SOME RESULTS ON L-HARMONIC MAPS

F. Gherib, E. Remli and A. Mohammed Cherif

Communicated by Zafar Ahsan

MSC 2010 Classifications: Primary 53C43, 58E20; Secondary 53A30.

Keywords and phrases: L-harmonic maps, Homothetic vector field.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Corresponding Author: A. Mohammed Cherif

Abstract In this paper, we discuss the stabilities of L-harmonic maps on sphere \mathbb{S}^n with n > 2. We also prove that any L-harmonic map from a complete Riemannian manifold (M, g) to Riemannian manifold (N, h) is necessarily constant, with (N, h) admitting a proper homothetic vector field satisfying some conditions.

1 Preliminaries and Notations

We give some definitions. Let (M,g) be a Riemannian manifold. By \mathbb{R}^M and Ric^M we denote respectively the Riemannian curvature tensor and the Ricci tensor of (M,g). Thus \mathbb{R}^M and Ric^M are defined by

$$R^{M}(X,Y)Z = \nabla_{X}^{M}\nabla_{Y}^{M}Z - \nabla_{Y}^{M}\nabla_{X}^{M}Z - \nabla_{[X,Y]}^{M}Z, \tag{1.1}$$

$$Ric^{M}(X,Y) = g(R^{M}(X,e_i)e_i,Y), \tag{1.2}$$

where ∇^M is the Levi-Civita connection with respect to g, $\{e_i\}$ is an orthonormal frame, and $X,Y,Z \in \Gamma(TM)$. The divergence of (0,p)-tensor α on M is defined by

$$(\operatorname{div}^{M} \alpha)(X_{1},...,X_{p-1}) = (\nabla_{e_{i}}^{M} \alpha)(e_{i}, X_{1},...,X_{p-1}), \tag{1.3}$$

where $X_1, ..., X_{p-1} \in \Gamma(TM)$, and $\{e_i\}$ is an orthonormal frame. Given a smooth function λ on M, the gradient of λ is defined by

$$g(\operatorname{grad}^{M} \lambda, X) = X(\lambda),$$
 (1.4)

the Hessian of λ is defined by

$$(\operatorname{Hess}^{M} \lambda)(X, Y) = g(\nabla_{X}^{M} \operatorname{grad} \lambda, Y), \tag{1.5}$$

where $X, Y \in \Gamma(TM)$, the Laplacian of λ is defined by

$$\Delta^{M}(\lambda) = \operatorname{trace} \operatorname{Hess}^{M} \lambda, \tag{1.6}$$

(for more details, see for example [12]).

A vector field ξ on a Riemannian manifold (M,g) is called a homothetic if $\mathcal{L}_{\xi}g=2kg$, for some constant $k\in\mathbb{R}$, where $\mathcal{L}_{\xi}g$ is the Lie derivative of the metric g with respect to ξ , that is

$$q(\nabla_X \xi, Y) + q(\nabla_Y \xi, X) = 2kq(X, Y), \quad \forall X, Y \in \Gamma(TM). \tag{1.7}$$

The constant k is then called the homothetic constant. If ξ is homothetic and $k \neq 0$, then it is called proper homothetic while k = 0 it is Killing (see [1, 8, 17]). Note that, if a complete Riemannian manifold of dimension ≥ 2 admits a proper homothetic vector field then the manifold

is isometric to the Euclidean space (see [7, 17]).

Consider a smooth map $\varphi:(M,g)\to (N,h)$ between Riemannian manifolds, $L:M\times N\times \mathbb{R}\to (0,\infty), (x,y,r)\mapsto L(x,y,r)$, be a smooth positive function, for any compact domain D of M the L-energy functional of φ is defined by

$$E_L(\varphi; D) = \int_D L(x, \varphi(x), e(\varphi)(x)) v_g, \tag{1.8}$$

where $e(\varphi)$ is the energy density of φ defined by

$$e(\varphi) = \frac{1}{2} h(d\varphi(e_i), d\varphi(e_i)), \tag{1.9}$$

 v_g is the volume element, here $\{e_i\}$ is a orthonormal frame on (M,g). A map is called L-harmonic if it is a critical point of the L-energy functional over any compact subset D of M. L-harmonic maps are solutions of two-order nonlinear elliptic system, challenging to solve even in simple cases like f-harmonic and bi-f-harmonic curves (see [5]).

We denote by $\partial_r = \partial/\partial r$, $L' = \partial_r(L)$, $L'' = \partial_r(\partial_r(L))$, and let L'_{φ} , $L''_{\varphi} \in C^{\infty}(M)$ defined by

$$L'_{\varphi}(x) = L'(x, \varphi(x), e(\varphi)(x)), \quad L''_{\varphi}(x) = L''(x, \varphi(x), e(\varphi)(x)). \tag{1.10}$$

Theorem 1.1 (The first variation of E_L , [10]). Let $\varphi : (M, g) \to (N, h)$ be a smooth map and let $\{\varphi_t\}_{t\in(-\epsilon,\epsilon)}$ be a smooth variation of φ supported in D. Then

$$\frac{d}{dt}E_L(\varphi_t; D)\Big|_{t=0} = -\int_D h(\tau_L(\varphi), v) v_g, \tag{1.11}$$

where $v = \frac{\partial \varphi_t}{\partial t}\Big|_{t=0}$ denotes the variation vector field of φ ,

$$\tau_L(\varphi) = L'_{\omega} \tau(\varphi) + d\varphi (\operatorname{grad}^M L'_{\omega}) - (\operatorname{grad}^N L) \circ \varphi, \tag{1.12}$$

and $\tau(\varphi)$ is the tension field of φ given by

$$\tau(\varphi) = \operatorname{trace} \nabla d\varphi. \tag{1.13}$$

From the first variation formula (1.11), a map $\varphi:(M,g)\to(N,h)$ is L-harmonic if and only if $\tau_L(\varphi)=0$.

