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Abstract
In this paper, we introduce and study prime and primitive fuzzy hyperrings. In this regard,

hyperideals of such hyperrings are investigated and extended to fuzzy hyperideals, and some
basic properties of these notions are obtained. Let R be a fuzzy hyperring. If R is primitive, then
R is semisimple. If R is simple and semisimple, then R is primitive. Additionally, we consider
the fundamental relation γ∗ on a fuzzy hyperring R with identity, and prove that the fundamental
ring R/γ∗ of R is also a primitive ring. Finally, we present another definition for prime and
primitive fuzzy hyperrings using membership functions, and show that if ξ is a semiprime fuzzy
hyperideal of R, then ξ∗ is a semiprime fuzzy hyperideal of R.

1 Introduction

The theory of hyperstructures was introduced by Marty in 1934 during the 8th Congress of the
Scandinavian Mathematicians [15]. Marty introduced the notion of a hypergroup, and since then,
many researchers have worked on this new topic in modern algebra and developed it further (see
[1], [2], [8], [9], [10], and [11]).

The notion of a fuzzy semihypergroup was introduced and studied by Sen, Ameri, and
Chowdhury in [17]. This concept was later extended to fuzzy hyperrings, fuzzy hypermod-
ules, and fuzzy hyperalgebras (for more details, see [3, 4, 5, 6, 7, 12, 13, 14]). The purpose
of this paper is to study prime and primitive fuzzy hyperrings. In this regard, we introduce the
notion of prime and primitive hyperrings (in the sense of Krasner) and then fuzzify these notions
to introduce prime and primitive fuzzy hyperrings.

We will proceed to investigate the fuzzy hyperideals of such hyperrings and present some
basic results of these notions. In particular, we study the relationship between them. Specifically,
we prove that a fuzzy hyperring R is semiprime if and only if R has no nonzero nilpotent fuzzy
hyperideal. Additionally, if R is an arbitrary primitive fuzzy hyperring with identity and γ∗ is a
fundamental relation of R, then the fundamental ring R/γ∗ is a primitive ring.

In the last part of the paper, we present another definition for prime and primitive fuzzy
hyperrings using membership functions. We show that if ξ is a semiprime fuzzy hyperideal of
R, then ξ∗ is a semiprime fuzzy hyperideal of R.

2 Preliminaries

In this section, we briefly present some notions and results of fuzzy sets and algebraic hyper-
structures which are necessary for the development of our paper. Most of the contents of this
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section are taken from sources [12, 13, 17], and [18].
Throughout this paper, F (X) denotes the set of all fuzzy subsets ofX , and F ∗(X) = F (X)\

{∅} denotes the set of all nonempty fuzzy subsets of S.

Definition 2.1. [17] A fuzzy hyperoperation on S is a map ◦ : S × S → F ∗(S), which associate
a nonzero fuzzy subset a ◦ b with any pair (a, b) of elements of S. The couple (S, ◦) is called a
fuzzy hypergroupoid. We say that (S, ◦) is commutative if for all a, b ∈ S, a ◦ b = b ◦ a. A fuzzy
hypergroupoid (S, ◦) is called a fuzzy semihypergroup if for all a, b, c ∈ S, a◦ (b◦ c) = (a◦ b)◦ c.
A fuzzy semihypergroup (S, ◦) is a fuzzy hypergroup if for all a ∈ S, we have a◦S = χS = S ◦a
(fuzzy reproduction axiom).

Definition 2.2. [13] Let R be a nonempty set and ⊕, ⊙ be two hyperoperations on R. The triple
(R,⊕,⊙) is called a fuzzy hyperring if the following axiom hold:

(i) (R,⊕) is a commutative fuzzy hypergroup;

(ii) (R,⊙) is a fuzzy semihypergroup;

(iii) ⊙ is distributive over the addition ⊕ i.e., for all a, b, c of R we have
a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c) and (a⊕ b)⊙ c = (a⊙ c)⊕ (b⊙ c).

A fuzzy hyperring (R,⊕,⊙) is called unitary if it satisfies the following condition:
For there exists an element 1R ∈ R such that 1R ⊙ a = χ{a} all a of R. Moreover, (R,⊕,⊙)

is called commutative if for all a, b of R, we have a⊙ b = b⊙ a.

Definition 2.3. [13] Let (R,⊕,⊙) be a fuzzy hyperring and S be a nonempty subset of R. Then,
S is called to be a fuzzy subhyperring of R if (S,⊕,⊙) is itself a fuzzy hyperring.

Definition 2.4. A commutative and unitary fuzzy hyperring (R,⊕,⊙) is called a fuzzy integral
hyperdomain if for all a, b of R, a⊙ b = χ{0} implies a = 0 or b = 0.

a ∈ R is called left zero divisor if there is an element b ̸= 0 in R with a ⊙ b = χ{0}. So
The commutative and unitary fuzzy hyperring (R,+, ·) is called a Fuzzy Integral Hyperdomain
(FIHD) if has not any zero divisor.

Definition 2.5. A hyperring (R,⊕,⊙) is a fuzzy hyperfield if (R,⊙) being a fuzzy hypergroup.

Definition 2.6. [13] Let (R,⊕,⊙) be a fuzzy hyperring and S be a nonempty subset of R. Then,
S is called to be a Fuzzy Subhyperring of R if (S,⊕,⊙) is itself a fuzzy hyperring.

Proposition 2.7. [13] Let I be a fuzzy hyperideal of fuzzy hyperring (R,⊕,⊙) and R/I = {rI :
r ∈ R}. Defining the fuzzy hyperoperations ⊞ and ⊠ on R/I as follows:

aI ⊙ bI = (a⊕ b)I and aI ⊠ bI = (a⊙ b)I ,
we get that (R/I,⊞,⊠) is a fuzzy hyperring, too. We call the above fuzzy hyperring (R/I,⊞,⊠)

the quotient fuzzy hyperring.

Definition 2.8. [13] Fuzzy hyperring (R,⊕,⊙) is called a Simple Fuzzy Hyperring if not has any
non trivial fuzzy hyperideal.

Definition 2.9. [13] A non-empty subset I of a fuzzy hyperring (R,⊕,⊙) is called a (Right) Left
Fuzzy Hyperideal denoted by I �l R (I �r R) if

(i) a, b ∈ I implies a− b = a⊕ (−b) ∈ F ∗(I),

(ii) r ⊙ a ∈ F ∗(I) (a⊙ r ∈ F ∗(I)) for every r ∈ R.

A subset I of a fuzzy hyperring R is called fuzzy hyperideal denoted by I � R if it is a right
fuzzy hyperideal as well as a left fuzzy hyperideal of R.

In the sequel, for x ∈ R, let Rx = {r ⊙ x : r ∈ R}. It is easy to see Rx�R.

Definition 2.10. [13] Let S and T be non-empty fuzzy subsets of a fuzzy hyperring (R,⊕,⊙).
The fuzzy hypersum S + T is defined by

S + T = {x : x ∈ s⊕ t for some s ∈ S, t ∈ T}.
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The fuzy hyperproduct ST is defined by

ST = {x : x ∈
∑⊕

i si ⊙ ti, si ∈ S, ti ∈ T, n ∈ Z+}.

If S and T are fuzzy hyperideals of R, then S + T and ST are also fuzzy hyperideals of R.
By inspiered of fuzzy hypersum used to ([13], definition 4.3), we denoted x1 ⊕ x2 ⊕ . . .⊕ xn

by
∑⊕

1≤i≤n xi or for short
∑⊕

i xi.

Definition 2.11. Proper fuzzy hyperideal I of fuzzy hyperring (R,⊕,⊙) is called Maximal Fuzzy
hyperideal if R and I being only fuzzy hyperideals of R containing I .

Definition 2.12. [13] Let (R1,⊕1,⊙1) and (R2,⊕2,⊙2) be two fuzzy hyperrings. A map f :
R1 → R2 is a homomorphism of fuzzy hyperrings if f(a⊕1 b) ≤ f(a)⊕2 f(b) and f(a⊙1 b) ≤
f(a)⊙2 f(b), for all a, b of R1.

Definition 2.13. If (R,⊕,⊙) is a fuzzy hyperring and S is a subset of R then denote ⟨S⟩ = the
smallest fuzzy hyperideal of R that contains S We say that ⟨S⟩ is the fuzzy hyperideal of R
generated by the set S. Note We have

⟨S⟩ = {b1 ⊙ a1 ⊕ ...⊕ bk ⊙ ak : ai ∈ I, bi ∈ R, k ≥ 0}
or

⟨S⟩ = {
∑⊕

1≤i≤n(bi ⊙ ai) : ai ∈ I, bi ∈ R, k ≥ 0}

Definition 2.14. A fuzzy hyperideal I of R is finitely generated if I = ⟨a1, ..., an⟩ for some
a1, ..., an ∈ R. A fuzzy hyperideal IR is a Principal Fuzzy Hyperideal (PFHI) if I = ⟨a⟩ for
some a ∈ R.

Definition 2.15. A fuzzy hyperring (R,⊕,⊙) is a Principal Fuzzy Hyperideal Domain (PFHID)
if it is a fuzzy integral hyperdomain such that every fuzzy hyperideal of R is a principal fuzzy
hyperideal.

We introduce now the fuzzy hypermodule notion.

