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Abstract In this paper, we establish that for any Mersenne number Mn, the exponential
Diophantine equation 1+Mx

n = z2 has a solution if and only if n is even, and that the solution is
unique. Further, using Catalan conjectures, we prove that the exponential Diophantine equation
Mx

1 +8y = z2 has infinitely many solutions, and find them all. For non-unit n ∈ N, we show that
the exponential Diophantine equation Mx

n + 8y = z2 will have a solution if and only if n ≡ 1(
mod 3). When n = 3l + 1, l being a non-negative integer, there are exactly two solutions, viz.
(x, y, z) = (0, 1, 3) and (2, l+1, 2n+1). Finally, we provide certain examples and non-examples
alike!

1 Introduction

The word "Diophantine" comes from "Diophantus," a mathematician from Alexandria around
250 AD. Diophantine equations are useful across various fields. The realm of Diophantine equa-
tions is ancient and extensive, lacking a universal method to determine whether a given equation
has solutions. In most cases, our focus narrows to examining a single equation rather than various
equation types. The literature is replete with numerous articles delving into individual nonlinear
equations involving diverse prime numbers and powers[2, 8].

If the Diophantine equation involves one or more additional variables or if a variable appears
as an exponent, it is classified as a Diophantine exponent equation, akin to the equations found in
the Fermat-Catalan conjecture and Beal’s conjecture, am + bn = ck with inequality restrictions
on the exponents. The general theory of this type of equation is not available; however, special
cases such as Catalan’s conjecture have been resolved[15].

In 1844, the great Mathematician, Eugene Charles Catalan formulated a conjecture that the
Diophantine equation ax − by = 1 where a, b, x, y ∈ Z with min{a, b, x, y} > 1 has a unique
solution (a, b, x, y) = (3, 2, 2, 3)[1]. Authors J. H. E. Cohn[10], N. Terai, J. W. S. Cassels, S. A.
Arif[11], F. S. Abu Muriefah etc. have did their extensive research works on the Diophantine
equations such as x2 + c = yn, x4 −Dy2 = 1, ax + by = cz, x2 + 2k = yn etc. in the period of
1993-1997. Famous Mathematicians F. Luca [7], Z. Cao[20], F. Beukers[21] and many others
have did considerable works (approx 1995 − 2001) on various aspects of the Diophantine equa-
tions x2 + 3m = yn, ax + by = cz, Axp + Byq = Czr etc. Catalan conjecture was eventually
proved by the Mathematician Preda Mihailescu in 2002 [4]. In the same year, S. A. Arif and F.
S. A. Muriefah have worked on the Diophantine equation x2 + q2k+1 = yn [11].

In 2007, Acu proved that the Diophantine equation 2x + 5y = z2, x, y, z ∈ Z+ has only two
solutions i.e. (3, 0, 3) and (2, 1, 3) [5]. In the period 2010−2016, the researchers Suvarnamani, et
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al.[6], B. Sroysang, et al.[3], J. J. Bravo, et al.[12] etc. have conducted thorough research on the
different types of Diophantine equations 4x+7y = z2, 4x+11y = z2, 4x+13y = z2, 4x+17y =
z2, Ax +By = Cz, 3x + 5y = z2, 8x + 19y = z2, 31x + 32y = z2, 7x + 8y = z2, Fn + Fm = 2a

etc. In 2019, On Diophantine Equations Of Nathanson was studied at [9]. In 2020, Researcher
M. Somanath, et al. [13] have worked on the Diophantine equations x2 = 29y2 −7t, t ∈ N, x2 =
9y2 + 11z2, α2 − 90β2 − 10α − 1260β = 4401. Recently, N. Burshtein [8], S. Aggarwal, S.
Kumar, M. Buosi, et al. [16] etc. have did works in the field of Diophantine equation . In 2022,
authors M. Karama, et al. [14] and M. Dutta et al. [17, 18, 19] did related works.

2 Preliminaries

Definition 2.1. Mersenne numbers : Numbers of the form Mn := 2n − 1 are called Mersenne
numbers, where n ∈ N. The first few Mersenne number are 1, 3, 7, 15, 31, 63, 127 (corresponding
to n = 1, 2, ..., 7). Prime Mersenne numbers are called Mersenne primes. There are only 51
known Mersenne primes [2].

Conjecture 2.2. Catalan’s Conjecture : The unique solution for the Diophantine equation
ax − by = 1 where a, b, x, y ∈ Z with min{a, b, x, y} > 1 is (3, 2, 2, 3) [4].

Lemma 2.3. The only solution of the exponential Diophantine equation 1 + 8y = z2 is (y, z) =
(1, 3) .

Proof. The given equation is

1 + 8y = z2, (2.1)

z2 = 1 + 23y ≥ 1 + 20 = 2 implies z ≥ 2 (because z is non-negative integer), Since
equation (2.1) is same as z2 − 23y = 1, If 3y > 1, i.e. y > 0, then Catalan conjecture implies
that (y, z) = (1, 3) is the only solution. Otherwise y = 0. In this case equation (2.1) implies
1 + 1 = z2 = 2 which has no solution in integers. Thus, the only solution of 1 + 8y = z2 is
(y, z) = (1, 3).