Theorem 1.2 (The second variation of the E_L , [10]). Let $\varphi:(M,g)\to (N,h)$ be an L-harmonic map between Riemannian manifolds and $\{\varphi_{t,s}\}_{t,s\in (-\epsilon,\epsilon)}$ be a two-parameter variation with compact support in D. Set

$$v = \frac{\partial \varphi_{t,s}}{\partial t}\Big|_{t=s=0}, \quad w = \frac{\partial \varphi_{t,s}}{\partial s}\Big|_{t=s=0}.$$
 (1.14)

Under the notation above we have the following

$$\frac{\partial^2}{\partial t \partial s} E_L(\varphi_{t,s}; D) \Big|_{t=s=0} = \int_D h(J_{\varphi,L}(v), w) v_g, \tag{1.15}$$

where $J_{\varphi,L}(v) \in \Gamma(\varphi^{-1}TN)$ given by

$$J_{\varphi,L}(v) = -L'_{\varphi} \operatorname{trace} R^{N}(v, d\varphi) d\varphi - \operatorname{trace} \nabla^{\varphi} L'_{\varphi} \nabla^{\varphi} v$$

$$+ (\nabla_{v}^{N} \operatorname{grad}^{N} L) \circ \varphi + \langle \nabla^{\varphi} v, d\varphi \rangle (\operatorname{grad}^{N} L') \circ \varphi$$

$$- \operatorname{trace} \nabla^{\varphi} \langle \nabla^{\varphi} v, d\varphi \rangle L''_{\varphi} d\varphi.$$

$$(1.16)$$

Here <, > denote the inner product on $T^*M\otimes \varphi^{-1}TN$ and R^N is the curvature tensor on (N,h). If M is a compact Riemannian manifold, φ be a L-harmonic map from (M,g) to Riemannian manifold (N,h), and for any vector field v along φ ,

$$I_L^{\varphi}(v,v) \equiv \int_M h(J_{\varphi,L}(v),v) \, v_g \ge 0, \tag{1.17}$$

then φ is called a stable L-harmonic map. Note that, the definition of stable L-harmonic maps is a generalization of stable harmonic maps for L(x,y,r)=r (see [18]), is also a generalization of stable f-harmonic maps with f is a smooth positive function on M, and L(x,y,r)=f(x)r (see [11]). The Liouville type theorem for harmonic and biharmonic maps on Riemannain manifolds in particular on \mathbb{S}^n has been studied by many researchers. In [14], S. Ouakkas gives an example of non-harmonic biharmonic maps. In this paper, we present some Liouville type theorems for L-harmonic maps between two Riemannian manifolds. In particular, we study the case where the codomain of L-harmonic maps has a proper homothetic vector field. We shall extend some results proved in [6, 9, 11, 15, 19].

2 Nonexistence theorems on stable L-harmonic maps

Theorem 2.1. Any stable L-harmonic map φ from sphere (\mathbb{S}^n, g) (n > 2) to Riemannian manifold (N, h) is constant, where L is a smooth positive function on $\mathbb{S}^n \times N \times \mathbb{R}$ satisfying $L'_{\varphi} > 0$ and the following inequality

$$\int_{\mathbb{S}^n} \left[\operatorname{trace} h((\nabla d\varphi)(\cdot, \operatorname{grad}^{\mathbb{S}^n} L'), d\varphi(\cdot)) - |d\varphi|^4 L_{\varphi}'' \right] v^{\mathbb{S}^n} \ge 0.$$

Proof. Choose a normal orthonormal frame $\{e_i\}$ at point x_0 in \mathbb{S}^n . Set

$$\lambda(x) = <\alpha, x>_{\mathbb{R}^{n+1}},$$

for all $x \in \mathbb{S}^n$, where $\alpha \in \mathbb{R}^{n+1}$ and let $v = \operatorname{grad}^{\mathbb{S}^n} \lambda$. Note that

$$\begin{split} v = <\alpha, e_i > e_i, \nabla_X^{\mathbb{S}^n} v = -\lambda X, \text{ for all } X \in \Gamma(T\mathbb{S}^n), \\ \operatorname{trace}_g(\nabla^{\mathbb{S}^n})^2 v = \nabla_{e_i}^{\mathbb{S}^n} \nabla_{e_i}^{\mathbb{S}^n} v - \nabla_{\nabla_{e_i}^{\mathbb{S}^n} e_i}^{\mathbb{S}^n} v = -v, \end{split}$$

where $\nabla^{\mathbb{S}^n}$ is the Levi-Civita connection on \mathbb{S}^n with respect to the standard metric g of the sphere (see [18]). At point x_0 , we have

$$\nabla^{\varphi}_{e_i} L'_{\varphi} \nabla^{\varphi}_{e_i} d\varphi(v) = \nabla^{\varphi}_{\text{orad}^{S^n} L'} d\varphi(v) + L'_{\varphi} \nabla^{\varphi}_{e_i} \nabla^{\varphi}_{e_i} d\varphi(v), \tag{2.1}$$

the first term of (2.1) is given by

$$\begin{split} \nabla^{\varphi}_{\operatorname{grad}^{\mathbb{S}^n} L'_{\varphi}} d\varphi(v) &= \nabla^{\varphi}_v d\varphi(\operatorname{grad}^{\mathbb{S}^n} L'_{\varphi}) + d\varphi([\operatorname{grad}^{\mathbb{S}^n} L'_{\varphi}, v]) \\ &= \nabla^{\varphi}_v d\varphi(\operatorname{grad}^{\mathbb{S}^n} L'_{\varphi}) + d\varphi(\nabla^{\mathbb{S}^n}_{\operatorname{grad}^{\mathbb{S}^n} L'_{\varphi}} v) \\ &- d\varphi(\nabla^{\mathbb{S}^n}_v \operatorname{grad}^{\mathbb{S}^n} L'_{\varphi}), \end{split} \tag{2.2}$$