Definition 2.16. [12] Let (R,⊕,⊙) be a fuzzy hyperring. A nonempty set M , endowed with two
fuzzy hyperoperations ⊞, ⊡ is called a Left Fuzzy Hypermodule over (R,⊕,⊙) and denoted by
FHRl-hypermodule, if the following conditions hold:

(1) (M,⊞) is a commutative fuzzy hypergroup;

(2) ⊡ : R×M → F ∗(M) is defined by (a,m) 7→ a⊡m ∈ F ∗(M)
such that for all a, b of M and α, β of R we have

(i) α⊡ (a⊞ b) = (α⊡ a)⊞ (α⊡ b);
(ii) (α⊕ β)⊡ a = (α⊡ a)⊕ (β ⊡ b);

(iii) (α⊙ β)⊡ a = α⊙ (β ⊡ a).

We say that an element e of fuzzy semihypergroup (S, ◦) is called identity (scalar identity) if
for all r ∈ R, we have (e⊡r)(r) > 0 and (r⊡e)(r) > 0 (from (e⊡r)(s) > 0 and (r⊡e)(s) > 0
it follows r = s respectively).

If both (R,⊕) and (M,⊞) have scalar identities, denoted by 0R and 0M , then the fuzzy
hypermodule (M,⊞,⊡) also satisfies the condition: for all a of M , we have 0R ⊡ a = χ{0M}.

Moreover if (R,⊙) has an identity, denoted by 1, then the fuzzy hypermodule (M,⊞,⊡) is
called unitary if it satisfies the condition: for all a of M , we have 1R ⊡ a = χ{a}.

Definition 2.17. [12] Let (M,⊞,⊡) be a fuzzy hypermodule over a fuzzy hyperring (R,⊕,⊙).
A nonempty subset M ′ of M is called a Fuzzy Subhypermodules if for all x, y of M ′ and α of R,
the following conditions hold: (x⊞y)(t) > 0, then t ∈M ′; x⊞M ′ = χM ′ and if (α⊡x)(t) > 0,
then t ∈M ′.

Remark 2.18. Let (M,⊞,⊡) be a fuzzy hypermodule over a fuzzy hyperring (R,⊕,⊙). for
x ∈M , let Rx = {r ⊡ x : r ∈ R}. It is easy to see Rx ≤M .

Let M1 and M2 be non-empty subsets of FHR-hypermodule (M,⊞,⊡). The sum M1 +M2
is defined by M1 +M2 = {x ∈ b⊞ c : b ∈M1, c ∈M2} and M1 +M2 ≤M .
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Definition 2.19. [12] Let (M1,⊞1,⊡1) and (M2,⊞2,⊡2) be two fuzzy hypermodules over a
fuzzy hyperring (R,⊕,⊙). We say that f : M1 → M2 is a Homomorphism of fuzzy hypermod-
ules if for all x, y of M1 and α of R we have:

f(x⊞1 y) ≤ f(x)⊞ f(y) and f(α⊡1 x) ≤ α⊡2 f(x)

and denoted by FHM -homomorphism. If (i) and (ii) of this definition, If the equality hold, then
f is called strong (or good) fuzzy homomorphism and denoted by FHMS -homomorphism. The
class of all FHM -homomorphisms (resp., FHMS -homomorphisms) from M into N is denoted
by homFHM (M,N) (res., homFHMS

(M,N)).

Definition 2.20. Proper fuzzy subhypermodule N of fuzzy hypermodule M is colled Maximal
Fuzzy Subhypermodule if N and M being only fuzzy subhypermodules of M containing N .

Remark 2.21. Let (M,⊞,⊡) be an fuzzy hypermodule on fuzzy hyperring (R,⊕,⊙). Then for
x ∈ A and n ∈ Z,

m⊡ x =



x⊞ x⊞ . . .⊞ x︸ ︷︷ ︸
n times x

; n>0

0A; n=0

(−x)⊞ (−x)⊞ . . .⊞ (−x)︸ ︷︷ ︸
−n times x

; n<0

Definition 2.22. Let (R,⊕,⊙) be a fuzzy hyperring not necessarily with 1R and (M,⊞,⊡) be a
fuzzy hypermodule over R and X ⊆ M . ⟨X⟩ denotes the smallest fuzzy subhypermodule of M
containing X or the intersection of all fuzzy subhypermodules of M containing X . The set X is
said to be a Generating Set for an fuzzy hypermodule M , or X generates M , if M = ⟨X⟩. Here,
M is called Finitely Generated if it has a finite generating set. Let X = {x}. For simplicity, we
use ⟨x⟩ instead of ⟨X⟩ and is called Cyclic fuzzy subhypermodule of M .

It is easy to see that;

⟨x⟩ = {a ∈ (r ⊡ x)⊞ (m⊡ x)⊞
∑⊞

i ni ⊡ (x⊞ (−x)) : x ∈ X, r ∈ R,m ∈ Z, ni ∈ N}.

Let Rx = {r ⊡ x : r ∈ R, x ∈M} = ⟨x⟩.

Remark 2.23. If (M,⊞,⊡) is an unitary fuzzy hypermodule on fuzzy hyperring (R,⊕,⊙) with
identity 1R, Then

(i) ⟨x⟩ = Rx.

(ii) Letting X = {xi}i∈I ⊆ M , M = ⟨X⟩ if and only if for every a ∈ M , there exists a finite
j ⊆ I such that a ∈

∑⊕
j∈J ri ⊡ xj which rj ∈ R and xj ∈ X .

Proposition 2.24. Let N be a fuzzy subhypermodule of fuzzy hypermodule (M,⊞,⊡) over fuzzy
hyperring (R,⊕,⊙) and M/N = {xN : x ∈ M}. For every a, b ∈ M and r ∈ R, defining
the fuzzy hyperoperations ⊛ and ⊚ on M/N as follows: (aN) ⊛ (bN) = (a ⊞ b)N and r ⊚
(aN) = (r⊙a)N , we get that (M/N,⊛,⊚) is a fuzzy hypermodule, too. We call the above fuzzy
hypermodule (M/N,⊛,⊚) the quotient fuzzy hypermodule.

Connections between fuzzy hyperoperations and the above associated hyperoperations have
been considered by Sen, Amery and Chowdhury in the context of semihypergroups and hyper-
groups and by Leoreanu-Fotea and Davvaz in the context of hyperrings. They have shown that
if (M,⊞) is a fuzzy hypergroup, then (M,+) is a hypergroup (see [17]), while if (R,⊕,⊙) is a
fuzzy hyperring, then (R,⊎, ◦) is a hyperring (see [13]).

3 categories of fuzzy hypermodules

In the next theorem was established a similar result for fuzzy hypermodules by Leoreanu-Fotea
and Davvaz in [13].
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Theorem 3.1. If (M,⊞,⊡) is a fuzzy hypermodule over a fuzzy hyperring (R,⊕,⊙), then (M,+, ·)
is a hypermodule over the hyperring (R,⊎, ◦). ([13], Theorem 3.5)

If we denote by HM the class of all hypermodules and by FHM the class of all fuzzy
hypermodules, then we can consider the map ψ : FHM → HM, ψ((M,⊞,⊡)) = (M,+, ·).
On the other hand, if (M,+, ·) is a hypermodule over a hyperring (R,⊎, ◦), then we define for
every a, b ∈M and α, β ∈ R the following fuzzy hyperoperations:

a⊞ b = χa⊎b and α⊡ β = χα◦β and α⊕ β = χα+β and α⊙ β = χα·β .

In [13] it is shown that if (M,+, ·) is a hypergroup, then (M,⊞) is a fuzzy hypergroup, while
in [17], it is checked that if (R,⊎, ◦) is a hyperring, then (R,⊕,⊙) is a fuzzy hyperring.

Hence, there exists a map φ : FHR → HR, φ(M,+, ·) = (M,⊞,⊡). It is natural to
consider and study homomorphisms between fuzzy hypermodules. First, recall that if µ1, µ2 are
fuzzy sets on M , then we say that µ1 is smaller than µ2 and we denote µ1 ≤ µ2 if and only if for
all x ∈ M , we have µ1(x) ≤ µ2(x). Let f : M1 → M2 be a map. If µ is a fuzzy set on M1, then
we define f(µ) : M1 → [0, 1], as follows:(f(µ))(t) =

∨
r∈f−1(t) µ(r), if f−1(t) ̸= ∅, otherwise

we consider (f(µ))(t) = 0.
The next two theorem was shown a connection between homomorphisms of fuzzy hyper-

modules and homomorphisms of hypermodules by Leoreanu-Fotea and Davvaz in [13].

Theorem 3.2. Let (M1,⊞1,⊡1) and (M2,⊞2,⊡2) be two fuzzy hypermodules over a fuzzy hyper-
ring (R,⊕,⊙) and (M1,+1, ·1) = ψ(M1,⊞1,⊡1), (M2,+2, ·2) = ψ(M2,⊞2,⊡2) be the associ-
ated hypermodules over the corresponding hyperring (R,⊎, ◦) = ψ(R,⊕,⊙). If f : M1 → M2
is a homomorphism of fuzzy hypermodules, then f is a homomorphism of hypermodules, too.
([13], Theorem 3.7)

Theorem 3.3. Let (M1,+1, ·1) and (M2,+2, ·2) be two hypermodules over a hyperring (R,⊎, ◦)
and let (M1,⊞1,⊡1) = φ(M1,+1, ·1), (M2,⊞2,⊡2) = φ(M2,+2, ·2) be the associated fuzzy
hypermodules over the fuzzy hyperring (R,⊕,⊙) = φ((R,⊎, ◦)). The map f : M1 → M2 is
a homomorphism of hypermodules if and only if it is a homomorphism of fuzzy hypermodules.
([13], Theorem 3.8)

The following theorem established a connection between fuzzy subhypermodules of a fuzzy
hypermodule and subhypermodules of the corresponding hypermodule by Leoreanu-Fotea and
Davvaz in [13].

