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Abstract In this paper, we discuss the stabilities of L-harmonic maps on sphere S™ with
n > 2. We also prove that any L-harmonic map from a complete Riemannian manifold (M, g) to
Riemannian manifold (N, k) is necessarily constant, with (N, k) admitting a proper homothetic
vector field satisfying some conditions.

1 Preliminaries and Notations

We give some definitions. Let (M, g) be a Riemannian manifold. By R* and Ric" we denote
respectively the Riemannian curvature tensor and the Ricci tensor of (M, g). Thus RM and Ric"
are defined by

RM(X,Y)Z = VYV Z -V Z -V 2, (1.1)

Ric™ (X,Y) = g(RM (X, e;)e;, Y), (1.2)

where VM is the Levi-Civita connection with respect to g, {e;} is an orthonormal frame, and
X,Y,Z e T(TM). The divergence of (0, p)-tensor « on M is defined by

(div™ @)(X1, .o, Xpo1) = (VHa) (€1, X1, oy Xpo1), (1.3)
where X, ..., X,_; € I'(T'M), and {e;} is an orthonormal frame. Given a smooth function \ on
M, the gradient of ) is defined by

g(grad™ X, X) = X()), (1.4)
the Hessian of ) is defined by
(Hess™ \)(X,Y) = g(V¥ grad \,Y), (1.5)

where X,Y € I'(T'M), the Laplacian of X is defined by
AM (\) = trace Hess™ ), (1.6)

(for more details, see for example [12]).
A vector field £ on a Riemannian manifold (M, g) is called a homothetic if £, g = 2kg, for some
constant k£ € R, where L¢g is the Lie derivative of the metric g with respect to &, that is

9(Vx&Y) +g(Vy& X) =2kg(X,Y), VXY e(TM). (1.7)

The constant & is then called the homothetic constant. If ¢ is homothetic and k£ # 0, then it is
called proper homothetic while £ = 0 it is Killing (see [1, 8, 17]). Note that, if a complete Rie-
mannian manifold of dimension > 2 admits a proper homothetic vector field then the manifold
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is isometric to the Euclidean space (see [7, 17]).

Consider a smooth map ¢ : (M, g) — (IV, h) between Riemannian manifolds, L : M x N xR —
(0,00), (x,y,7) > L(z,y,7), be a smooth positive function, for any compact domain D of M
the L-energy functional of ¢ is defined by

Ey(p:D) = /D L, o(z), e(9) () v, (1.8)

where e(y) is the energy density of ¢ defined by

elg) = 5 h(dp(er), dp(er)). (19)

vy is the volume element, here {e;} is a orthonormal frame on (M, g). A map is called L-
harmonic if it is a critical point of the L-energy functional over any compact subset D of M.
L-harmonic maps are solutions of two-order nonlinear elliptic system, challenging to solve even
in simple cases like f-harmonic and bi- f-harmonic curves (see [5]).

We denote by 0, = 9/dr, L' = 0,(L), L" = 9,(d,(L)), and let L], L7, € C>°(M) defined by

L (z) =1L (z,9(z), e(p)(z)), L(x) = L' (z,0(z),e(p)(x)). (1.10)

Theorem 1.1 (The first variation of Er, [10]). Let ¢ : (M, g) — (N, h) be a smooth map and let
{#t}re(—e,c) be a smooth variation of ¢ supported in D. Then

d
d—EL(cpt;D)’ - —/ h(r1(),v) v, (1.11)
t N b
_ Dt .
where v = Dt oo denotes the variation vector field of p,
t=
(@) = L, 7() + d(grad™ L)) — (grad™ L) o ¢, (1.12)

and (i) is the tension field of p given by
7(p) = trace Vdp. (1.13)

From the first variation formula (1.11), amap ¢ : (M, g) — (N, h) is L-harmonic if and only
ifr.(p) =0.