the seconde term of (2.1) is given by

$$L'_{\varphi} \nabla^{\varphi}_{e_{i}} \nabla^{\varphi}_{e_{i}} d\varphi(v) = L'_{\varphi} \nabla^{\varphi}_{e_{i}} \nabla^{\varphi}_{v} d\varphi(e_{i}) + L'_{\varphi} \nabla^{\varphi}_{e_{i}} d\varphi([e_{i}, v])$$

$$= L'_{\varphi} R^{N} (d\varphi(e_{i}), d\varphi(v)) d\varphi(e_{i}) + L'_{\varphi} \nabla^{\varphi}_{v} \nabla^{\varphi}_{e_{i}} d\varphi(e_{i})$$

$$+ L'_{\varphi} d\varphi([e_{i}, [e_{i}, v]]) + 2L'_{\varphi} \nabla^{\varphi}_{[e_{i}, v]} d\varphi(e_{i}), \tag{2.3}$$

from the definition of tension field, we get

$$L'_{\varphi}\nabla^{\varphi}_{e_{i}}\nabla^{\varphi}_{e_{i}}d\varphi(v) = -L'_{\varphi}R^{N}(d\varphi(v), d\varphi(e_{i}))d\varphi(e_{i}) + L'_{\varphi}\nabla^{\varphi}_{v}\tau(\varphi)$$

$$+L'_{\varphi}\nabla^{\varphi}_{v}d\varphi(\nabla^{\mathbb{S}^{n}}_{e_{i}}e_{i}) + L'_{\varphi}d\varphi(\nabla^{\mathbb{S}^{n}}_{e_{i}}\nabla^{\mathbb{S}^{n}}_{e_{i}}v)$$

$$-L'_{\varphi}d\varphi(\nabla^{\mathbb{S}^{n}}_{e_{i}}\nabla^{\mathbb{S}^{n}}_{v}e_{i}) + 2L'_{\varphi}\nabla^{\varphi}_{[e_{i},v]}d\varphi(e_{i})$$

$$= -L'_{\varphi}R^{N}(d\varphi(v), d\varphi(e_{i}))d\varphi(e_{i}) + \nabla^{\varphi}_{v}L'_{\varphi}\tau(\varphi) - v(L'_{\varphi})\tau(\varphi)$$

$$+L'_{\varphi}\nabla^{\varphi}_{v}d\varphi(\nabla^{\mathbb{S}^{n}}_{e_{i}}e_{i}) + L'_{\varphi}d\varphi(\nabla^{\mathbb{S}^{n}}_{e_{i}}\nabla^{\mathbb{S}^{n}}_{e_{i}}v)$$

$$-L'_{\varphi}d\varphi(\nabla^{\mathbb{S}^{n}}_{e_{i}}\nabla^{\mathbb{S}^{n}}_{v}e_{i}) + 2L'_{\varphi}\nabla^{\varphi}_{[e_{i},v]}d\varphi(e_{i}), \tag{2.4}$$

by equations (2.1), (2.2), (2.4), and the L-harmonicity condition of φ , we have

$$\begin{split} \nabla^{\varphi}_{e_{i}}L'_{\varphi}\nabla^{\varphi}_{e_{i}}d\varphi(v) &= d\varphi(\nabla^{\mathbb{S}^{n}}_{\operatorname{grad}^{\mathbb{S}^{n}}L'_{\varphi}}v) - d\varphi(\nabla^{\mathbb{S}^{n}}_{v}\operatorname{grad}^{\mathbb{S}^{n}}L'_{\varphi}) \\ &- L'_{\varphi}R^{N}(d\varphi(v),d\varphi(e_{i}))d\varphi(e_{i}) \\ &+ \nabla^{\varphi}_{v}(\operatorname{grad}^{N}L) \circ \varphi - v(L'_{\varphi})\tau(\varphi) \\ &+ L'_{\varphi}d\varphi(\nabla^{\mathbb{S}^{n}}_{v}\nabla^{\mathbb{S}^{n}}_{e_{i}}e_{i}) + L'_{\varphi}d\varphi(\nabla^{\mathbb{S}^{n}}_{e_{i}}\nabla^{\mathbb{S}^{n}}_{e_{i}}v) \\ &- L'_{\varphi}d\varphi(\nabla^{\mathbb{S}^{n}}_{e_{i}}\nabla^{\mathbb{S}^{n}}_{v}e_{i}) + 2L'_{\varphi}\nabla^{\varphi}_{\nabla^{\mathbb{S}^{n}}_{e_{v}}v}d\varphi(e_{i}), \end{split} \tag{2.5}$$

by the definition of Ricci tensor, we get

$$\nabla_{e_{i}}^{\varphi} L_{\varphi}' \nabla_{e_{i}}^{\varphi} d\varphi(v) = d\varphi(\nabla_{\operatorname{grad}^{\mathbb{S}^{n}} L_{\varphi}'}^{\mathbb{S}^{n}} v) - d\varphi(\nabla_{v}^{\mathbb{S}^{n}} \operatorname{grad}^{\mathbb{S}^{n}} L_{\varphi}')$$

$$-L_{\varphi}' R^{N} (d\varphi(v), d\varphi(e_{i})) d\varphi(e_{i}) + \nabla_{v}^{\varphi} (\operatorname{grad}^{N} L) \circ \varphi$$

$$-v(L_{\varphi}') \tau(\varphi) + L_{\varphi}' d\varphi(\operatorname{Ricci}^{\mathbb{S}^{n}} v) + L_{\varphi}' d\varphi(\operatorname{trace}(\nabla^{\mathbb{S}^{n}})^{2} v)$$

$$+L_{\varphi}' \nabla_{\nabla_{e_{i}}^{\mathbb{S}^{n}} v}^{\varphi} d\varphi(e_{i}), \tag{2.6}$$