Theorem 3.4.

(i) If (M ′,⊞,⊡) is a subfuzzy hypermodule of (M,⊞,⊡) over (R,⊕,⊙), then (M ′,+, ·) =
ψ(M ′,⊞,⊡) is a submodule of (M,+, ·) = ψ(M,⊞,⊡) over (R,⊎, ◦) = ψ(R,⊕,⊙);

(ii) (M ′,+, ·) is a submodule of (M,+, ·) over (R,⊎, ◦) if and only if (M ′,⊞,⊡) = φ(M ′,+, ·)
is a fuzzy subhypermodule of (M,⊞,⊡) = φ(M,+, ·) over (R,⊕,⊙) = φ(R,⊎, ◦).

Here we prove propositions 3.5 and 3.10 that are two of the most important and widely used
propositions by inspier of Leoreanu-Fotea and Davvaz in [13].

Proposition 3.5. (i) every (unitary) fuzzy hypermod- ule (M,⊞,⊡) over (R,⊕,⊙), (−1R) ⊡
a = χ{−a} for every a ∈M .

(ii) In every fuzzy hyperring (R,⊕,⊙), (−1R)⊙ r = χ{−r} for every r ∈ R.

Proof. (i): Let (M,⊞,⊡) be a fuzzy hypermodule over (R,⊕,⊙) and the map ψ : FHM →
HM, (M,+, ·) = ψ(M,⊞,⊡) be associated hypermodule over the corresponding hyperring
(R,⊎, ◦) = ψ(R,⊞,⊡) and a ∈M , and also by Proposition 2.1-(i) in [18] we have (−1R) · a =
−a, Thus for every t ∈M , by Definition 2.14 and theorem 3.2, we obtian;

((−1R)⊡ a)(t) = ((−1R)⊡ (1R ⊡ a))(t) = ((−1R)⊡ 1R)⊡ a)(t) =∨
r∈R((−1R)⊡ 1R))(r) ∧ (r ⊡ a)(t) =

∨
r∈R χ{−1R·1R}(r) ∧ χ{r·a}(t) =∨

r∈M χ{−1R}(r) ∧ χ{r·a}(t) =
∨

a∈M χ{−1R·a}(t) = χ{−a}(t).

(ii): By the argument similar to the proof of (i) we obtain the result (ii).
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We recall that if (M1,⊞1,⊡1) and (M2,⊞2,⊡2) be fuzzy hypermodules over a fuzzy hyper-
ring (R,⊕,⊙), than A function f : M1 →M2 that satisfies the conditions:

(i) f(⊞1y) ≤ f(x)⊞2 f(y);

(ii) f(r ⊡1 x) ≤ r ⊡2 f(x),

for all r ∈ R and all x, y ∈ M1, is said to be an (inclusion) homomorphism of fuzzy hypermod-
ules from M1 into M2.

Remark 3.6. If (i) and (ii) above definition the equality hold, then f is called a strong (or good)
FHR-homomorphism.

Let f ∈ HomF (A,B) and h ∈ HomF (B,C). The composition h ◦ f is defined as Equation
in the above Definition. Also, for every fuzzy hypermodule A, the homomorphism idA with
definition idA(x) = χ{x} for all x ∈ A is the identity morphism as before. Hereafter, FHmod
(resp., FS

Hmod) denotes the category whose objects are all fuzzy hypermodules and whose
morphisms from A to B are all Fmv-homomorphisms (resp., Fsmv-homomorphisms) from A
into B. Clearly, FS

Hmod is a subcategory of FHmod, i.e.,

FS
Hmod ≼F Hmod.

Remark 3.7. (i) Hereafter, we identify a singleton X = {a} by its element a. Also, we
sometimes write f(a) = b instead of f(a) = {b}. So every fuzzy single-valued mor-
phism f ∈ HomF (A,B) (resp. f ∈ HomFS

(A,B)) is an elemen of homF (A,B) (resp.
homFS

(A,B)), and conversely, every element of homF (A,B) (resp. homFS
(A,B)) can

be considered as an element of HomF (A,B) (resp. HomFS
(A,B)), So

Fhmod ≼F Hmod
(resp., FS

hmod ≼FS
Hmod).

(ii) Let f, g ∈ HomF (A,B). Define the relation ≤ on HomF (A,B) in which f ≤ g means
f(x) ≤ g(x) for all x ∈ A. Clearly (HomF (A,B),≤) is a poset.

For convnience and distinguishing, we call Fhmod and FS
hmod primary categories of

fuzzy hypermodules. Also, FHmod and FS
Hmod are called secondary categories of fuzzy

hypermodules.
So far we have considered the morphisms or arrows, as usual, the functions between objects.

But one can consider a morphism from A to B as a function from A into F ∗(B) called a Fuzzy
multivalued function from A to B.

For two multivalued functions f and g their composition g ◦ f is defined as the following:

∀a ∈ A, (g ◦ f)(a) =
∨

b∈f(a)

g(b),

and an identity morphism for an object A is defined idA(x) : A→ F ∗(A) by idA(x) = χ{x} for
all x ∈ A.

Definition 3.8. If M and N are two fuzzy hypermodules over fuzzy hyperring (R,⊕,⊙) then
multivalued function f from M into N is a mapping f : M → F ∗(N) satisfying the following
conditions:

(i) f(x⊞ y) ≤ f(x)⊞ f(y);

(ii) f(r ⊡ x) ≤ r ⊡ f(x);

for all r ∈ R and all x, y ∈M , is said to be a fuzzy multivalued homomorphism and denoted
by FHRmv-homomorphism or for short Fmv-homomorphism.

Remark 3.9. If (i) and (ii) of Definition 3.6, If the equality hold, then f is called strong (or good)
fuzzy nultivalued homomorphism, for short an Fsmv-homomorphism.

The class of all Fmv-Homomorphisms (resp., Fsmv-Homomorphisms) from M into N is
denoted by HomF (M,N) (resp., HomFS

(M,N)).
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Proposition 3.10. Let (M1,⊞1,⊡1) and (M2,⊞2,⊡2) are two fuzzy hypermodules over fuzzy
hyperring (R,⊕,⊙).

(i) For every f ∈ homF (M1,M2), f(0M1) = χ{0M2}.

(ii) For every f ∈ homF (M1,M2), f(−x) = −f(x) and f(x⊞1 (−y)) = f(x) +⊞2(−f(y)).

Proof. (i): Let (M1,⊞1,⊡1) and (M2,⊞2,⊡2) are two fuzzy hypermodules over fuzzy hyperring
(R,⊕,⊙) and f ∈ homF (M1,M2), and also by theorem 3.2, given the map ψ : FHM → HM,
(M1,+1, ·1) = ψ(M1,⊞1,⊡1) be associated hypermodule over the corresponding hyperring
(R,⊎, ◦) = ψ(R,⊞,⊡) and also by Proposition (2.2)-(i) in [18] we have 0R · a = 0M1 and by
Definition (2.4)-(4) [18], if t ∈ im(f), then we obtian f(0R ·1 a) = f(0M1) = {0M2}.
So for every a1 ∈M1 and t ∈ R, by Definition 2.14;

f(0M1)(t) = f(0R ⊡1 a1)(t) =
∨

r∈f−1(t)

χ{0R·1a1}(r).

Thus

f(0M1)(t) =

{
1, f−1(t) ∧ (0R ·1 a1) ̸= 0
0, o.w

=

{
1, t ∈ f(0R ·1 a1)

0, o.w

=

{
1, t ∈ f(0M1)

0, o.w

=

{
1, t ∈ f(0M2)

0, o.w

So f(0M1) = χ{0M2}.

If t /∈ im(f), then proof is tirivale.
(ii): By the argument similar to the proof of (i) we obtain the result (ii).

Theorem 3.11. (The Isomorphism Theorems). Let (R,⊕,⊙) be a fuzzy hyperring and (M,⊞1,⊡1)
and (N,⊞2,⊡2) be FHRl − hypermodules.

(1) If f : M → N is an epimorphism with Kerf = K, then there is a unique isomorphism
h : M/K → F ∗(N) such that h(m+K) = f(m) for all m ∈M .

(2) If K ≤ L ≤M , then L/K ≤M/K and M/L ∼= (M/K)/(L/K).
(3) If H ≤M and K ≤M , then (H +K)/K ∼= H/(H ∩K).

where M1 ∼=M2 if the strongly homomorphism f : M1 →M2 is mono and epi.

Definition 3.12. Fuzzy hypermodule (M,⊞,⊡) over fuzzy hyperring (R,⊕,⊙) is called a Simple
fuzzy hypermodule if not has any non trivial fuzzy subhypermodule.

Definition 3.13. Fuzzy hypermodule (M,⊞,⊡) over fuzzy hyperring (R,⊕,⊙) is called a Semisimple
fuzzy hypermodule if for every Fuzzy subhypermodule K of M , there exists a Fuzzy subhyper-
module L of M such that M = K

⊕
L.

Definition 3.14. Let (R,⊕,⊙) be a fuzzy hyperring. According to the existence maximal fuzzy
hyperideal for any fuzzy hypermodule, R has both maximal left fuzzy hyperideal and maximal
right fuzzy hyperideal. the intersection of all the maximal left fuzzy hyperideals of R is called
left Jacobson Radical R and denoted by Jl(R). and the intersection of all the maximal right
fuzzy hyperideals of R is called right Jacobson Radical R and denoted by Jr(R).