Lemma 2.4. The exponential Diophantine equation 1 +Mx
n = z2 has a solution if and only if n

is even. If n = 2l, l ∈ N, then the unique solution is (x, z) = (1, 2l).

Proof. z2 = Mx
n + 1 ≥ 1 + 1 = 2 implies z ≥ 2. For M1 = 1, z2 = 2, and the given equation

has no integral solution. For n ≥ 2,Mn = 2n − 1 ≥ 22 − 1 = 3. Therefore for z2 − Mx
n = 1

to have a solution, we must have by Catalan conjecture either x = 0 or 1. For x = 0 implies
z2 = 1+1 = 2 implies no solution exists, and x = 1 implies z2 = 1+Mn = 1+(2n−1) implies
z2 = 2n. This has a solution if and only if n is even. Let n = 2l, l ∈ N, then z2 = 22l implies
z = 2l. Therefore (x, z) = (1, 2l) is the unique solution of 1 +Mx

n = z2 where n = 2l, l ∈ N.
For odd n, no solution exists.

Example 1. For 1 +Mx
2 = z2, n = 2.1 is even implies z2 = 1 +Mx

2 has the unique solution
(x, z) = (1, 21) i.e. z2 = 1 + 3x, has the unique solution (x, z) = (1, 2).

Example 2. For 1 + Mx
3 = z2, n = 3 is odd implies z2 = 1 + Mx

3 has no solution, i.e.
z2 = 1 + 7x, has no solution.

Example 3. For 1 + Mx
6 = z2, n = 6 = 2.3 is even implies z2 = 1 + Mx

6 has the unique
solution (x, z) = (1, 23) i.e. z2 = 1+ 63x, has the unique solution (x, z) = (1, 23) = (1, 8). etc.

In the following, we will use the Catalan’s conjecture and the preceding lemmas in solving
the exponential Diophantine equation Mx

n + 8y = z2 .

3 Main Results

Theorem 3.1. The exponential Diophantine equation Mx
1 + 8y = z2 has the solution (x, y, z) =

(l, 1, 3), l ∈ Z.

Proof. M1 = 21 −1 = 1, Therefore, the equation reduces to 1x+8y = z2, By lemma 2.3 above,
this has solution (y, z) = (1, 3),∀x ∈ Z. Thus, the original equation has (x, y, z) = (l, 1, 3) as
solution, ∀l ∈ Z.
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Theorem 3.2. Let n ̸= 1, the exponential Diophantine equation Mx
n+8y = z2 will have solution

if and only if n ≡ 1( mod 3). When n = 3l + 1, l ∈ N, the equation has exactly two solutions
given by (x, y, z) = (0, 1, 3) and (2, l+ 1, 2n + 1).

Proof. Given equation is
Mx

n + 8y = z2 (3.1)

Here, Mn = 2n − 1, n ∈ N, n ̸= 1 implies Mn ≡ −1( mod 4) implies Mx
n ≡ (−1)n( mod 4)

implies Mx
n + 8y ≡ (−1)x + 0( mod 4)

⇒ z2 ≡ (−1)x( mod 4) (3.2)

Now Mn is odd implies Mx
n + 8y = z2 is odd implies z is odd too implies z2 ≡ 1( mod 4).

Therefore equation (3.2) implies x is even. Let x = 2k, k ≥ 0 is a non-negative integer. Then
equation (3.1) implies M2k

n + 8y = z2 implies 8y = z2 − (Mk
n)

2 implies 23y = (z −Mk
n)(z +

Mk
n), z ±Mk

n are even implies z −Mk
n = 2u and z +Mk

n = 23y−u, u ≥ 1, 3y − u > u. This in
turn implies 2.Mk

n = 2u(23y−2u − 1), because Mn is odd. Therefore u = 1,Mk
n = 23y−2 − 1

⇒ 23y−2 −Mk
n = 1 (3.3)

Now k ≥ 0 implies 23y−2 ≥ 1 +M0 = 21 implies 3y − 2 ≥ 1

⇒ y ≥ 1 (3.4)

Also, n > 1
⇒ Mn = 2n − 1 ≥ 3 (3.5)

From equation (3.3), By Catalan conjecture, we have y = 1 or k = 0, 1. We consider them one
by one.

Case 1: y = 1 , therefore equation (3.3) implies 2−Mk
n = 1 implies Mk

n = 1 implies k = 0, (
since Mn ̸= 1) implies x = 2k = 0. Therefore equation (3.1) implies z2 = M0

n+81 = 1+8 = 9
implies z = 3 ( since z ≥ 0). Therefore (x, y, z) = (0, 1, 3).