from the property $\nabla_X^{\mathbb{S}^n} v = -\lambda X$, we obtain

$$\nabla_{e_{i}}^{\varphi} L'_{\varphi} \nabla_{e_{i}}^{\varphi} d\varphi(v) = -\lambda d\varphi(\operatorname{grad}^{\mathbb{S}^{n}} L'_{\varphi}) - d\varphi(\nabla_{v}^{\mathbb{S}^{n}} \operatorname{grad}^{\mathbb{S}^{n}} L'_{\varphi}) - L'_{\varphi} R^{N}(d\varphi(v), d\varphi(e_{i})) d\varphi(e_{i}) + \nabla_{v}^{\varphi}(\operatorname{grad}^{N} L) \circ \varphi - v(L'_{\varphi}) \tau(\varphi) + L'_{\varphi} d\varphi(\operatorname{Ricci}^{\mathbb{S}^{n}} v) + L'_{\varphi} d\varphi(\operatorname{trace}(\nabla^{\mathbb{S}^{n}})^{2} v) - \lambda L'_{\varphi} \tau(\varphi).$$

$$(2.7)$$

From (1.16), and equation (2.7) we have

$$\begin{split} J_f^{\varphi}(d\varphi(v)) &= \lambda d\varphi(\operatorname{grad}^{\mathbb{S}^n} L_{\varphi}') + d\varphi(\nabla_v^{\mathbb{S}^n} \operatorname{grad}^{\mathbb{S}^n} L_{\varphi}') + v(L_{\varphi}')\tau(\varphi) \\ &- L_{\varphi}' d\varphi(\operatorname{Ricci}^{\mathbb{S}^n} v) - L_{\varphi}' d\varphi(\operatorname{trace}(\nabla^{\mathbb{S}^n})^2 v) + \lambda L_{\varphi}'\tau(\varphi) \\ &+ \langle \nabla^{\varphi} d\varphi(v), d\varphi \rangle (\operatorname{grad}^N L') \circ \varphi \\ &- \operatorname{trace} \nabla^{\varphi} \langle \nabla^{\varphi} d\varphi(v), d\varphi \rangle L_{\varphi}'' d\varphi, \end{split} \tag{2.8}$$

since $\operatorname{trace}_q(\nabla^{\mathbb{S}^n})^2 v = -v$ and $\operatorname{Ricci}^{\mathbb{S}^n} v = (n-1)v$ (see [1, 18]), we conclude

$$\begin{split} h(J_f^{\varphi}(d\varphi(v)),d\varphi(v)) &= \lambda h(d\varphi(\operatorname{grad}^{\mathbb{S}^n}L_{\varphi}'),d\varphi(v)) \\ &+ h(d\varphi(\nabla_v^{\mathbb{S}^n}\operatorname{grad}^{\mathbb{S}^n}L_{\varphi}'),d\varphi(v)) \\ &+ v(L_{\varphi}')h(\tau(\varphi),d\varphi(v)) \\ &- (n-2)L_{\varphi}'h(d\varphi(v),d\varphi(v)) \\ &+ \lambda L_{\varphi}'h(\tau(\varphi),d\varphi(v)) \\ &+ < \nabla^{\varphi}d\varphi(v),d\varphi > d\varphi(v)(L') \\ &- h(\operatorname{trace} \nabla^{\varphi} < \nabla^{\varphi}d\varphi(v),d\varphi > L_{\varphi}''d\varphi,d\varphi(v)), \end{split}$$

by (2.9) and the L-harmonicity condition of φ , it follows that

$$\begin{array}{lll} \operatorname{trace}_{\alpha}h(J_{f}^{\varphi}(d\varphi(v)),d\varphi(v)) & = & h(d\varphi(\nabla_{e_{j}}^{\mathbb{S}^{n}}\operatorname{grad}^{\mathbb{S}^{n}}L'_{\varphi}),d\varphi(e_{j})) \\ & & + h(\tau(\varphi),d\varphi(\operatorname{grad}^{\mathbb{S}^{n}}L'_{\varphi})) \\ & & - (n-2)L'_{\varphi}|d\varphi|^{2} \\ & & + \operatorname{trace}_{\alpha}h(\nabla_{e_{j}}^{\varphi}d\varphi(v),d\varphi(e_{j}))d\varphi(v)(L') \\ & & - \operatorname{trace}_{\alpha}h(\nabla_{e_{j}}^{\varphi}<\nabla^{\varphi}d\varphi(v),d\varphi>L''_{\varphi}d\varphi(e_{j}),d\varphi(v)), \end{array}$$

since at x_0 , $\tau(\varphi) = \nabla_{e_i}^{\varphi} d\varphi(e_j)$, we have the following formula

$$\begin{split} h(d\varphi(\nabla_{e_{j}}^{\mathbb{S}^{n}}\operatorname{grad}^{\mathbb{S}^{n}}L'_{\varphi}),d\varphi(e_{j})) &+ h(\tau(\varphi),d\varphi(\operatorname{grad}^{\mathbb{S}^{n}}L'_{\varphi})) \\ &= \operatorname{div}^{\mathbb{S}^{n}}h(d\varphi(\cdot),d\varphi(\operatorname{grad}^{\mathbb{S}^{n}}L'_{\varphi})) \\ &-\operatorname{trace}h((\nabla d\varphi)(\cdot,\operatorname{grad}^{\mathbb{S}^{n}}L'_{\varphi}),d\varphi(\cdot)), \end{split}$$

and note that by the definition of $\nabla d\varphi$ and the property $\nabla_X^{\mathbb{S}^n} v = -\lambda X$, we have

$$\operatorname{trace}_{\alpha} h(\nabla_{e_{j}}^{\varphi} d\varphi(v), d\varphi(e_{j})) d\varphi(v)(L') = \operatorname{trace} h((\nabla d\varphi)(\cdot, d\varphi(e_{i})(L')e_{i}), d\varphi(\cdot)),$$
(2.12)

$$-\operatorname{trace}_{\alpha} h(\nabla_{e_{j}}^{\varphi} < \nabla^{\varphi} d\varphi(v), d\varphi > L_{\varphi}^{"} d\varphi(e_{j}), d\varphi(v))$$