It is clear that Jl(R) and Jr(R) are respect to left and right fuzzy hyperideals of R.
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Definition 3.15. An element x of a fuzzy hyperring (R,⊕,⊙) is said to be nilpotent if there
exists a natural number n such that an = χ{0}.
Thus a fuzzy hyperideal I of the fuzzy hyperring R is nil if every element in I is nilpotent, i.e.
for every a ∈ I , there exists a natural number n such that an = χ{0}. This n is dependent on the
element a.

A fuzzy hyperideal I of a fuzzy hyperring (R,⊕,⊙) is called nilpotent if there exists a natural
number n such that In = (0). Here

In = {
∑

finite ai1 ⊙ ai2 ⊙ ...⊙ ain : aij ∈ I, j = 1, 2, ..., n}
or

In = {
∑⊙

1≤j≤n aij : aij ∈ I}.

Remark 3.16. Clearly, Every nilpotent fuzzy hyperideal is nil since In = {0} implies an = χ{0}
for all a. It is possible, however, to have a nil fuzzy hyperideal that is not nilpotent. .

4 Prime and primitive fuzzy hyperrings and fuzzy hyperideals

In this section, we investigeat some of the results and definitions related to the prime and primi-
tive fuzzy hyperrings and fuzzy hyperideals and the relationships of between them and we study
some of their properties by inspiered of the results and definitions in [?].

Definition 4.1. A proper fuzzy hyperideal P of a fuzzy hyperring (R,⊕,⊙) is called a prime
fuzzy hyperideal if for all fuzzy hyperideals I and J of R, IJ ⊆ P implies that I ⊆ P or J ⊆ P .

Definition 4.2. A proper fuzzy hyperideal P of a commutative and unitary fuzzy hyperring
(R,⊕,⊙) is called semiprime fuzzy hyperideal if for every fuzzy hyperideals I of R, I2 ⊆ P
implies that I ⊆ P .

Definition 4.3. A proper fuzzy hyperideal M of a fuzzy hyperring (R,⊕,⊙) is called a maximal
fuzzy hyperideal if R and M being only fuzzy hyperideals of R containing M .

Lemma 4.4. Let (R,⊕,⊙) be a commutative and unitary fuzzy hyperring. Then a proper fuzzy
hyperideal P is prime if for every a, b ∈ R, the following condition are satisfied:

a⊙ b ∈ F ∗(P ) ⇒ a ∈ P or b ∈ P. (∗)

Conversely if P is a prime hyperideal and R is commutative, then P satisfies condition (∗).

Proof. If A and B are fuzzy hyperideals such that AB ⊂ P and A ̸⊂ P , then there exists an
element a ∈ A−P . For every b ∈ B, a⊙ b ∈ F ∗(AB) ⊂ F ∗(P ), whence a ∈ P or b ∈ P . Since
a /∈ P , we must have b ∈ P for all b ∈ B; that is, B ⊂ P . Therefore, P is prime.

Conversely, if P is any fuzzy hyperideal and a⊙ b ∈ F ∗(P ), then the principal fuzzy hyper-
ideal a ⊙ b is contained in P by Definition 2.14. If R is commutative, then remark 2.23 implies
that ⟨a⟩⟨b⟩ ⊂ ⟨a⊙ b⟩, whence ⟨a⟩⟨b⟩ ⊂ P . If P is prime, then either ⟨a⟩ ⊂ P or ⟨b⟩ ⊂ P , whence
a ∈ P or b ∈ P .

Theorem 4.5. If I is a fuzzy hyperideal in a fuzzy hyperring R, then there is a one-to-one corre-
spondence between the set of all fuzzy hyperideals of R which contain I and the set of all fuzzy
hyperideals of R/I , given by J → J/I . Hence every fuzzy hyperideal in R/I is of the form J/I ,
where J is a fuzzy hyperideal of R which contains I .

Proof. The proof is similar to the proof of that come in the theory of modules, by some manip-
ulations.

Proposition 4.6. Let P be a fuzzy hyperideal of a fuzzy hyperring R. Then P is fuzzy prime if
and only if R/P is a prime fuzzy hyperring.

Proof. If R/K is prime, let π : R → R/K be the canonical epimorphism. If I and J are fuzzy
hyperideals of R such that IJ ⊂ K, then π(l), π(J) are fuzzy hyperideals of R/K such that
π(I)π(J) = π(IJ) = χ{0}. Since R/K is prime, either π(I) = {0} or π(J) = {0}; that
is, I ⊂ K or J ⊂ K. Therefore, K is a prime fuzzy hyperideal. The converse is an easy
consequence of Theorem 4.5 and Definition 4.1.
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Proposition 4.7. If (R,⊕,⊙) is a commutative and unitary fuzzy hyperring, then any maximal
fuzzy hyperideal of R is a Prime fuzzy hyperideal.

Proof. Let (R,⊕,⊙) be commutative and unitary fuzzy hyperring and I be maximal fuzzy
hyperideal of fuzzy hyperring R and for every a, b ∈ R, a ⊙ b ∈ F ∗(I). If a /∈ I then
I ⊂ (I, a) = {(r ⊙ a) ⊕ u : u ∈ I, r ∈ R} ⊂ F ∗(R), but since I is a maximal fuzzy hy-
perideal of R so R = (I, a), therefore (r ⊙ a) ⊕ u = χ{1}, so by Theorem 3.3, for t ∈ R we
have;

((r⊙a)⊕u)(t) = χ{1}(t) ⇒
∨

p∈R χ{r·a}(p)∧χ{p+u}(t) = χ{1}(t) ⇒
∨
χ{(r·a)+u}(t) = χ{1}(t)

Therefore (r ·a)+u = 1 and for b ∈ Rwe have ((r ·a)·b)+(u·b) = b, thus (r ·(a·b))+(u·b) = b.
Now we obtian;∨

χ{(r·(a·b))+(u·b)}(t) = χ{b}(t) ⇒
∨

p∈R χ{(r·(a·b))}(p) ∧ χ{p+(u·b)}(t) = χ{b}(t) ⇒
r ⊙ (a⊙ b)⊕ (u⊙ b) = χ{b}

thus b ∈ I .

Proposition 4.8. Let (R,⊕,⊙) be commutative and unitary fuzzy hyperring and P be proper
hyperideals of fuzzy hyperring R. P is prime if and only if R/P is fuzzy integral hyperdomain.

Proof. By proposition 2.7, (R/P,⊞,⊠) is a commutative hyperring with identity 1R + P and
zero element {0}+ P = P . If P is prime, then 1R + P ̸= P since P ̸= R. Furthermore, R/P
has no zero divisors since

(a+ P )⊠ (b+ P ) = P ⇒ (a⊙ b) + P = P ⇒ a⊙ b ∈ F ∗(P ) ⇒ a ∈ P or b ∈ P ⇒ a+ P =
P or b+ P = P .

Therefore, R/P is a fuzzy integral hyperdomain.
Conversely, if (R/P,⊞,⊠) is a fuzzy integral hyperdomain, then 1R + P ̸= 0 + P , whence

1R /∈ P . Therefore, P ̸= R. Since R/P has no zero divisors,

a⊙ b ∈ F ∗(P ) ⇒ (a⊙ b) + P = P ⇒ (a+ P )⊠ (b+ P ) = P ⇒ a+ P = P or b+ P = P ⇒
a ∈ P or b ∈ P .

Therefore, P is prime by lamma 4.4.

Theorem 4.9. If (R,⊕,⊙) is a commutative fuzzy hyperring such that R2 = R (in particular if
R has an identity), then every maximal fuzzy hyperideal M in R is prime.

Proof. Suppose a ⊙ b ∈ F ∗(M) but a /∈ M and b /∈ M . Then each of the fuzzy hyperideals
M + ⟨a⟩ and M + ⟨b⟩ properly contains M . By maximality M + ⟨a⟩ = R = M + ⟨b⟩. Since
R is commutative and a ⊙ b ∈ F ∗(M), remark 2.23 implies that ⟨a⟩⟨b⟩ ⊂ ⟨a ⊙ b⟩ ⊂ F ∗(M).
Therefore,

R = R2 = (M + ⟨a⟩)(M + ⟨b⟩) ⊂M2 + ⟨a⟩M +M⟨b⟩+ ⟨a⟩⟨b⟩ ⊂M .

This contradicts the fact that M ̸= R (since M is maximal). Therefore, a ∈ M or b ∈ M ,
whence M is prime by lamma 4.4.

Proposition 4.10. Let M be a hyperideal in a fuzzy hyperring (R,⊕,⊙) with identity 1R ̸= 0.

(i) M is maximal if and only if R/M is fuzzy hyperfield.

(ii) If the quotient fuzzy hyperring R/M is a division fuzzy hyperring, then M is maximal.

