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Abstract In this paper, we construct a class of ideals of B1(X) from proper ideals of C(X),
establishing a one-to-one correspondence between the class of real maximal ideals of C(X)
and those of B1(X). The collection of all real maximal ideals of B1(X), with the hull-kernel
topology, is shown to be homeomorphic to the space of real maximal ideals of C(X), endowed
with a topology finer than the subspace topology induced from its structure space. It is also
proven that a Tychonoff space is real compact if and only if every real maximal ideal of B1(X)
is fixed. As a consequence, within the class of real compact T4 spaces whose points are Gδ,
B1(X) = B1

∗(X) if and only if X is finite.

1 Introduction

Baire one functions are named in honor of René-Louis Baire (1874-1932), a French mathemati-
cian. Let X be a topological space. A function f : X → R is called a Baire one function
if f is the pointwise limit of a sequence of continuous functions, that is, if there is a sequence
{fn} of real-valued continuous functions on X such that for every x ∈ X, f(x) = lim

n→∞
fn(x).

Various characterizations of Baire one functions defined on metric spaces have been established
by different authors [3], [5]. Inspired by the research on rings of continuous functions, in [1],
we introduced two rings B1(X) and B1

∗(X) consisting respectively of real valued Baire one
functions and bounded Baire one functions on a topological space X . It has been observed in
[1] that B1(X) is a commutative lattice ordered ring with unity with respect to the usual addi-
tion and multiplication of functions and it is an over-ring of the ring C(X) of all real valued
continuous functions on X . The main purpose of this paper is to establish that the class of all
real maximal ideals of B1(X) is in one-one correspondence with the class of all real maximal
ideals of C(X). In fact, defining a sort of ‘extension’ of an ideal I of C(X) in B1(X) (denoted
by IB), we show that the contraction IB ∩ C(X) coincides with I if and only if I is a real max-
imal ideal in C(X). That IB is a real maximal ideal in B1(X), for any real maximal ideal I in
C(X) determines the said one-to-one correspondence. Moreover, it is proved that the collection
RM(B1(X)) of all real maximal ideals of B1(X) with the subspace topology of the structure
space of B1(X) (i.e., the hull-kernel topology) is homeomorphic to the collection RM(C(X))
of all real maximal ideals of C(X) equipped with a topology finer than the subspace topology of
the structure space of C(X).

The class of topological spaces on which every Baire one function is bounded, is yet to be de-
termined completely. In Section 3, we prove a necessary and sufficient condition for B1(X) to
coincide with B1

∗(X) within the class of all T4, real compact spaces whose points are Gδ.
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To ensure this paper is self-contained, we now recall some known terminologies and facts. A
zero set of f ∈ B1(X) is defined as usual by a set of the form Z(f) = {x ∈ X : f(x) = 0}.
As an analogue of z-filter (or, z-ultrafilter) on X , we introduced in [2] the ZB-filter (or respec-
tively, ZB-ultrafilter) on X , thereby investigating the duality between ideals (maximal ideals) of
B1(X) and ZB-filters (respectively, ZB-ultrafilters) on X . The above mentioned duality existing
between ideals in B1(X) and ZB-filters on X is manifested by the fact that if I is an ideal in
B1(X) then ZB[I] = {Z(f) : f ∈ B1(X)} is a ZB-filter on X and dually for a ZB-filter F
on X , Z−1

B [F ] = {f ∈ B1(X) : Z(f) ∈ F} is a proper ideal in B1(X). The assignment
M 7→ ZB[M ] is a bijection from the set of all maximal ideals in B1(X) and to the family of all
ZB-ultrafilters on X . In the same paper [2], defining suitably the residue class fields B1(X)/M ,
the concept of real and hyper-real maximal ideals of B1(X) was introduced. A maximal ideal
M of B1(X) is called real if B1(X)/M ∼= R and in such case B1(X)/M is called real residue
class field [2]. If M is not real then it is called hyper-real and B1(X)/M is called hyper-real
residue class field [2]. Considering the structure space M(B1(X)) of B1(X), i.e., the collection
M(B1(X)) of all maximal ideals of B1(X) with respect to the hull-kernel topology, we get the
subspace topology on the collection RM(B1(X)) of all real maximal ideals of B1(X). We show
that the subspace topology via the aforesaid bijection induces a topology on RM(C(X)) of all
real maximal ideals of C(X) which is finer than the hull-kernel topology on RM(C(X)).

Throughout this paper, unless stated otherwise, we consider X to be any Hausdorff topologi-
cal space. We use the notation fn

p.w.−−−→ f to denote {fn} pointwise converges to f .