$$= -\operatorname{trace}_{\alpha} \operatorname{div}^{\mathbb{S}^{n}} \left[< \nabla^{\varphi} d\varphi(v), d\varphi > L_{\varphi}^{"} h(d\varphi(\cdot), d\varphi(v)) \right]$$

$$+ \operatorname{trace}_{\alpha} < \nabla^{\varphi} d\varphi(v), d\varphi >^{2} L_{\varphi}^{"}$$

$$= -\operatorname{trace}_{\alpha} \operatorname{div}^{\mathbb{S}^{n}} \left[< \nabla^{\varphi} d\varphi(v), d\varphi > L_{\varphi}^{"} h(d\varphi(\cdot), d\varphi(v)) \right]$$

$$+ \operatorname{trace} h((\nabla d\varphi)(\cdot, \operatorname{grad}^{\mathbb{S}^{n}} e(\varphi)), d\varphi(\cdot)) L_{\varphi}^{"} + |d\varphi|^{4} L_{\varphi}^{"}, \tag{2.13}$$

from the stable L-harmonic condition, the divergence theorem, and equations (2.10), (2.11), (2.12), (2.13), with

$$\operatorname{grad}^{\mathbb{S}^n}L'_\varphi=\operatorname{grad}^{\mathbb{S}^n}L'+d\varphi(e_i)(L')e_i+L''_\varphi\operatorname{grad}^{\mathbb{S}^n}e(\varphi),$$

we get the following

$$\begin{split} 0 & \leq \operatorname{trace}_{\alpha} I_{f}^{\varphi}(d\varphi(v), d\varphi(v)) & + & \int_{\mathbb{S}^{n}} \Big[\operatorname{trace} h((\nabla d\varphi)(\cdot, \operatorname{grad}^{\mathbb{S}^{n}} L'), d\varphi(\cdot)) \\ & - & |d\varphi|^{4} L_{\varphi}'' \Big] v^{\mathbb{S}^{n}} \\ & = & -(n-2) \int_{\mathbb{S}^{n}} L_{\varphi}' |d\varphi|^{2} v^{\mathbb{S}^{n}} \leq 0. \end{split}$$

Consequently, $|d\varphi| = 0$, that is φ is constant, because n > 2. The proof is completed.

Using Theorem 2.1 we obtain:

- Any stable harmonic map φ from sphere (\mathbb{S}^n, g) (n > 2) to Riemannian manifold (N, h) is constant (see [18, 19]).
- Any stable f-harmonic map φ from sphere (\mathbb{S}^n,g) (n>2) to Riemannian manifold (N,h) is constant, where f is a smooth positive function on \mathbb{S}^n satisfying the following inequality

$$\int_{\mathbb{S}^n} \operatorname{trace} h((\nabla d\varphi)(\cdot, \operatorname{grad}^{\mathbb{S}^n} f), d\varphi(\cdot)) v^{\mathbb{S}^n} \ge 0,$$

(see [11, 15]).

Using the similar technique we have:

Theorem 2.2. Let (M,g) be a compact Riemannian manifold. When n>2, any stable L-harmonic map $\varphi:M\to\mathbb{S}^n$ must be constant, where L is a smooth positive function on $M\times\mathbb{S}^n\times\mathbb{R}$, with $L'_{\omega}>0$ and

$$\int_{M} \left[\Delta^{\mathbb{S}^{n}}(L) \circ \varphi + |d\varphi|^{4} L_{\varphi}^{"} \right] v^{M} \leq 0.$$

Proof. Choose a normal orthonormal frame $\{e_i\}$ at point x_0 in M. When the same data of previous proof, we have

$$\nabla^{\varphi}_{e_{i}} L'_{\varphi} \nabla^{\varphi}_{e_{i}}(v \circ \varphi) = \nabla^{\varphi}_{\operatorname{grad}^{M} L'_{\varphi}}(v \circ \varphi) + L'_{\varphi} \nabla^{\varphi}_{e_{i}} \nabla^{\varphi}_{e_{i}}(v \circ \varphi), \tag{2.14}$$

the first term of (2.14) is given by

$$\nabla^{\varphi}_{\operatorname{grad}^M L'_{\varphi}}(v \circ \varphi) = -(\lambda \circ \varphi) d\varphi(\operatorname{grad}^M L'_{\varphi}), \tag{2.15}$$

the seconde term of (2.14) is given by

$$L'_{\varphi} \nabla^{\varphi}_{e_{i}} \nabla^{\varphi}_{e_{i}} (v \circ \varphi) = -L'_{\varphi} \nabla^{\varphi}_{e_{i}} (\lambda \circ \varphi) d\varphi(e_{i})$$

$$= -L'_{\varphi} d\varphi(\operatorname{grad}^{M}(\lambda \circ \varphi)) - (\lambda \circ \varphi) L'_{\varphi} \tau(\varphi), \tag{2.16}$$

by the definition of gradient operator, we get

$$-L'_{\varphi}d\varphi(\operatorname{grad}^{M}(\lambda \circ \varphi)) = -L'_{\varphi} < d\varphi(e_{i}), v \circ \varphi > d\varphi(e_{i}),$$
(2.17)

substituting the formulas (2.15), (2.16), (2.17) into (2.14) gives

$$\nabla_{e_{i}}^{\varphi} L_{\varphi}' \nabla_{e_{i}}^{\varphi}(v \circ \varphi) = -(\lambda \circ \varphi) d\varphi(\operatorname{grad}^{M} L_{\varphi}') - L_{\varphi}' < d\varphi(e_{i}), v \circ \varphi > d\varphi(e_{i})$$

$$-(\lambda \circ \varphi) L_{\varphi}' \tau(\varphi), \tag{2.18}$$

from the L-harmonicity condition of φ , and equation (2.18), we have

$$<\nabla_{e_{i}}^{\varphi} L_{\varphi}' \nabla_{e_{i}}^{\varphi} (v \circ \varphi), v \circ \varphi> = -L_{\varphi}' < d\varphi(e_{i}), v \circ \varphi> < d\varphi(e_{i}), v \circ \varphi>$$