Proof. (i): If M is maximal, then M is prime (Theorem 4.9), whence R/M is a fuzzy integral
hyperdomain by proposition 4.8. Thus we need only show that if a +M ̸= M , then a +M
has a multiplicative inverse in (R/M,⊞,⊠). Now a +M ̸= M implies that a +M , whence
M is properly contained in the fuzzy hyperideal M + ⟨a⟩. Since M is maximal, we must have
M + ⟨a⟩ = R. Therefore, since R is commutative, χ{1R} = m ⊕ (r ⊙ a) for some m ∈ M and
r ∈ R, by remark 2.23. Now by Theorem 3.3, for t ∈ R we have;
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χ{1R}(t) = m⊕ (r ⊙ a)(t) ⇒ χ{1R}(t) =
∨

p∈R χ{m+p}(t) ∧ χ{r·a}(p) ⇒ χ{1R}(t) =∨
χ{m+(r·a)}(t) ⇒ 1R = m+ (r · a) ⇒ 1R + (−r · a) = m⇒ χ{1R+(−r·a)}(t) = χ{m}(t) ⇒∨

p∈R χ{1R+p}(t) ∧ χ{−r·a}(p) = χ{m}(t) ⇒ (1R ⊕ (−r ⊙ a))(t) = χ{m}(t)

Thus 1R ⊕ (−r ⊙ a) = χ{m} ∈ F ∗(M), whence by Proposition 2.7 χ{1R+M} = (r ⊙ a) +M =
(r +M)⊠ (a+M).
Thus r +M is a multiplicative inverse of a+M in R/M , whence R/M is a fuzzy hyperfield.

(ii): If (R/M,⊞,⊠) is a division fuzzy hyperring, then 1R+M ̸= {0}+M , whence 1R /∈M
and M ̸= R. If N is a fuzzy hyperideal such that M ⊂ N , let a ∈ N −M . Then a +M has
a multiplicative inverse in R/M , say by Proposition 2.7 (a + M) ⊠ (b + M) = χ{1R+M}.
Consequently, (a⊙ b) +M = χ{1R+M} and (a⊙ b)⊕ (−1R) = χ{c} ∈ F ∗(M). But a ∈ N and
M ⊂ N imply that 1R ∈ N . Thus N = R. Therefore, M is maximal.

Theorem 4.11. If f : R → S is a homomorphism of fuzzy hyperrings, then the kernel of f
is a fuzzy hyperideal in (R,⊕,⊙). Conversely if I is a fuzzy hyperideal in R, then the map
π : R→ R/I given by r 7→ r + I is an epimorphism of fuzzy hyperrings with kernel I .

Proof. Kerf is a fuzzy subhypergroup of R. If x ∈ Kerf and r ∈ R, then f(r⊙R x) = f(r)⊙S

f(x) = f(r) ⊙S {0} = χ{0}, whence r ⊙R x ∈ F ∗(Kerf). Similarly, x ⊙R r ∈ F ∗(Kerf).
Therefore, Kerf is a fuzzy hyperideal. So the map π is an epimorphism of fuzzy hypergroups
with kernel I .

Since by Proposition 2.7 π(a⊙ b) = (a⊙ b) + I = (a+ I)⊠ (b+ I) = π(a)⊠ π(b) for all
a, b ∈ R, π is also an epimorphism of fuzzy hyperrings.

Corollary 4.12. The following conditions on a commutative fuzzy hyperring R with identity
1R ̸= 0 are equivalent.

(i) R is a fuzzy hyperfield;

(ii) R has no proper fuzzy hyperideals;

(iii) {0} is a maximal fuzzy hyperideal in R ;

(iv) every nonzero homomorphism of fuzzy hyperrings R→ S is a monomorphism.

Proof. This result may be proved directly or as follows. R ∼= R/{0} is a fuzzy hyperfield if and
only if {0} is maximal by Theorem 4.10. But clearly {0} is maximal if and only if R has no
proper fuzzy hyperideals. Finally, for every fuzzy hyperideal I (̸= R) the canonical map π : R→
R/I is a nonzero homomorphism with kernel I (Theorem 4.11). Since π is a monomorphism if
and only if I = {0}, (iv) holds if and only if R has no proper fuzzy hyperideals.

Proposition 4.13. If R is a commutatice fuzzy hyperring with identity and P is a hyperideal
which is maxilmal in the set of all fuzzy hyperideals of R which are not finitely generated, then
P is prime.

Proposition 4.14. A commutative fuzzy hyperring R with identity is Noetherian if and only if
every prime fuzzy hyperideal of R is finitely generated.

Proof. Let S be the set of all fuzzy hyperideals of R which are not finitely generated. If S is
nonempty, then use Zorn’s Lemma to find a maximal element P of S. P is prime by Proposition
3.18 and hence finitely generated by hypothesis. This is a contradiction unless S = ∅. Therefore,
R is Noetherian by proposition 4.12.

Proposition 4.15. Let I and J be fuzzy hyperideals of a commutative fuzzy hyperring (R,⊕,⊙),
such that I ⊆ J . Then the fuzzy hyperideal J/I of the quotient fuzzy hyperring R/I is prime if
and only if J is a prime fuzzy hyperideal of R.

Proof. The statement follows from the third isomorphism theorem for fuzzy hyperrings, saying
that (R/I)/(J/I) ∼= R/J and from Proposition 4.8.

Theorem 4.16. In a nonzero fuzzy hyperring R with identity maximal (resp. left) fuzzy hyperide-
als always exist. In fact every (resp. left) fuzzy hyperideal in R (except R itself) is contained in
a maxinral (resp. left) fuzzy hyperideal.
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Proof. The proof is similar to the proof of that come in the theory of modules, by some manip-
ulations.

Definition 4.17. A left fuzzy hyperideal I in a fuzzy hyperring (R,⊕,⊙) is regular (or modular)
if there exists e ∈ R such that r ⊕ (−r ⊙ e) ∈ F ∗(I) for every r ∈ R. Similarly, a right fuzzy
hyperideal J is regular if there exists e ∈ R such that r ⊕ (−r ⊙ e) ∈ F ∗(J) for every r ∈ R.

Remark 4.18. Every left fuzzy hyperideal in a fuzzy hyperring R with identity is regular (let
e = 1R).

Theorem 4.19. A left fuzzy hypermodule (M,⊞,⊡) over a fuzzy hyperring (R,⊕,⊙) is simple if
and only if M is isomorphic to R/I for some regular maximal left fuzzy hyperideal I .

Proof. The discussion preceding Definition 4.44 shows that ifM is simple, thenM = Ra ∼= R/I
where the maximal left fuzzy hyperideal I is the kernel of θ. Since M = Ra, χ{a} = e⊡ a for
some e ∈ R. Now by Theorem 3.3, for t ∈ R we have;

χ{a}(t) = (e⊡ a)(t) ⇒ χ{a}(t) = χ{e·a}(t) ⇒ a = e · a⇒ r · a = (r · e) · a

Consequently, for any r ∈ R, r ⊡ a = (r ⊙ e) ⊡ a or (r ⊕ (−r ⊙ e)) ⊡ a = χ{0}, whence
r ⊕ (−r ⊙ e) ∈ F ∗(Ker(θ)) = F ∗(I). Therefore I is regular.

Conversely let I be a regular maximal left fuzzy hyperideal of R such that M ∼= R/I . In view
of the discussion preceding Definition 4.44 it suffices to prove that R(R/I) ̸= {0}. If this is not
the case. then for all r ∈ Rr(e+ I) = I , whence r ⊙ e ∈ F ∗(I). Since r ⊕ (−r ⊙ e) ∈ F ∗(I),
we have r ∈ I . Thus R = I , contradicting the maximality of I .

Definition 4.20. If N be a subset of a left fuzzy hypermodule (M,⊞,⊡) over a fuzzy hyperring
(R,⊕,⊙), Then

Ann(N) = {r ∈ R : r ⊡ b = χ{0}, ∀b ∈ N}

is a left fuzzy hyperideal of R. If N is a fuzzy subhypermodule of M , then Ann(N) is a fuzzy
hyperideal.
Ann(N) is called the (left) Annihilator of N . The right annihilator of a right fuzzy hypermodule
is defined analogously.

Definition 4.21. A (left) fuzzy hypermodule M is faithful if Ann(M) = {0}. A fuzzy hyperring
R is (left) primitive if there exists a simple faithful left fuzzy hypermodule.

Proposition 4.22. A simple fuzzy hyperring R with identity is primitive.

Proof. R contains a maximal left fuzzy hyperideal I by Theorem 4.43. Since R has an identity,
I is regular, whence R/I is a simple fuzzy hypermodule by Theorem 4.19. Since Ann(R/I) is a
fuzzy hyperideal of R that does not contain 1R, Ann(R/I) = {0} by simplicity. Therefore R/I
is faithful.

Proposition 4.23. A commutative fuzzy hyperring (R,⊕,⊙) is primitive if and only ifR is a fuzzy
hyperfield.

Proof. A fuzzy hyperfield is primitive by Proposition 4.22.
Conversely, let (M,⊞,⊡) be a faithful simple left fuzzy hypermodule over fuzzy hyperring

(R,⊕,⊙). Then M ∼= R/I for some regular maximal left fuzzy hyperideal I of R. Since R
is commutative, I is in fact a fuzzy hyperideal and I ⊆ Ann(R/I) = Ann(M) = {0}. Since
I = {0} is regular, there is an e ∈ R such that r = r ⊙ e(= e ⊙ r) for all r ∈ R. Thus R is a
commutative fuzzy hyperring with identity. Since I = {0} is maximal, R is a fuzzy hyperfield
by Corollary 4.12.