Theorem 1.1 ([4, Theorem 5.14]). For a maximal ideal M of C(X) the following statements are
equivalent:

(i) M is a real maximal ideal.

(ii) Z[M ] is closed under countable intersection.

(iii) Z[M ] has countable intersection property.

An analogue of this theorem in the context of Baire one functions is the following:

Theorem 1.2 ([2, Theorem 4.26]). For a maximal ideal M of B1(X) the following statements
are equivalent:

(i) M is a real maximal ideal.

(ii) ZB[M ] is closed under countable intersection.

(iii) ZB[M ] has countable intersection property.

2 A one-one correspondence between the real maximal ideals of C(X) and
the real maximal ideals of B1(X)

It is easy to observe that for each proper ideal I of C(X), IB = {f ∈ B1(X) : ∃{fn} ⊆
I such that fn

p.w.−−−→ f} is an ideal of B1(X) such that I ⊆ IB ∩C(X). As a natural example, we
obtain that (Mp)B is a fixed maximal ideal of B1(X) [2], where Mp = {f ∈ C(X) : f(p) = 0}
is a fixed maximal ideal of C(X) [4] and this example prompts us to prove a more general result
later in this section.

Example 2.1. For each p ∈ X , (Mp)B = M̂p ≡ {f ∈ B1(X) : f(p) = 0}.
For each f ∈ (Mp)B , there exists {fn} ⊆ Mp such that fn

p.w.−−−→ f . This implies fn(p) = 0,
for all n ∈ N and therefore, f(p) = 0, i.e., (Mp)B ⊆ M̂p. On the other hand, f ∈ M̂p implies
f(p) = 0. Since f ∈ B1(X), there exists a sequence {gn} ⊆ C(X) such that gn

p.w.−−−→ f . Define
fn = gn − gn(p), for all n ∈ N. Clearly, fn(p) = 0, for all n ∈ N. Also, fn

p.w.−−−→ f . Therefore,
f ∈ (Mp)B and M̂p ⊆ (Mp)B . Hence, (Mp)B = M̂p.
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Theorem 2.2. If I is an absolutely convex ideal in C(X) then IB is an absolutely convex ideal
in B1(X).

Proof. We first prove that IB is a convex ideal in B1(X). If so, then f ∈ IB implies that there
is {fn} ⊆ I such that fn

p.w.−−−→ f and hence, |fn|
p.w.−−−→ |f |. As I is absolutely convex, we have

{|fn|} ⊆ I , which ensures |f | ∈ IB . In such a case, IB becomes absolutely convex.
Let f, g ∈ B1(X) such that 0 ≤ f ≤ g and g ∈ IB . Then there is a sequence {fn} in C(X)

and {gn} ⊆ I such that fn
p.w.−−−→ f and gn

p.w.−−−→ g. Choosing hn = fn ∧ gn, we observe the
following:

(i) hn
p.w.−−−→ f ∧ g = f .

(ii) For each n ∈ N, 0 ≤ hn ≤ gn and gn ∈ I implies that hn ∈ I (since I is absolutely convex).

Hence, f ∈ IB and this proves that IB is a convex ideal in B1(X).

For any proper ideal I of C(X), it is clear that I ⊆ IB ∩ C(X). In the following theorem we
show that the equality holds precisely for the class of all real maximal ideals of C(X).

Theorem 2.3. M ∈ RM(C(X)) if and only if M =MB ∩ C(X).

Proof. Let M be a real maximal ideal of C(X). Clearly, M ⊆ MB ∩ C(X). Now let g ∈
MB ∩ C(X). There exists {gn} ⊆ M such that gn

p.w.−−−→ g. Since M is real and gn ∈ M , for all

n ∈ N,
∞⋂
n=1

Z(gn) ∈ Z[M ]. Also,
∞⋂
n=1

Z(gn) ⊆ Z(g). Hence, Z(g) ∈ Z[M ]. By maximality of

M it follows that g ∈M . Therefore, MB ∩ C(X) ⊆M and it implies that M =MB ∩ C(X).
Conversely, let M be a maximal ideal of C(X) such that M =MB ∩ C(X).
Consider any countable family {Z(gn) : n ∈ N} of Z[M ]. By maximality of M , gn ∈M , for all
n ∈ N.
We now construct a sequence {sn} as follows : sn =

n∑
j=1

( 1
2j ∧ |gj |

)
, for each n ∈ N. Certainly,

for each j, Z(gj) = Z
( 1

2j ∧ |gj |
)

implies that 1
2j ∧ |gj | ∈ M . M being an ideal, finite sum of

each such member will also lie within M . This means sn ∈M , for all n ∈ N.