Theorem 1.2 (The second variation of the Fr, [10]). Let ¢ : (M, g) — (N, h) be an L-harmonic
map between Riemannian manifolds and {y s }1 sc(—e,c) be a two-parameter variation with com-
pact support in D. Set

0py.s 0pt s
= : = : . 1.14
v ot t:s:O’ Js lt=s=0 ( )
Under the notation above we have the following
82
—F D = 1.1
s EtensD)| = [ s, (115)
where J, 1. (v) € T(¢~'TN) given by
JoL(v) = —L, trace R (v,dp)dep — trace V¥ L, V¥ v
+(VY grad” L) o+ <V¥u,dp > (grad¥ L) o ¢
—trace V¥ < V¥uv,dp > L7 dp. (1.16)

Here <, > denote the inner product on T*M ® @~ 'TN and RY is the curvature tensor
on (N,h). If M is a compact Riemannian manifold, ¢ be a L-harmonic map from (M, g) to
Riemannian manifold (N, k), and for any vector field v along ¢,

I#(0,0) = /M h( T2 (v),0) v, > 0, (1.17)
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then ¢ is called a stable L-harmonic map. Note that, the definition of stable L-harmonic maps is
a generalization of stable harmonic maps for L(z,y,r) = r (see [18]), is also a generalization of
stable f-harmonic maps with f is a smooth positive function on M, and L(z,y,r) = f(z)r (see
[11]). The Liouville type theorem for harmonic and biharmonic maps on Riemannain manifolds
in particular on S™ has been studied by many researchers. In [14], S. Ouakkas gives an example
of non-harmonic biharmonic maps. In this paper, we present some Liouville type theorems for
L-harmonic maps between two Riemannian manifolds. In particular, we study the case where
the codomain of L-harmonic maps has a proper homothetic vector field. We shall extend some
results proved in [6, 9, 11, 15, 19].

2 Nonexistence theorems on stable L-harmonic maps

Theorem 2.1. Any stable L-harmonic map o from sphere (S, g) (n > 2) to Riemannian mani-
fold (N, ) is constant, where L is a smooth positive function on S™ x N x R satisfying pr >0
and the following inequality

/ [trace h((Vdg) (- grad®” '), dg() ~ ol L] o*" > 0.

Proof. Choose a normal orthonormal frame {e; } at point z( in S™. Set
AMz) =< a,z >pn,

for all z € S”, where a € R"*! and let v = gradSn A. Note that
v=<a,e >e;, Vyiv=-)\X,forall X € T(TS"),

n

- e s
trace, (V> )"0 =V, V. v — Vs, v = —v,

where V5" is the Levi-Civita connection on S™ with respect to the standard metric g of the sphere
(see [18]). At point x, we have

VEL,VE do(v) = V;adgn L:odgo(v) + L,V VEdp(v), 2.1
the first term of (2.1) is given by
V;adgn L, do(v) = V¥dp(grad®” L)+ de([grad®” L,,v])

Vidp(grad™ L)) + dp(Vg, g 1, v)

gra

~dp(V5" grad®" L), (22)
the seconde term of (2.1) is given by
L;Vﬁ_v;dgo(v) = L;Vfindap(ei) + L;Vfidgo([ei, v])
_ N
= L,R"(dp(e:),dp(v))dp(e;) + L,VEVE dp(e;)
+L,de([ei, [ei, v]]) + ZL:OVEihv]dap(ei), (2.3)

from the definition of tension field, we get
L,VEVEdp(v) = —L,RM(dp(v),dp(e;))dp(e:) + L, VET(p)
+LLVEdp(VE, o) + Lidp(V, V)
—Lidp(Ve, Vi er) + 2L,V de(e:)
= —L,RY(dp(v),dp(e:))dp(e;) + VEL,T(9) = v(LL,)T(p)
L,V dp(VE] e5) + Li,dp(Ve] Ve v)
—L,dp(VE'VY e) + 2L,V dp(e:), 2.4)

[eiﬂv]



SOME RESULTS ON L-HARMONIC MAPS" 315

by equations (2.1), (2.2), (2.4), and the L-harmonicity condition of ¢, we have

n

VELLVEdo(v) = dp(V en L) = dp(VS" grad®” L))
—L,RY (dp(v), dp(e:))dp(e;)
+V? (gradN LYoy — ’U(L:P)T(QD)
+LL,dp(VE 'V e;) + L, de(VE, Ve v)
—LLdp(VE' VS e)) + 2L VE,. dp(e;), (2.5)

14 VE';L v
by the definition of Ricci tensor, we get

VELLVEdp(v) = dp(Vgger v) — dp(Vy) grad®™ L))
N N
—L, R (de(v), dp(e;))dp(ei) + VE(grad™ L) o ¢