Theorem 4.24. (Wedderburn-Artin) If R is a simple left Artinian fuzzy hyperring, then R is
primitive.
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Proof. We first observe that I = {r ∈ R : Rr = {0}} is a fuzzy hyperideal of R, whence I = R
or I = {0}. Since R2 ̸= {0}, we must have I = {0}. Since R is left Artinian the set of all
nonzero left fuzzy hyperideals of R contains a minimal left fuzzy hyperideal J . J has no proper
fuzzy subhypermodules, (an fuzzy subhypermodule of J is a left fuzzy hyperideal of R). We
claim that the left Ann(J) in R is zero. Otherwise Ann(J) = R by simplicity and Ru = {0}
for every nonzero u ∈ J . Consequently, each such nonzero u is contained in I = {0}, which
is a contradiction. Therefore Ann(J) = {0} and RJ ̸= {0}. Thus J is a faithful simple fuzzy
hypermodule, whence R is primitive.

Definition 4.25. An element a in a fuzzy hyperring (R,⊕,⊙) is said to be left quasi-regular if
there exists r ∈ R such that r ⊕ a⊕ (r ⊙ a) = χ{0}. The element r is called a left quasi-inverse
of a. A (right, left or two-sided) fuzzy hyperideal I of R is said to be left quasi-regular if every
element of I is left quasi-regular. Similarly, a ∈ R is said to be right quasi-regular if there exists
r ∈ R such that a ⊕ r ⊕ (a ⊙ r) = χ{0}. Right quasi-inverses and right quasi-regular fuzzy
hyperideals are defined analogously.

Theorem 4.26. If R is a fuzzy hyperring, then there is a fuzzy hyperideal J(R) of R such that:

(i) J(R) is the intersection of all the left annihilators of simple left fuzzy hypermodules over
fuzzy hyperring R;

(ii) J(R) is the intersection of all the regular maximal left fuzzy hyperideals of R;

(iii) J(R) is the intersection of all the left primitive fuzzy hyperideals of R;

(iv) J(R) is a left quasi-regular left fuzzy hyperideal which contains every left quasi-regular left
fuzzy hyperideal of R,

(v) Statements (i)-(iv) are also true if "left" is replaced by "right"’.

Proof. The proof is similar to the proof of that come in the theory of modules, by some manip-
ulations.

Lemma 4.27. A fuzzy hyperideal P of a fuzzy hyperring (R,⊕,⊙) is left primitive if and only if
P is the left annihilator of a simple left fuzzy hypermodule.

Proof. If P is a left primitive fuzzy hyperideal, let M be a simple faithful fuzzy hypermodule
over fuzzy hyperring R/P . Verify that (M,⊞,⊡) is an fuzzy hypermodule over fuzzy hyperring
R, with r ⊡ a (r ∈ R, a ∈ M ) defined to be (r + P ) ⊡ a. Then RM = (R/P )M ̸= {0} and
every fuzzy suhyperbmodule of M is a fuzzy subhypermodule of M over fuzzy hyperring R/P ,
whenceM is a simpleR-hypermodule. If r ∈ R, then rM = {0} if and only if (r+P )M = {0}.
But (r + P )M = {0} if and only if r ∈ P since M is a faithful fuzzy hypermodule over fuzzy
hyperring R/P . Therefore P is the left annihilator of the simple fuzzy hypermodule M .

Conversely suppose that P is the left annihilator of a simple fuzzy hypermodule (N,⊞,⊡)
over fuzzy hyperring R. Verify that N is a simple fuzzy hypermodule over fuzzy hyperring
(R/P,⊞,⊠) with (r + P ) ⊡ b = r ⊡ b for r ∈ R, b ∈ N . Furthermore if (r + P )N = {0},
then rN = {0}, whence r ∈ Ann(N) = P and r + P = {0} in R/P . Consequently, N is a
faithful fuzzy hypermodule over fuzzy hyperring R/P . Therefore R/P is a left primitive fuzzy
hyperring, whence P is a left primitive fuzzy hyperideal of R.

Lemma 4.28. Let I be a left fuzzy hyperideal of a fuzzy hyperring (R,⊕,⊙). If I is left quasi-
regular, then I is right quasi-regular.

Proof. If I is left quasi-regular and a ∈ I , then there exists r ∈ R such that r⊚ a = r⊕ a⊕ (r⊙
a) = χ{0}. Now for t ∈ R we have;

(r ⊚ a)(t) = (r ⊕ a⊕ (r ⊙ a))(t) = χ{0}(t) ⇒
∨

p∈R χ{r+a}(p) ∧ χ{p+(r·a)}(t) = χ{0}(t) ⇒∨
χ{r+a+(r·a)}(t) = χ{0}(t).

thus r + a+ (r · a) = 0, so r = −a− (r · a). Then we have;∨
χ{−a−(r·a)}(t) = χ{r}(t) ⇒

∨
p∈R χ{−a+(−p))}(t) ∧ χ{r·a}(p) = χ{r}(t).
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Then χ{r} = (−a)⊕ (−r⊙a) ∈ F ∗(I), so there exists s ∈ R such that s⊚ r = s⊕ r⊕ (s⊙ r) =
χ{0}, whence s is right quasi-regular. The fuzzy hyperoperation ⊚ is easily seen to be associative.
Consequently

χ{a} = {0}⊚ a = (s⊚ r)⊚ a = s⊚ (r ⊚ a) = s⊚ {0} = χ{s},

i.e., a = s. Therefore a, and hence I , is right quasi-regular.

Definition 4.29. A fuzzy hyperring R is said to be Jacobson semisimple (or J-semisimple) if its
Jacobson radical J(R) = {0}. R is said to be a radical fuzzy hyperring if J(R) = R.

Theorem 4.30. Let R be a fuzzy hyperring.

(i) If R is primitive, then R is semisimple.

(ii) If R is simple and semisimple, then R is primitive.

(iii) If R is simple, then R is either a primitive semisimple or a radical fuzzy hyperring.

Proof. (i): R has a faithful simple left fuzzy hypermodule M over fuzzy hyperring R, whence
J(R) ⊂ Ann(M) = {0}.

(ii): R ̸= {0} by simplicity. There must exist a simple left fuzzy hypermodule M over fuzzy
hyperring R; (otherwise by Theorem 4.26-(i) J(R) = R ̸= {0}, contradicting semisimplicity).
The left annihilator Ann(M) is a fuzzy hyperideal of R by Definition 4.25 and Ann(M) ̸= R
(since RM ̸= {0}). Consequently Ann(M) = {0} by simplicity, whence M is a simple faithful
fuzzy hypermodule over fuzzy hyperring R. Therefore R is primitive.

(iii): If R is simple then the fuzzy hyperideal J(R) is either R or zero. In the former case R
is a radical fuzzy hyperring and in the latter R is semisimple and primitive by (ii).

Definition 4.31. A fuzzy hyperideal P of a fuzzy hyperring R is said to be left (resp. right)
primitive fuzzy hyperideal if the quotient fuzzy hyperring R/P is a left (resp. right) primitve
fuzzy hyperring.

Definition 4.32. A fuzzy hyperideal P of a commutative fuzzy hyperring (R,⊕,⊙) is said to be
left (resp. right) Semiprimitive fuzzy hyperideal if for every a, b ∈ R, a ⊙ b ∈ F ∗(P ), a ∈ P
imply there exists n ∈ such that bn ∈ F ∗(P ).

Definition 4.33. A fuzzy hyperring (R,⊕,⊙) is said to be a subdirect product of the family of
fuzzy hyperrings {Ri : i ∈ I} if R is a fuzzy subhyperring of the direct product

∏
Ri such that

πk(R) = Rk for every i ∈ I , k ∈ I , where πk :
∏
Ri → Rk is the canonical epimorphism.

Theorem 4.34. If f : R → S is a homomorphism of fuzzy hyperrings, then the kernel of f is a
fuzzy hyperideal in R. Conversely if I is a fuzzy hyperideal in R, then the map π : R → R/I
given by r 7→ r + I is an epimorphism of fuzzy hyperrings with kernel I .

Proposition 4.35. A nonzero fuzzy hyperring R is semisimple if and only if R is isomorphic to a
subdirect product of primitive fuzzy hyperrings.

Proof. Suppose R is nonzero semisimple and let P be the set of all left primitive fuzzy hy-
perideals of R. Then for each P ∈ P , R/P is a primitive fuzzy hyperring (Definition 4.31).
By Theorem 4.26-(iii), {0} = J(R) =

⋂
P∈P P . For each P let λP : R → R/P and πP :∏

Q∈P R/Q → R/P be the respective canonical epimorphisms. The map ϕ : R →
∏

P∈P R/P

given by r 7→ {λP (r)}P∈P = {r + p}P∈P is a monomorphism of fuzzy hyperrings such that
πPϕ(R) = R/P for every P ∈ P .

Conversely suppose there is a family of primitive fuzzy hyperrings {Ri : i ∈ I} and a
monomorphism of fuzzy hyperrings ϕ : R →

∏
Ri such that πPϕ(R) = Rk for each k ∈ I .

Let ψk be the epimorphism πPϕ. Then R/Kerψk is isomorphic to the primitive fuzzy hyperring
Rk (by first isomorphism theorem), whence Kerψk is a left primitive fuzzy hyperideal of R
(Definition 4.31). Therefore J(R) ⊂

⋂
k∈I Kerψk by Theorem 4.26-(iii). However, if r ∈ R

and ψk(r) = {0}, then the k-th component of ϕ(r) in
∏
Ri is zero. Thus if r ∈

⋂
k∈I Kerψk, we

must have ϕ(r) = {0}. Since ϕ is a monomorphism, r = 0. Therefore J(R) ⊂
⋂

k∈I Kerψk =
{0}, whence R is semisimple.
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Remark 4.36. Propositions 4.23 and 4.35 imply that a nonzero commutative semisimple fuzzy
hyperring is a subdirect product of fuzzy hyperfields.