Now s =
∞∑
n=1

( 1
2n ∧ |gn|

)
is the uniform limit of the sequence {sn} of continuous functions and

therefore, s ∈ C(X). Again, {sn} ⊆ M ensures that s ∈ MB ∩ C(X) = M . So, Z(s) ̸= ∅.

Following the arguments used in [4, 1.14 (a)] we obtain
∞⋂
n=1

Z(gn) = Z(s) ̸= ∅. Therefore, by

Theorem 1.1 M is real.

That MB is not even a proper ideal of B1(X) when M is hyper-real in C(X) is observed in the
next theorem.

Theorem 2.4. If M is a hyper-real maximal ideal in C(X) then MB = B1(X).

Proof. If M is hyper-real then by Theorem 2.3 MB ∩ C(X) ̸= M . But for any ideal I , I ⊆
IB ∩ C(X) holds. Therefore, M ⊊ MB ∩ C(X). Since M is maximal, MB ∩ C(X) = C(X).
Hence, C(X) ⊆MB , i.e., 1 ∈MB . This proves MB = B1(X).

Theorem 2.5. If M ∈ RM(C(X)) then MB ∈ RM(B1(X)).

Proof. Let f ∈ B1(X) \MB . Consider the ideal J generated by MB ∪ {f}.
Now f ∈ B1(X) implies that there exists {fn} ⊆ C(X) such that fn

p.w.−−−→ f .
Since M is a real maximal ideal in C(X), for each fn ∈ C(X), there exists some rn ∈ R such

that M(fn) = M(rn) and so, fn = rn on Zn = Z(fn − rn) ∈ Z[M ]. As Z =
∞⋂
n=1

Zn ∈ Z[M ],

for each n ∈ N, fn = rn on Z. As a consequence, f is constant (say, r) on Z ∈ Z[M ] ⊆ ZB[MB],
where r = lim

n→∞
rn.

Since Z ⊆ Z(fn − rn) implies that Z(fn − rn) ∈ Z[M ] and M is a z-ideal in C(X), we have
fn − rn ∈ M . By definition of MB , f − r ∈ MB . Now r will be a non-zero real number as
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f /∈ MB . But r = f − (f − r) ∈ J and r ̸= 0 implies that J = B1(X). So, MB is a maximal
ideal of B1(X) such that f − r ∈ MB , i.e., MB(f) = MB(r), for some r ∈ R. If f ∈ MB then
MB(f) =MB(0) and this proves that MB ∈ RM(B1(X)).

Theorem 2.6. If M̂ ∈ RM(B1(X)) then M̂ ∩ C(X) ∈ RM(C(X)).

Proof. Let M̂ ∈ RM(B1(X)). Then for each f ∈ B1(X), there exists rf ∈ R such that
f − rf ∈ M̂ . In particular, for any f ∈ C(X), there is rf ∈ R such that f − rf ∈ M̂ . So,
f − rf ∈ M̂ ∩ C(X) = M (say). We now define a function ϕ : C(X)/M → R by M(f) 7→ rf ,
whenever f − rf ∈M . We claim that ϕ is an isomorphism.
M(f) = M(g) ⇔ f − g ∈ M . If ϕ(M(f)) = rf and ϕ(M(g)) = rg then f − rf , g − rg ∈ M ,
i.e., (f − g)− (rf − rg) ∈M . Since, f − g ∈M and M is an ideal, it follows that rf − rg ∈M
- a contradiction to the fact that M is proper, unless rf − rg = 0. Hence, ϕ is well defined.
Now ϕ(M(f)) = ϕ(M(g)) implies that rf = rg, where f − rf , g − rg ∈ M . Therefore,
f − g = (f − rf )− (g − rg) ∈M which in turn gives M(f) =M(g), proving ϕ to be one-one.
The function ϕ is clearly onto, as ϕ(M(r)) = r, for each r ∈ R. By routine arguments we
easily see that ϕ is indeed a ring homomorphism. Hence, ϕ is a ring isomorphism and therefore,
M ∈ RM(C(X)).

Corollary 2.7. If M̂ ∈ RM(B1(X)) then (M̂ ∩ C(X))B = M̂ .