$$-(\lambda \circ \varphi) < (\operatorname{grad}^{\mathbb{S}^{n}} L) \circ \varphi, v \circ \varphi>,$$

$$(2.19)$$

since the sphere \mathbb{S}^n has constant curvature, we obtain

$$< L'_{\varphi} R^{\mathbb{S}^n} (v \circ \varphi, d\varphi(e_i)) d\varphi(e_i), v \circ \varphi > = L'_{\varphi} |d\varphi|^2 < v \circ \varphi, v \circ \varphi >$$

$$-L'_{\varphi} < d\varphi(e_i), v \circ \varphi > < d\varphi(e_i), v \circ \varphi >,$$

$$(2.20)$$

by the definition of Jacobi operator and equations (2.19), (2.20), we get

$$< J_{f}^{\varphi}(v \circ \varphi), v \circ \varphi > = 2L_{\varphi}' < d\varphi(e_{i}), v \circ \varphi > < d\varphi(e_{i}), v \circ \varphi >$$

$$-L_{\varphi}'|d\varphi|^{2} < v \circ \varphi, v \circ \varphi >$$

$$+(\lambda \circ \varphi) < (\operatorname{grad}^{\mathbb{S}^{n}} L) \circ \varphi, v \circ \varphi >$$

$$+ < (\nabla_{v \circ \varphi}^{\mathbb{S}^{n}} \operatorname{grad}^{\mathbb{S}^{n}} L) \circ \varphi, v \circ \varphi >$$

$$+ < \nabla^{\varphi} v \circ \varphi, d\varphi > < (\operatorname{grad}^{\mathbb{S}^{n}} L') \circ \varphi, v \circ \varphi > ,$$

$$- < \nabla_{e_{i}}^{\varphi} < \nabla^{\varphi} v \circ \varphi, d\varphi > L_{\varphi}'' d\varphi(e_{i}), v \circ \varphi > ,$$

$$(2.21)$$

since $\langle \nabla^{\varphi} v \circ \varphi, d\varphi \rangle = -(\lambda \circ \varphi) |d\varphi|^2$, by equation (2.21), we find that

$$\operatorname{trace}_{\alpha} < J_{f}^{\varphi}(v \circ \varphi), v \circ \varphi > = (2 - n)L_{\varphi}'|d\varphi|^{2} + \Delta^{\mathbb{S}^{n}}(L) \circ \varphi + |d\varphi|^{4}L_{\varphi}'',$$
(2.22)

where $\Delta^{\mathbb{S}^n}(L) \circ \varphi = \operatorname{trace}_{\alpha}(\operatorname{Hess}^{\mathbb{S}^n}L)(v \circ \varphi, v \circ \varphi)$, and $\operatorname{Hess}^{\mathbb{S}^n}L$ is the hessian of the function L on \mathbb{S}^n , from (2.22) we have

$$\operatorname{trace}_{\alpha} I_{f}^{\varphi}(v \circ \varphi, v \circ \varphi) = (2 - n) \int_{M} L_{\varphi}' |d\varphi|^{2} v^{M}$$

$$+ \int_{M} \left[\Delta^{\mathbb{S}^{n}}(L) \circ \varphi + |d\varphi|^{4} L_{\varphi}'' \right] v^{M}.$$
(2.23)

Hence Theorem $\ref{eq:condition}$? follows from (2.23) and the stable f-harmonicity condition of φ with n>2, $L'_{\varphi}>0$ and $\int_{M}\left[\Delta^{\mathbb{S}^{n}}(L)\circ\varphi+|d\varphi|^{4}\,L''_{\varphi}\right]v^{M}\leq0.$

From Theorem 2.2, we deduce:

- Let (M,g) be a compact Riemannian manifold. When n > 2, any stable harmonic map $\varphi: M \to \mathbb{S}^n$ must be constant (see [6, 13, 18]).
- Let (M,g) be a compact Riemannian manifold. When n > 2, any stable f-harmonic map $\varphi : M \to \mathbb{S}^n$ must be constant, where f is a smooth positive function on $M \times \mathbb{S}^n$, with $\int_M e(\varphi) [\Delta^{\mathbb{S}^n}(f) \circ \varphi] v^M \leq 0$ (see [15]).

3 Homothetic vector fields and L-harmonic maps

Theorem 3.1. Let (M,g) be a compact orientable Riemannian manifold without boundary, (N,h) a Riemannian manifold admitting a proper homothetic vector field ξ with homothetic constant k > 0, and let L be a smooth positive function on $M \times N \times \mathbb{R}$ such that L' > 0 and $\xi(L) \geq 0$. Then, any L-harmonic map φ from (M,g) to (N,h) is constant.

Proof. We set

$$\omega(X) = h(\xi \circ \varphi, L'_{\varphi} d\varphi(X)), \quad \forall X \in \Gamma(TM), \tag{3.1}$$

let $\{e_i\}$ be a normal orthonormal frame at $x \in M$, we have

$$\operatorname{div}^{M} \omega = e_{i} [h(\xi \circ \varphi, L'_{\varphi} d\varphi(e_{i}))]$$

$$= h(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), L'_{\varphi} d\varphi(e_{i})) + h(\xi \circ \varphi, \nabla_{e_{i}}^{\varphi} L'_{\varphi} d\varphi(e_{i}))$$

$$= h(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), L'_{\varphi} d\varphi(e_{i})) + h(\xi \circ \varphi, L'_{\varphi} \tau(\varphi) + d\varphi(\operatorname{grad}^{M} L'_{\varphi}))$$
(3.2)

by equation (3.2) and the L-harmonicity of φ , we get:

$$\operatorname{div}^{M} \omega = h(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), L'_{\varphi}d\varphi(e_{i})) + h(\xi \circ \varphi, (\operatorname{grad}^{N} L) \circ \varphi)$$
$$= L'_{\varphi}h(\nabla_{d\varphi(e_{i})}^{N}\xi, d\varphi(e_{i})) + h(\xi \circ \varphi, (\operatorname{grad}^{N} L) \circ \varphi)$$

since ξ is a homothetic vector field with homothetic constant k, we find that

$$\operatorname{div}^{M} \omega = L_{\varphi}^{'} kh(d\varphi(e_{i}), d\varphi(e_{i})) + h(\xi \circ \varphi, (\operatorname{grad}^{N} L) \circ \varphi)$$
$$= kL_{\varphi}^{'} |d\varphi|^{2} + \xi(L) \circ \varphi.$$

Theorem 3.1 follows from the last equation, and the divergence theorem, with L'>0 and $\xi(L)\geq 0$.