. 'S'Vl Sn 2
—v(Li,)7(p) + Li,dp(Ricei” v) + L dp(trace(V> )“v)
+L, Ve, dp(es), (2.6)

from the property Vinv = —AX, we obtain

VEL,V¢dp(v) = —Mdp(grad® L)) —dp(VS grad® L)
—Li,RY (dp(v), dp(e;))dp(e;)
—i—Vf(gradN LYoy — v(L;)T(go)
+L,dp(Ricci® v) + L, dy(trace(VE")?0)
AL (). @7

From (1.16), and equation (2.7) we have

Jf(dp(v)) = Me(grad® L) +dp(Vy" grad® L) +v(L],)7 ()
—L:Ddcp(RicciSn v) — Ll dy(trace(V"")?0) + AL, 7()
+ < V?dp(v),dp > (gradV L') o

—trace V¥ < V¥dy(v),dp > L dp, (2.8)
since trace, (VS" )20 = —v and Ricci® v = (n — 1)v (see [1, 18]), we conclude
h(J7 (dp(v)), dp(v)) = Nh(dp(grad™ L), dp(v))

+h(dp(VS" grad® L), dyp(v))
(L, )h(1(p), dp(v))
—(n—2)Li,h(de(v), dp(v))
+ALGR(T (), dip(v))
+ < V?dp(v),dp > do(v) (L")
—h(trace V¥ < V¥ dp(v),de > L7 dp,dp(v)),
2.9)
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by (2.9) and the L-harmonicity condition of ¢, it follows that
traceq h(J{ (dp(v)), dp(v)) = h(dp(VE, grad® L), deo(e;))
+h(7(p), dp(grad® L))
—(n = 2)Li|dgl?
+ trace, h(VE, dp(v), dp(e;))dp(v)(L')
—trace, h(VE < V#dp(v),dp > L, dp(e;), dp(v)),

(2.10)
since at g, 7(p) = V¢ di(e;), we have the following formula
hW(dp(VS) grad® L), de(e;)) +  h(r(),dp(grad® L))
= div®" h(de(-), dp(grad™ L))
— trace h((Vdyp) (-, grad®” L},), dip(")),
(2.11)
and note that by the definition of Vd and the property Vinv = —)\X, we have
traceq h(VE, dip(v), dp(e;))dp(v)(L') = trace h((Vde) (-, dip(e)(L')ei), dip(1)),
(2.12)
—trace, A(VE, < V¥ dp(v),dp > L dp(e;), dp(v))
= —trace, div® [ < V¥dp(v),dp > LIh(dg(-), dp(v))]
+ trace, < V¥ dp(v),dp >* L,
= —trace, div’" [ < V¥ dip(v),dp > LI h(dp(-), dp(v))]
+trace h((Vdyp) (-, grad”” e(¢)), dg(-)) L), + |deo| 'L, (2.13)

from the stable L-harmonic condition, the divergence theorem, and equations (2.10), (2.11),
(2.12), (2.13), with

grad® L), = grad®" L' + dip(e;)(L')e; + L, grad®” e(y),

we get the following
0 < trace, I£ (dp(v), dp(v)) + / ) [traceh((m)(., grad®” '), de(-))
dgl* L)
= —(n-2) /S L, |dg|*®" < 0.

Consequently, |dp| = 0, that is ¢ is constant, because n > 2. The proof is completed. O

Using Theorem 2.1 we obtain:

+ Any stable harmonic map ¢ from sphere (S", g) (n > 2) to Riemannian manifold (N, &) is
constant (see [18, 19]).

 Any stable f-harmonic map ¢ from sphere (S", g) (n > 2) to Riemannian manifold (N, h)
is constant, where f is a smooth positive function on S™ satisfying the following inequality

/ twace h((Vdyp) (-, grad™ f), dp())v™" >0,

(see [11, 15]).
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Using the similar technique we have:

Theorem 2.2. Let (M, g) be a compact Riemannian manifold. When n > 2, any stable L-
harmonic map ¢ : M — S™ must be constant, where L is a smooth positive function on M X
S™ x R, with L:D > 0 and

/M [AS"(L) o + |dg|* L] o™ < 0.