Proof. As M̂ ∈ RM(B1(X)), M̂ ∩ C(X) ∈ RM(C(X)) (by Theorem 2.6). Using Theo-
rem 2.5, (M̂ ∩ C(X))B ∈ RM(B1(X)). Since (M̂ ∩ C(X))B is a maximal ideal, it is enough
to show that (M̂ ∩ C(X))B ⊆ M̂ .
Let g ∈ (M̂ ∩ C(X))B . Then there exists {gn} ⊆ M̂ ∩ C(X) such that gn

p.w.−−−→ g. So,

Z(g) ⊇
∞⋂
i=1

Z(gn). As ZB[M̂ ] is a ZB-ultrafilter and M̂ is real, it follows that Z(g) ∈ ZB[M̂ ].

Hence, g ∈ M̂ and therefore (M̂ ∩ C(X))B ⊆ M̂ .

In view of Corollary 2.7, Theorem 2.5 and Theorem 2.6, we get a one-one correspondence be-
tween RM(C(X)) and RM(B1(X))

Theorem 2.8. If ψ : RM(C(X)) → RM(B1(X)) is defined by M 7→MB then ψ is a bijection.

Proof. Let M̂ be any member of RM(B1(X)). Therefore, by Corollary 2.7 we get (M̂ ∩
C(X))B = M̂ , where M̂∩C(X) ∈ RM(C(X)) (By Theorem 2.6). Hence, for M̂ ∈ RM(B1(X))

we get M̂∩C(X) ∈ RM(C(X)) such that ψ(M̂∩C(X)) = M̂. This proves that ψ is surjective.
To show that ψ is injective we assume ψ(M̂) = ψ(N̂). This implies (M̂)B = (N̂)B . Now by
applying Theorem 2.3, we get M̂ = (M̂)B ∩ C(X) = (N̂)B ∩ C(X) = N̂ . Therefore, ψ is
injective and hence, it is a bijection.

Corollary 2.9. |RM(C(X))| = |RM(B1(X))|.

It is well known that {M̂f : f ∈ B1(X)}, where each M̂f = {M ∈ M(B1(X)) : f ∈
M}, forms a base for closed sets for the hull-kernel topology on M(B1(X)) and certainly
RM(B1(X)) is a subspace of M(B1(X)). In the following theorem we show that the bijection
ψ obtained above becomes a homeomorphism if RM(C(X)) is endowed with a finer topology
than the subspace topology induced from the hull-kernel topology of M(C(X)).

Theorem 2.10. Let (X, τ) be a Tychonoff space. Then for each f ∈ B1(X), the collection
Mf

∗ = {M ∈ RM(C(X)) : f ∈ MB} forms a base for closed sets for some topology σ
on RM(C(X)) which is finer than the subspace topology of the structure space of M(C(X)).
Moreover, ψ : (RM(C(X)), σ) → RM(B1(X)) given by M 7→MB is a homeomorphism.

Proof. To prove B∗ = {Mf
∗ : f ∈ B1(X)} forms a base for closed sets for some topology σ

on RM(C(X)), it is enough to show that ∅ ∈ B∗ and B∗ is closed under finite union. It is easy
to observe that, ∅ = M1

∗ ∈ B∗. Now let Mf
∗, Mg

∗ ∈ B∗, for some f, g ∈ B1(X). Take any
M ∈ Mf

∗ ∪ Mg
∗. Therefore, gf ∈ MB and M ∈ Mfg

∗. This implies Mf
∗ ∪ Mg

∗ ⊆ Mfg
∗.
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On the other hand, if we take any memeber M ∈ Mfg
∗ then we get fg ∈ MB . Now by

Theorem 2.5 MB is a maximal ideal and hence f ∈ MB or g ∈ MB , i.e., M ∈ Mf
∗ ∪ Mg

∗.
So Mfg

∗ ⊆ Mf
∗ ∪ Mg

∗. This proves that Mf
∗ ∪ Mg

∗ = Mfg
∗ and hence B∗ is closed under

finite union.
Now to prove that ψ is a homeomorphism, we need to show ψ is bijective and exchanges the basic
closed sets of (RM(C(X)), σ) and RM(B1(X)). The map ψ is bijective is already proved in
Thoeorem 2.8. Now for any f ∈ B1(X), ψ(Mf

∗) = {ψ(M) : f ∈ MB} = {MB : f ∈
MB} = {N ∈ RM(B1(X)) : f ∈ N} = M̂f

⋂
RM(B1(X)), which is a basic closed set of

RM(B1(X)) for the subspace topology induced from the hull-kernel topology on M(B1(X)).
As ψ exchanges the basic closed sets, it is a homeomorphism.