From Theorem 3.1, we get the following result.

Corollary 3.2 ([9]). Let (M,g) be a compact orientable Riemannian manifold without boundary, and (N,h) be a Riemannian manifold admitting a proper homothetic vector field ξ with homothetic constant $k \neq 0$. Then, any harmonic map φ from (M,g) to (N,h) is constant.

In the case of non-compact Riemannian manifold, we obtain the following result.

Theorem 3.3. Let (M,g) be a complete non-compact orientable Riemannian manifold, (N,h) a Riemannian manifold admitting a proper homothetic vector field ξ with homothetic constant k > 0, and let L be a smooth positive function on $M \times N \times \mathbb{R}$ such that L' > 0 and $\xi(L) \geq 0$. If $\varphi : (M,g) \to (N,h)$ is L-harmonic map satisfying

$$\int_{M} L_{\varphi}' |\xi \circ \varphi|^{2} v^{g} < \infty,$$

then φ is constant.

Proof. Let ρ be a smooth function with compact support on M, we set

$$\omega(X) = h(\xi \circ \varphi, \rho^2 L'_{\varphi} d\varphi(X)), \quad \forall X \in \Gamma(TM),$$

and let $\{e_i\}$ be a normal orthonormal frame at $x \in M$, we have

$$\operatorname{div}^{M} \omega = e_{i}[h(\xi \circ \varphi, \rho^{2} L'_{\varphi} d\varphi(e_{i}))]$$

$$= h(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), \rho^{2} L'_{\varphi} d\varphi(e_{i})) + h(\xi \circ \varphi, \nabla_{e_{i}}^{\varphi} \rho^{2} (L'_{\varphi} d\varphi(e_{i})))$$

$$= h(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), \rho^{2} L'_{\varphi} d\varphi(e_{i})) + h(\xi \circ \varphi, e_{i}(\rho^{2}) L'_{\varphi} d\varphi(e_{i}))$$

$$+h(\xi \circ \varphi, \rho^{2} \nabla_{e_{i}}^{\varphi} L'_{\varphi} d\varphi(e_{i})),$$

so that

$$\operatorname{div}^{M} \omega = h(\nabla_{e_{i}}^{\varphi}(\xi \circ \varphi), \rho^{2} L_{\varphi}' d\varphi(e_{i})) + h(\xi \circ \varphi, 2\rho e_{i}(\rho) L_{\varphi}' d\varphi(e_{i}))$$

$$+ h(\xi \circ \varphi, \rho^{2} [L_{\varphi}' \tau(\varphi) + d\varphi(\operatorname{grad}^{M} L_{\varphi}')])$$
(3.3)

by equation (3.3), and L-harmonicity condition of φ , we get

$$\operatorname{div}^{M} \omega = \rho^{2} L'_{\varphi} h(\nabla^{N}_{d\varphi(e_{i})} \xi, d\varphi(e_{i})) + 2\rho e_{i}(\rho) L'_{\varphi} h(\xi \circ \varphi, d\varphi(e_{i}))$$
$$+ \rho^{2} h(\xi \circ \varphi, (\operatorname{grad}^{N} L) \circ \varphi)$$

since ξ is a homothetic vector field with homothetic constant k, we find that

$$\operatorname{div}^{M} \omega = k\rho^{2} L'_{\varphi} h(d\varphi(e_{i}), d\varphi(e_{i})) + 2\rho e_{i}(\rho) L'_{\varphi} h(\xi \circ \varphi, d\varphi(e_{i})) + \rho^{2} \xi(L) \circ \varphi,$$

that is,

$$\operatorname{div}^{M} \omega = k\rho^{2} L_{\varphi}' |d\varphi|^{2} + 2\rho e_{i}(\rho) L_{\varphi}' h(\xi \circ \varphi, d\varphi(e_{i})) + \rho^{2} \xi(L) \circ \varphi, \tag{3.4}$$

by the Young's inequality, we have

$$-2\rho e_i(\rho)h(\xi\circ\varphi,d\varphi(e_i)) \le \epsilon\rho^2|d\varphi|^2 + \frac{1}{\epsilon}e_i(\rho)^2|\xi\circ\varphi|^2,$$

for all $\epsilon > 0$, multiplying the last inequality by L'_{φ} , we find that

$$-2L_{\varphi}^{'}\rho e_{i}(\rho)h(\xi\circ\varphi,d\varphi(e_{i})) \leq \epsilon L_{\varphi}^{'}\rho^{2}|d\varphi|^{2} + \frac{1}{\epsilon}L_{\varphi}^{'}e_{i}(\rho)^{2}|\xi\circ\varphi|^{2}, \tag{3.5}$$

from (3.4), (3.5), we deduce the inequality

$$k\rho^{2}L'_{\varphi}|d\varphi|^{2} - \operatorname{div}^{M}\omega + \rho^{2}\xi(L)\circ\varphi$$

$$\leq \epsilon L'_{\varphi}\rho^{2}|d\varphi|^{2} + \frac{1}{\epsilon}L'_{\varphi}e_{i}(\rho)^{2}|\xi\circ\varphi|^{2}, \tag{3.6}$$

