:

(i) X is finite.
(ii) Every maximal ideal in By (X) is fixed.
(iii) Every ideal in By(X) is fixed.

Theorem 3.3. Let X be a T real compact space in which every point is a Gg-point. Then
B (X) = B1"(X) if and only if X is finite.

Proof. If X is finite then certainly, B (X) = B (X).
Conversely, let M be any maximal ideal of B; (X)(= Bj (X)). By [2, Theorem 4.21] M is a real

.

maximal ideal. Since X is real compact, by Theorem 3.1 M is fixed. Finally, using Lemma 3.2
we can conclude that X is finite. O

Corollary 3.4. For a perfectly normal T} real compact space X, B,(X) = By (X) if and only if
X is finite.
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