Proof. Choose a normal orthonormal frame {e;} at point zp in M. When the same data of
previous proof, we have

VELVE(Wwow) =V g, (o) + LLVEVE(voy), 2.14)
the first term of (2.14) is given by
Vi 1, (0o @) = —(Ao@)dip(grad™ L), (2.15)

the seconde term of (2.14) is given by

L,VEVE (o) = —LLVE(Aop)dp(e)
_ M
= —Ljdp(grad™ (Ao p)) — (Ao p)Ly,7(p), (2.16)
by the definition of gradient operator, we get
M _
—Li,dp(grad™ (Ao p)) = —Li, < dp(e;),vo @ > dp(e;), (2.17)
substituting the formulas (2.15), (2.16), (2.17) into (2.14) gives
VfiL;Vfi (vop) = —(Xo @)dgp(gradM L;) - L:o < dp(e;),vop >dp(e;)
~(Aop)Ly,T(p), (2.18)
from the L-harmonicity condition of ¢, and equation (2.18), we have
<VEL,VE(vop)vop> = —Lj <dp(e;),vop><dp(e;),vop>
—(Aoy) < (grad® L) o p, w0 >,
(2.19)
since the sphere S™ has constant curvature, we obtain
< L;RSH (vop,do(e;))dp(e;),vop >= pr|d<p|2 <vop,vop >
—Lg, < dp(e;),vop ><dp(e;),vop >, (2.20)
by the definition of Jacobi operator and equations (2.19), (2.20), we get
<Jf(wop)vop> = 2L, <dp(ei),vop ><dp(e;),vop >
2
—L|del* <vop,vop>
+(X o) < (grad® L) o p,vo0¢p >
+ < (VE:W grad® L) o p,vo0p >
+ < V%vop,dp >< (gradsn L')op,vop>,
— < V¢ <VPvop,dp> L dp(e;),vop >,
(2.21)

since < V¥v o p,dp >= —(X o ¢)|dp|?, by equation (2.21), we find that
trace, < Jf(voyp)vop> = (2- n)Ll|de|* + A% (L) o ¢ + |dg|* L,
(2.22)
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S

where AS" (L) o ¢ = trace, (Hess® L)(vo ¢, v o), and Hess® L is the hessian of the function

L on S™, from (2.22) we have
trace, [{(vop,vop) = (2-n) / L, |dg|*v™
' M
+ /M [AS“ (L)op+ \dap|4Lﬂ oM. (2.23)
Hence Theorem ?? follows from (2.23) and the stable f-harmonicity condition of ¢ with n > 2,
L, >0and [, [A"(L)op+|dp[* L]vM < 0. o

From Theorem 2.2, we deduce:

» Let (M, g) be a compact Riemannian manifold. When n > 2, any stable harmonic map
@ : M — S™ must be constant (see [6, 13, 18]).

» Let (M, g) be a compact Riemannian manifold. When n > 2, any stable f-harmonic map
@ : M — S™ must be constant, where f is a smooth positive function on M x S™, with

Jar e(@)[AS" () 0 oo™ < 0 (see [15)).

3 Homothetic vector fields and L-harmonic maps

Theorem 3.1. Let (M,g) be a compact orientable Riemannian manifold without boundary,
(N,h) a Riemannian manifold admitting a proper homothetic vector field & with homothetic
constant k > 0, and let L be a smooth positive function on M x N x R such that L' > 0 and
&(L) > 0. Then, any L-harmonic map ¢ from (M, g) to (N, h) is constant.

Proof. We set
w(X) = h(€op,L,dp(X)), VX eIL(I'M), (3.1)

let {e;} be a normal orthonormal frame at € M, we have
divMw = ¢ [h(f o, prdgo(el-))]
= W(VE(§o), Lyde(e) + h(§ oo, VE Lidp(ei))
= W(VE(Eop), Lidp(e:) + h(& oo, L,T(p) + dp(grad™ L1,))  (3.2)
by equation (3.2) and the L-harmonicity of ¢, we get:
divMw = h(VE(Eop),L,do(e:)) + h(€ o, (grad™ L) o )
= LLM(Vipe8 dple) + b o g, (grad™ L) o p)
since £ is a homothetic vector field with homothetic constant &, we find that
divMw = szkh(alga(ei)7 dp(e;)) + h(€ o g, (grad¥ L) o ¢)
— kL ldpf +€(L) o .