we set $\epsilon = \frac{k}{2}$, by (3.6), we have

$$\frac{k}{2}\rho^{2}L'_{\varphi}|d\varphi|^{2} - \operatorname{div}^{M}\omega + \rho^{2}\xi(L)\circ\varphi$$

$$\leq \frac{2}{k}L'_{\varphi}e_{i}(\rho)^{2}|\xi\circ\varphi|^{2},$$
(3.7)

by the divergence theorem, and (3.7), we have

$$\frac{k}{2} \int_{M} \rho^{2} L'_{\varphi} |d\varphi|^{2} v^{g} + \int_{M} \rho^{2} [\xi(L) \circ \varphi] v^{g} \le \frac{2}{k} \int_{M} L'_{\varphi} e_{i}(\rho)^{2} |\xi \circ \varphi|^{2} v^{g}. \tag{3.8}$$

Now, consider the cut-off smooth function $\rho=\rho_R$ such that, $\rho\leq 1$ on $M,\,\rho=1$ on the ball $B(\rho,R),\,\rho=0$ on $M\setminus B(\rho,2R)$ and $|\operatorname{grad}^M\rho|\leq \frac{2}{R}$ (see [16]), from (3.8) we get:

$$\frac{k}{2} \int_{M} \rho^{2} L'_{\varphi} |d\varphi|^{2} v^{g} + \int_{M} \rho^{2} [\xi(L) \circ \varphi] v^{g} \le \frac{8}{kR^{2}} \int_{M} L'_{\varphi} |\xi \circ \varphi|^{2} v^{g}, \tag{3.9}$$

since $\int_M L'_{\varphi} |\xi \circ \varphi|^2 v^g < \infty$, when $R \to \infty$ we obtain:

$$\frac{k}{2} \int_{M} L'_{\varphi} |d\varphi|^2 v^g + \int_{M} [\xi(L) \circ \varphi] v^g = 0. \tag{3.10}$$

Consequently, $|d\varphi| = 0$, that is φ is constant.

From Theorem 3.3, we deduce:

Corollary 3.4 ([9]). Let (M,g) be a complete non-compact orientable Riemannian manifold, and (N,h) be a Riemannian manifold admitting a proper homothetic vector field ξ . If $\varphi: (M,g) \to (N,h)$ is harmonic map satisfying $\int_M |\xi \circ \varphi|^2 v^g < \infty$, then φ is constant.

References

- [1] P. Baird and J. C. Wood, *Harmonic morphisms between Riemannain manifolds*, Clarendon Press Oxford, (2003).
- [2] R. Caddeo, S. Montaldo, and C. Oniciuc, *Biharmonic submanifolds of* S³, Int. J. Math., **12**, 867–876, (2001).
- [3] N. Course, f-harmonic maps which map the boundary of the domain to one point in the target, New York J. Math., 13, 423–435, (2007).
- [4] J. Eells and J. H. Sampson, *Harmonic mappings of Riemannian manifolds*, Amer. J. Math., **86**, 109–160, (1964)
- [5] B. Eftal Acet and F. Kiy, A study on bi-f-harmonic curves, Palest. J. Math., 11(2), 420–429, (2022).
- [6] R. Howard and S. W. Wei, *Nonexistence of stable harmonic maps to and from certain homogeneous spaces and submanifolds of Euclidean space*, Trans. Amer. Math. Soc., **294**, 319–331, (1986).
- [7] S. Kobayashi, A theorem on the affine transformation group of a Riemannian manifold, Nagoya Math. J., 9, 39–41, (1955).
- [8] W. Kühnel and H. Rademacher, *Conformal transformations of pseudo-Riemannian manifolds*, Differential Geom. Appl., 7, 237–250, (1997).
- [9] A. Mohammed Cherif, *Some results on harmonic and bi-harmonic maps*, Int. J. Geom. Methods Mod. Phys., **14**(7), (2017).
- [10] A. Mohammed Cherif and M. Djaa, Geometry of energy and bienergy variations between Riemannian Manifolds, Kyungpook Math. J., 55, 715–730 (2015).
- [11] A. Mohammed Cherif, M. Djaa, K. Zegga, *Stable f-harmonic maps on sphere*, Commun. Korean Math. Soc., **30(4)**, 471–479, (2015).
- [12] O'Neil, Semi-Riemannian Geometry, Academic Press, New York, (1983).
- [13] Y. Ohnita, Stability of harmonic maps and standard minimal immersions, Tohoku Math. J., 38, 259–267, (1986).
- [14] S. Ouakkas, Conformal maps, biharmonic maps and the warped product, Palest. J. Math., 6 (Special Issue: I), 80–94, (2017).
- [15] E. Remli and A. Mohammed Cherif, *Some results on stable f-harmonic maps*, Commun. Korean Math. Soc., **33(3)**, 935–942, (2018).
- [16] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28, 201–228, (1975).
- [17] K. Yano and T. Nagano, *The de Rham decomposition, isometries and affine transformations in Riemannian space*, Japan. J. Math., **29**, 173–184, (1959).

- [18] Y. L. Xin, Geometry of Harmonic Maps, Birkhäuser Boston, Progress in Nonlinear Differential Equations and Their Aplications, (1996).
- [19] Y.L. Xin, Some results on stable harmonic maps, Duke Math. J., 47, 609-613, (1980).

Author information

F. Gherib, Department of Mathematics, Faculty of Exact Sciences, Mascara University, Algeria. E-mail: fatiha.gherib@univ-mascara.dz

E. Remli, Department of Mathematics, Faculty of Exact Sciences, Mascara University, Algeria. E-mail: ambarka.ramli@univ-mascara.dz

A. Mohammed Cherif, Department of Mathematics, Faculty of Exact Sciences, Mascara University, Algeria. E-mail: a.mohammedcherif@univ-mascara.dz

Received: 2024-02-02 Accepted: 2024-05-16