Case 2: k = 0 implies x = 2k = 0 implies 23y−2 = 1 + M0
n implies 23y−2 = 21 implies

3y − 2 = 1 implies y = 1 implies z = 3, by case 1. Therefore (x, y, z) = (0, 1, 3).
Case 3: k = 1 implies x = 2k = 2, equation (3.3) implies 23y−2 − Mn = 1 implies

23y−2 − 1 = Mn = 2n − 1 (By definition of Mersenne number) implies 23y−2 = 2n. To
have solution, we must have n ≡ 1( mod 3) implies 3y − 2 = n = 3l + 1, l ∈ N implies
y = l+ 1. Therefore equation (3.1) implies z2 = M2

n + 8l+1 = (2n − 1)2 + 23(l+1) = (22n + 1−
2n+1) + 23l+1+2 = 22n + 1 − 2n+1 + 2n+2 = 22n + 1 + 2n+1 = (2n + 1)2 implies z = 2n + 1.
Therefore (x, y, z) = (2, l+1, 2n+1), l ∈ N. Converse is clearly true as can be seen from direct
substitution. This completes the theorem.

Corollary 3.3. The exponential Diophantine equation Mx
n + 8y = w4 has no solution for any

natural number n.

Proof. Suppose (x, y, w) is a solution of Mx
n + 8y = w4, n ∈ N. This means that, (x, y, w2) is

a solution of Mx
n + 8y = z2. By theorem 3.1 and 3.2 above, we have w2 = 3 or 2n + 1. This

implies w2 = 2n + 1, (since w2 ̸= 3)

⇒ w2 − 2n = 1 (3.6)

Now w2 = 1 + 2n ≥ 3 implies w ≥ 2. We consider two cases,
Case 1:n = 1, therefore equation (3.6) implies w2 = 1 + 2 = 3 implies not possible.
Case 2: n > 1, then min{w, 2, n} ≥ 2 > 1, Therefore Catalan conjecture implies w = 3 and

n = 3 implies n ≡ 0(mod3). Therefore by theorem 3.2, we get a contradiction.

Corollary 3.4. The exponential Diophantine equation Mx
n + 8y = w2m,m > 2 has no solution

in non-negative integers.
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Proof. Suppose (x, y, w) is a solution. Then (x, y, wm) is a solution of (3.1). By theorem 3.1
and 3.2, wm = 3 or 2n + 1, w is non-negative and m ≥ 3 implies wm ̸= 3 implies wm = 2n + 1

⇒ wm − 2n = 1 (3.7)

Now wm = 1 + 2n > 1 implies w > 1 implies w ≥ 2 implies wm ≥ 23 = 8 as m ≥ 3.
Therefore from (3.7), by Catalan conjecture we get n = 0, 1. For n = 0 implies wm = 2 implies
contradiction as wm ≥ 8. For n = 1 implies wm = 3 implies contradiction again. Therefore the
given equation has no solution.

Example 1. Because 2 ̸≡ 1( mod 3). Therefore Mx
2 + 8y = z2 has no solution except

(0, 1, 3), by theorem 3.2, i.e. 3x + 8y = z2 has unique solution (0, 1, 3).
Example 2. Because 3 ≡ 0 ̸≡ 1( mod 3). Therefore Mx

3 + 8y = z2 has no solution except
(0, 1, 3), by theorem 3.2, i.e. 7x + 8y = z2 has unique solution (0, 1, 3).

Example 3. Because 4 ≡ 1( mod 3), 4 = 3.1+ 1. Therefore Mx
4 + 8y = z2 has exactly two

solutions , by theorem 3.2. These are (0, 1, 3) and (2, 2, 17) i.e. 15x + 8y = z2 has exactly two
solutions. The trivial solution is (0, 1, 3) and the non-trivial solution is (2, 2, 17).

Example 4. Because 5 ≡ 2 ̸≡ 1( mod 3). Therefore Mx
5 + 8y = z2 has no solution except

(0, 1, 3), by theorem 3.2 i.e. 31x + 8y = z2 has unique solution (0, 1, 3).
Example 5. Because 7 ≡ 1( mod 3), 7 = 3.2+ 1. Therefore Mx

7 + 8y = z2 has exactly two
solutions , by theorem 3.2. These are (0, 1, 3) and (2, 3, 129) i.e. 127x + 8y = z2 has exactly
two solutions. The trivial solution is (0, 1, 3) and the non-trivial solution is (2, 3, 129).

4 Conclusion remarks

In this article, we have showed that the exponential Diophantine equation 1 + Mx
n = z2 has a

solution if and only if n is even. If n = 2l, l ∈ N, then the unique solution is (x, z) = (1, 2l).
We also proved that the exponential Diophantine equation Mx

n + 8y = z2 will have solution if
and only if n ≡ 1( mod 3). When n = 3l + 1, l ∈ N, the solutions are given by (0, 1, 3) and
(x, y, z) = (2, l+ 1, 2n + 1). Finally, we concluded with certain examples and non-examples.
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