Before we conclude this section, we show that an injective map exists from H(C(X)) into
H(B1(X)), where H(C(X)) and H(B1(X)) represent the collections of all hyper-real maxi-
mal ideals in C(X) and B1(X) respectively. In what follows, we use the notation I∗ for the
ideal of B1(X) generated by the subset I of B1(X) and m(I∗) for its maximal extension. The
next theorem ensures that the ideal of B1(X) generated by a proper ideal of C(X) is indeed
proper, so that it has a maximal extension, say m(I∗).

Theorem 2.11. For any proper ideal I of C(X), I∗ is a proper ideal of B1(X), where I∗ denotes
the ideal of B1(X) generated by I as a subset of B1(X).

Proof. If possible let, I∗ is not proper. Then I∗ = B1(X) and hence 1 (the constant function with

value 1) can be written as 1 =
n∑

i=1
αifi, where αi ∈ B1(X) and fi ∈ I , for all i = 1, 2, .., n. For

each x ∈ X , ∃ k ∈ {1, 2, ..., n}, such that fk(x) ̸= 0, otherwise it contradicts that 1 =
n∑

i=1
αifi.

We consider the map g(x) =
n∑

i=1
f2
i (x), ∀ x ∈ X . Clearly, g ∈ I ⊆ C(x) and g(x) ̸= 0, ∀ x ∈ X .

So g is a unit in I , i.e., I = C(X) - a contradiction. Hence, I∗ is a proper ideal of B1(X).

Theorem 2.12. IfM is a hyper-real maximal ideal ofC(X) thenm(M∗) is a hyper-real maximal
ideal of B1(X).

Proof. If m(M∗) is a real maximal ideal of B1(X) then by Theorem 2.6, m(M∗) ∩ C(X) is
a real maximal ideal of C(X). Since M ⊆ m(M∗) ∩ C(X) and M is maximal it follows that
M = m(M∗) ∩ C(X) - a contradiction to the fact that M is hyper-real.

Theorem 2.13. The function ζ : H(C(X)) → H(B1(X)) given by ζ(M) = m(M∗) is an
injective function.

Proof. Let M,N ∈ H(C(X)) be such that m(M∗) = m(N∗). Then by maximality of M and N
it follows that M = m(M∗) ∩ C(X) = m(N∗) ∩ C(X) = N .

Corollary 2.14. |M(C(X))| ≤ |M(B1(X))|.

Proof. This is immediate from Theorem 2.8 and Theorem 2.13.

3 Characterization of Real compact spaces

From the discussion of the last section it follows that there is a one-one correspondence between
the collections RM(C(X)) and RM(B1(X)) given by M 7→ MB . It is well known in [4] that
a Tychonoff space X is real compact if and only if every real maximal ideal of C(X) is fixed.
Utilizing the one-to-one correspondence as mentioned above, we get a characterization of real
compact spaces via real maximal ideals of B1(X).
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Theorem 3.1. A Tychonoff space X is real compact if and only if every real maximal ideal of
B1(X) is fixed.

Proof. Let X be a real compact space and M̂ ∈ RM(B1(X)). By Theorem 2.8, there exists
M ∈ RM(C(X)) such that M̂ = MB . Since X is real compact, M is fixed; i.e., M = Mp, for
some p ∈ X . Hence, M̂ =MB = (Mp)B = M̂p (by Example 2.1).
Conversely, let M be any real maximal ideal of C(X). Then MB ∈ RM(B1(X)) and so, MB

is fixed. Therefore, M (⊆MB) is a fixed ideal. Hence, X is real compact.

In [2, Theorem 3.9], we proved a result for perfectly normal T1-spaces, though the same proof
applies to a larger class of spaces. The following lemma states the result for a broader class of
spaces without providing the proof.

Lemma 3.2. If X is a T4-space in which every point is a Gδ point then the following statements
are equivalent:

(i) X is finite.

(ii) Every maximal ideal in B1(X) is fixed.

(iii) Every ideal in B1(X) is fixed.

Theorem 3.3. Let X be a T4 real compact space in which every point is a Gδ-point. Then
B1(X) = B1

∗(X) if and only if X is finite.

Proof. If X is finite then certainly, B1(X) = B∗
1 (X).

Conversely, let M̂ be any maximal ideal of B1(X)(= B∗
1 (X)). By [2, Theorem 4.21] M̂ is a real

maximal ideal. Since X is real compact, by Theorem 3.1 M̂ is fixed. Finally, using Lemma 3.2
we can conclude that X is finite.

Corollary 3.4. For a perfectly normal T1 real compact space X , B1(X) = B∗
1 (X) if and only if

X is finite.
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