Definition 4.37. The prime radical P (R) of a hyperring R is the intersection of all prime hy-
perideals of R. lf R has no-prime hyperideals, then P (R) = R. A hyperring R such that
P (R) = {0} is said to be semiprime.

Theorem 4.38. (Recursion Theorem) If S is a set, a ∈ S and for each n ∈ N , fn : S → S is a
function, then there is a unique function φ : N → R such P (R) = R. A hyperring R such that
P (R) = 0 is said to be semiprime. that φ(0) = a and φ(n+ 1) = f(φ(n)) for every n ∈ N .

Proposition 4.39. A fuzzy hyperring R is semiprime if and only if R has no nonzero nilpotent
fuzzy hyperideals.

Proof. If I is a nilpotent fuzzy hyperideal and K is any prime fuzzy hyperideal, then for some
n, In = {0} ⊂ K, whence I ⊂ K. Therefore I ⊂ P (R). Consequently, if R is semiprime, so
that P (R) = {0}, then the only nilpotent fuzzy hyperideal is the zero fuzzy hyperideal.

Conversely, suppose that R has no nonzero nilpotent fuzzy hyperideals. We must show that
P (R) = {0}. It suffices to prove that for every nonzero element a of R there is a prime fuzzy
hyperideal K such that a ∈ K, whence a ∈ P (R). We first observe that Ann(R) ∩ R is a
nilpotent fuzzy hyperideal of R since

(Ann(R) ∩R)(Ann(R) ∩R) ⊂ Ann(R)R = {0}.

Consequently,Ann(R) = Ann(R)∩R = {0}. SimilarlyAnnr(R) = {0}. If b is any nonzero el-
ement of R, we claim that RbR ̸= {0}. Otherwise Rb ⊂ Ann(R) = 0, whence Rb = {0}. Thus
b ∈ Annr(R) = {0}, which is a contradiction. Therefore RbR is a nonzero fuzzy hyperideal
of R and hence not nilpotent. Consequently bRb ̸= {0} (otherwise (RbR)2 ⊂ RbRbR = {0}).
For each nonzero b ∈ R choose f(b) ∈ bRb such that f(b) ̸= {0}. Then by the Recursion
Theorem (4.38) of the Introduction there is a function φ : N → R such that φ(0) = a and
φ(n+ 1) = f(φ(n)).
Let an = φ(n) so that an+l = f(an) ̸= {0}. Let S = {ai : i ≥ 0}. Use Zorn’s Lemma to find
a fuzzy hyperideal K that is maximal with respect to the property K ∩ S = {0} (since 0 /∈ S
there is at least one fuzzy hyperideal disjoint from S).
Since a = a0 ∈ S, a ∈ K and K ̸= R. To complete the proof we need only show that
K is prime. If A and B are fuzzy hyperideals of R such that A ̸⊂ K and B ̸⊂ K, then
(A+K) ∩ S ̸= ∅ and (B +K) ∩ S ̸= ∅ by rnaximality. Consequently for some i,j, ai ∈ A+K
and aj ∈ B +K. Choose m > max{i, j}. Since an+1 = f(an) ∈ anRan for each n, it follows
that am ∈ (aiRai) ∩ (ajRaj) ⊂ (A+K) ∩ (B +K). Consequently,

am+1 = f(am) ∈ amRam ⊂ (A+K)(B +K) ⊂ AB +K.

Since am+1 /∈ K, we must have AB ̸⊂ K. Therefore K is a prime fuzzy hyperideal.

Remark 4.40. A fuzzy hyperring R is said to be a prime fuzzy hyperring if the zero fuzzy
hyperideal is a prime fuzzy hyperideal (that is, if I, J are fuzzy hyperideals such that IJ = {0},
then I = {0} or J = {0}).

Proposition 4.41. A fuzzy hyperring R is semiprime if and only if R is isomorphic to a subdirect
product of prime fuzzy hyperrings.

Proof. This proposition is simply Proposition 4.35 with the words "semisimple" and "primitive"
changed to "semiprime" and "prime" respectively. With this change and the use of Proposition
4.6 in place of Definition 4.31 , the proof of Proposition 4.35 carries over verbatim to the present
case.

Example 4.42. Let (R,+, ·) be a ring with identity and G be a normal subgroup of the multi-
plicative e semigroup (R×, ·), where R× = R \ {0}. Take R̄ = R/G = {aG : a ∈ R} with the
fuzzy hyperaddition and multiplication given by:

aG⊞ bG = χ{aG+bG} and aG⊡ bG = χ{abG}.
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Then (R/G,⊞,⊡) is a fuzzy hyperring with identity, which is called the quotient fuzzy hyperring
of R by G, and for short it is denoted by R̄ and an element aG is written as ā. Moreover, if R is
a field, then (R,⊞,⊡) is a fuzzy hyperfield.

For a fuzzy hyperring R, by Spec(R) we mean the set of all prime fuzzy hyperideal of R.
Consider the mapping ϕG : R→ R̄, by ϕG(a) = aG. It is called the canonical map or canonical
projection.

In the next lemma we give some basic properties of the quotient fuzzy hyperrings.

Lemma 4.43. Let R be a ring with identity and G be a normal subgroup of multiplicative semi-
group (R∗ = R \ {0}, .). Then for the quotient fuzzy hyperring R̄ = (R/G,⊞,⊡) the following
statements are satisfied:

(i) The canonical map ϕG : R→ R̄ is a good epimorphism of fuzzy hyperrings.
(ii) If I is an ideal of R, then ϕ(I) = Ī = IG is a hyperideal of R̄.
(iii) If J is a fuzzy hyperideal of R̄, then ϕN−1(J) is an ideal of R.
(iv) There is a one to on correspondence between the fuzzy hyperideals of (R/G,⊕,⊙) and

the ideals of R disjoint from G. More precisely, every fuzzy hyperideal of J̃ of R̄ is of the form
J̄ = JG, where J is an ideal of R with disjoint from G.

(v) There is a one to on correspondence between the prime fuzzy hyperideals of (R/G,⊕,⊙)
and the prime ideals of R which are disjoint from G. In fact, every prime fuzzy hyperideal of R̄
is of the form P̄ = PG, where P is a prime ideal of R and disjoint with G.

Example 4.44. (i) K = {0, 1} is a fuzzy hyperfield with fuzzy hyperoperation and multiplica-
tion given in the following tables:

⊕ 0 1
0 χ{0} χ{1}

1 χ{1} χ{K}

⊙ 0 1
0 χ{0} χ{0}

1 χ{0} χ{1}

Then K is primitive, since every fuzzy hypermodules over K is a fuzzy vector hyperspace
and fuzzy vector hyperspace of dimension 1 are simple over K. In particular K is a simple
K-vector hyperspace.

(ii) (Sign fuzzy hyperfield) The set S = {−1, 0, 1} is is a a fuzzy hyperfield under fuzzy
hyperoperation and multiplication given by following tables:

⊞ -1 0 1
-1 χ{−1} χ{−1} χ{S}

0 χ{−1} χ{0} χ{1}

1 χ{S} χ{1} χ{1}

⊡ -1 0 1
-1 χ{1} χ{0} χ{−1}

0 χ{0} χ{0} χ{0}

1 χ{−1} χ{0} χ{1}

By the same reason is a primitive fuzzy hyperring, since every fuzzy hyperfield is primitive.

Let R be a ring with identity and M be a unitary module over R. Define a relation ∼ on V as
follows:

x ∼ y ⇔ x = ty , ∃t ∈ G.

Let ¯̄M be the set of all equivalence classes of M modulo ∼. Define a fuzzy hyperoperation +̇ on
M̄ as follows:

x̄
◦
+ ȳ = a+ x = χ{x+y}.

Then (M̄,
◦
+) becomes a canonical fuzzy hypergroup. Let RF be the quotient fuzzy hyperfield

over R̄ by G. Now define the external composition from R̄× M̄ to R̄ as follows:

ā
◦
× x̄ = a · x = χ{x·y} , ā ∈ R̄, x̄ ∈ R̄.

This composition satisfies the axioms of fuzzy hypermodule, and so M̄ becomes a fuzzy vector
hyperspace. This hypervector space is called quotient vector hyperspace of M R̄. Under the
above construction we have the next result.
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Theorem 4.45. . LetR be a fuzzy hyperring with identity andM be an unitary fuzzyR−hypermodule.
Then the following are satisfied:

(i) Every fuzzy R̄−hypermodules K is an R−module under construction by scalar under the
canonical mapping Π = ΠG : M → R̄, given by rx = ϕG(r)x = r̄x. Moreover, the map
M → M̄ , by m = m̄ is a fuzzy R̄−hypermodules homomorphism.

(ii) If N is an R−submodule of M , then ϕ(N) = N̄ = GN is a fuzzy R̄−subhypermodule of
K.

(iii) If K is a fuzzy R̄−hypermodules of K, then ϕ−1(N) is an R−submodule of M .
(iv) There is a one to one correspondence between the fuzzy R̄−subhypermodules of M̄ and

the R−submodules of M containing G.
(v) If M is (resp. Artinian) Noetherian R−modules, then M̄ is so.
(vi) If R is primitive, then R̄ is too.
(vii) If R is semisimple, so is R̄.