Theorem 3.1 follows from the last equation, and the divergence theorem, with L’ > 0 and
&(L) > 0. i

From Theorem 3.1, we get the following result.

Corollary 3.2 ([9]). Let (M, g) be a compact orientable Riemannian manifold without bound-
ary, and (N, h) be a Riemannian manifold admitting a proper homothetic vector field & with
homothetic constant k # 0. Then, any harmonic map ¢ from (M, g) to (N, h) is constant.

In the case of non-compact Riemannian manifold, we obtain the following result.
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Theorem 3.3. Let (M, g) be a complete non-compact orientable Riemannian manifold, (N, h)
a Riemannian manifold admitting a proper homothetic vector field £ with homothetic constant
k > 0, and let L be a smooth positive function on M x N x R such that L' > 0 and £(L) > 0.
If o : (M,g) — (N, h) is L-harmonic map satisfying

2
/M L|€ 0 plv? < oo,
then ¢ is constant.
Proof. Let p be a smooth function with compact support on M, we set
w(X) = h(€op, P’ LLdp(X)), VX €T(TM),
and let {e;} be a normal orthonormal frame at « € M, we have
div¥w = e;[h(E o, P LLdp(e;))]
= h(VE (o). pPLidp(ei) +h
= h(VE(Eop), pPLidp(e:)) +h
+h(& 0w, p?VE Liyde(ei)),

(€0, VE PP (Lydep(es)))
(&0, ei(p”) Lidp(e;))

so that
diviw = W(VZ(Eow), PPLLdp(e:)) + h(& o o, 2pei(p) L, dp(es))
+h(& o @, PP[LL7(¢) + dp(grad™ L!,)]) (3.3)
by equation (3.3), and L-harmonicity condition of ¢, we get
diviw = LUV (& de(er)) + 2pei(p) L k(€ 0 ¢, di(es)
+p*h(€ 0 ¢, (grad™ L) o o)

since £ is a homothetic vector field with homothetic constant &, we find that

divw = kp’Lih(dp(e:), dp(e:)) + 2pei(p) L k(€ o ¢, dip(es))
+p*¢(L) o,
that is,
divw = kp*Ll|do|* + 2pei(p)L,h(E 0 ¢, dp(e;)) + p*E(L) 0 (3.4)

by the Young’s inequality, we have
—2pe;i(p)h do(es)) < epldel? + Les(p)2l€ o o
pei(p)h(§ o p,dp(ei)) < ep’ldel” + —eip)"[€ o ¢,
for all € > 0, multiplying the last inequality by L, we find that
’ ’ 1
72L<pp61(p)h(§ ° P, dw(el)> < €L¢P2|d§0|2 + ELZp61<p)2|E © §0|2a (35)

from (3.4), (3.5), we deduce the inequality
2 2 .M 2
kp*Lildp|” —divi w4+ p¢(L)op

1
< eLippldpl? + —Liei(p)’l€ 0 oI, (3.6)
we set € = %, by (3.6), we have
k )
FP L ldel* — div¥w + p*(L)oy

2
< pLeeplle ol (3.7)
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by the divergence theorem, and (3.7), we have
k 2
*/ pZL;Idwlzvg+/ PlE(L) o plv? < f/ Liyei(p)*[€ 0 ol*v9. (3.8)
2 ) M k Jar

Now, consider the cut-off smooth function p = pg such that, p < 1 on M, p = 1 on the ball
B(p,R), p=0o0n M\ B(p,2R) and | grad" p| < % (see [16]), from (3.8) we get:

k 8
k / PL|dpPo + / AlE(L) o glo? < -5 / LLJ¢ o g, (3.9)
2 M M kR M

since [, L{,|€ o p[*v9 < oo, when R — oo we obtain:

k ! 209 o wlvd =
2/ML¢|d<p| v +/M[§(L) v 0. (3.10)

Consequently, |dp| = 0, that is ¢ is constant. O
From Theorem 3.3, we deduce:

Corollary 3.4 ([9]). Let (M, g) be a complete non-compact orientable Riemannian manifold,
and (N,h) be a Riemannian manifold admitting a proper homothetic vector field £. If ¢ :
(M, g) — (N, h) is harmonic map satisfying [, | o ¢|*v? < oo, then ¢ is constant.
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