Theorem 4.46. Let R be a fuzzy hyperring with identity and N be a normal subgroup of (R∗, .).
Then

(i) If P is a (resp. simple) semiprime ideal of R, then P̄ is (resp. simple) primitive fuzzy
hyperideal of R̄.

(ii) If R is primitive then R̄ is so.

In this step we introduce one of the important relation on a fuzzy hyperring (R,⊕,⊙). Let U
denotes the set of all finite sum of finite products of elements ofR. Note that an element u ∈ FU ,
may be a sum of only one element. Define relation γ on R as follows:

aγb ⇐⇒ µf ∈ FU(R) s.t. µf (x) > 0, µf (y) > 0,

in fact there exist n, ki ∈ N and xij ∈ R, such that µf = Σ
⊕
1≤i≤nΠ

⊙
1≤j≤ki

xji, where
∑⊕

i and∏⊙
i are finite fuzzy hypersum and finite fuzzy hyperproduct of the fuzzy hyperring (R,⊕,⊙)

respectivly. As above, we obtain∑⊕
1≤i≤n

∏⊙
1≤j≤ki

xji)(x) > 0 and
∑⊕

1≤i≤n

∏⊙
1≤j≤ki

xji)(y) > 0.

.
Clearly, γ relation is reflexive and symmetric. Let γ∗ denotes the transitive closure of γ.

Consider the quotient R/γ∗, and define operations + and × on it as follow:

γ∗(a) + γ∗(b) = γ∗(c) = {c : c ∈ γ∗(a)⊕ γ∗(b)} = {c : (γ∗(a)⊕ γ∗(b))(c) > 0};
γ∗(a)× γ∗(b) = γ∗(d) = {d : d ∈ γ∗(a)⊙ γ∗(b)} = {d : (γ∗(a)⊙ γ∗(b))(d) > 0}.

Then γ∗ is the smallest equivalence relation ofR, such that the quotient setR/γ∗ is a ring, which
is called the fuzzy fundamental relation of R, and R/γ∗ is called fundamental ring of R.

Remark 4.47. As it is well known the fuzzy fundamental relation an important role in the theory
of algebraic fuzzy hyperstructures. At the following we pose two important question relevant to
fundamental relation on an fuzzy R-hypermodule and primitive property of R.

Question: Consider an arbitrary fuzzy hyperring with identity R, is there the smallest
strongly regular relation say ρ on R such that the quotient ring R/ρ be a primitive ring?

Now, letR be an arbitrary primitive fuzzy hyperring with identity andR/γ∗ be a fundamental
ring of R, i.e., R has a faithful simple left fuzzy hyperideale I of fuzzy hyperring R, whence
Ann(I) = {0}. So we have, I/γ∗ is a faithful simple left fuzzy hyperideale of fuzzy hyperring
R/γ∗.

Proposition 4.48. If R be an arbitrary primitive fuzzy hyperring with identity, then the funda-
mental ring R/γ∗ is a primitive ring.

5 Prime and Primitive Fuzzy Hyperring by membership functions

In the section, we will obtain the some result of prime and primitive fuzzy hyperring by mem-
bership functions in the sense of Sen, Ameri and Chowdhury in [4].
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Let X be a set. A fuzzy subset S of X is characterized by a membership function µS : X →
[0, 1] which associate with point x ∈ X it’s grade or degree of membership µS(x) ∈ [0, 1].

Here, F (X) denote the set of all fuzzy subset of X and F ∗(X) = F (X) \ {∅}.

Definition 5.1. Let R be a fuzzy hyperring (with identity) and ξ ∈ FI (R), where FI (R) denoted
the set of all fuzzy hyperideal of R. Then ξ is called prime fuzzy hyperideal of R if ξ is non-
constant and µ ◦ ν ⊆ ξ; µ, ν ∈ FI (R), implies µ ⊆ ξ or ν ⊆ ξ.

Note that for x, xi, y, yi, z ∈ R, µ ◦ ν is defin as follows;

(µ ◦ ν)(z) =
∨

z∈xy µ(x) ∧ ν(y),

but,

(µν)(z) =
∨

z∈
∑

i xiyi
(
∧

i µ(xi) ∧ ν(yi)).

Theorem 5.2. LetR be a fuzzy hyperring with identity. Then ξ ∈ FI (R) is prime fuzzy hyperideal
of R if and only if ξ is non-constant and µν ⊆ ξ; µ, ν ∈ FI (R), implies µ ⊆ ξ or ν ⊆ ξ.

Proof. Let ξ ∈ FI (R) is prime fuzzy hyperideal of R and µν ⊆ ξ; µ, ν ∈ FI (R). By the
theorem (3.1.18) in [16], we have; µ ◦ ν ⊆ ξ, thus by hypothesis, implies µ ⊆ ξ or ν ⊆ ξ and
conversely.

Note that If µ ∈ FI (R), we let µ∗ = {x ∈ R : µ(x) = µ(0)}, and also for every x ∈ R we
have; µ(0) ≥ µ(x).

Theorem 5.3. If ξ ∈ FI (R) is prime fuzzy hyperideal of R, then ξ∗ is prime fuzzy hyperideal of
R.

Proof. Let ξ ∈ FI (R) is prime fuzzy hyperideal of R and A,B ⊆ ξ∗. ξ∗ is non-constant, since ξ
is non-constant, i.e., ξ ̸= ξ(0) then ξ∗ ̸= ξ∗(0). Then 1A, 1B ∈ FI (R), (1A ̸= y = 1, i.e., y ∈ A,
in fact 1A = χA) and 1A ◦ 1B ⊆ 1ξ∗ ⊆ ξ. Now, since ξ is prime fuzzy hyperideal of R, so either
1A ⊆ ξ or 1B ⊆ ξ, thus A ⊆ ξ∗ or B ⊆ ξ∗. (Since if 1A ⊆ ξ, then for x ∈ A, 1A(x) ≤ ξA(x),
i.e., 1 ≤ ξA(x), so ξA(0) ≤ ξA(x). Thus ξA(x) = ξA(0), this implies x ∈ ξ∗.)

Theorem 5.4. If ξ ∈ F (R), then ξ is prime fuzzy hyperideal of R if and only if ξ∗ is prime fuzzy
hyperideal of R and ξ(0) = 1, ξ(R) = {1, c}, where c ̸= 1.

Proof. Let ξ ∈ FI (R) is prime fuzzy hyperideal of R. Then by the theorem 5.3, ξ∗ is prime
fuzzy hyperideal of R. We now show that ξ(0) = 1. We suppose that ξ(0) ≤ 1, since ξ∗ is
non-constant, there exists x ∈ R such that ξ(x) ≤ ξ(0).

Let µ, ν ∈ F (R) be defined by µ(x) = 1 if x ∈ ξ∗ and µ(x) = 0 if x /∈ ξ∗ (In fact µ = χξ∗)
and ν(x) = ξ(0), for x ∈ R. clearly µ, ν ∈ FI (R) and µ ◦ ν ⊆ ξ. Since µ(0) = 1 > ξ(0) and
ν(x) = ξ(0) > ξ(x), then for x ∈ ξ∗, µ ⊈ ξ and ν ⊈ ξ. This is a conteradiction since ξ is prime.
Hence ξ(0) = 1.

We now show that |ξ(R)| = 2. Let x, y ∈ R\ξ∗ and ξ(x) = c. Then c⟨x⟩ = ⟨xc⟩ ⊆ ξ (note
that xc is a fuzzy pointe), this is xc(y) = 1 i.e. y = c and xc(y) = 0 i.e. y ̸= c. Clearly,
1⟨x⟩, cR ∈ F (R), 1⟨x⟩ ⊈ ξ. Thus ξ(x) = c = cR(y) ≤ ξ(y). Similarly, ξ(y) ≤ ξ(x). Hence
ξ(x) = ξ(y) = c. Thus |ξ(R)| = 2 and ξ = 1ξ∗ ∪ cR, where ξ∗ is prime fuzzy hyperideal of R
and c ̸= 1.

Conversely, suppose ξ satisfies the given condition. Then ξ is not constant. Assium that there
exist µ, ν ∈ FI (R) such that µ ◦ ν ⊆ ξ, but µ ⊈ ξ and ν ⊈ ξ.

Then there exist x, y ∈ R such that µ(x) ≰ ξ(x) and ν(y) ≰ ξ(y). Then ξ(x) = ξ(y) = c,
x, y ∈ R\ξ∗, µ(x) ≰ c and ν(y) ≰ c since x, y ∈ R\ξ∗ and ξ∗ is prime fuzzy hyperideal of R,
xy ⊆ ξ∗. Thus ξ(z) = c, ∀z ∈ xy.

Now,

µ(x) ∧ ν(y) ≤ (µ ◦ ν)(z) ≤ ξ(z) = c ,∀z ∈ xy.

Thus µ(x) ≤ c and ν(y) ≤ c a conteradiction.

Theorem 5.5. If ξ ∈ F (R), then ξ is prime fuzzy hyperideal of R if and only if ξ is non-constant
and xa ◦ yb ⊆ ξ, x, y ∈ R, a, b ∈ [0, 1], then either xa ⊆ ξ or yb ⊆ ξ.
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Proof. Let ξ ∈ F (R) is prime fuzzy hyperideal of R and xa ◦ yb ⊆ ξ, x, y ∈ R, a, b ∈ [0, 1]. So
by the theorem (3.1.35) in [16], for z ∈ xy;

(xa ◦ yb)(z) ⊆ (⟨xa⟩ ◦ ⟨yb⟩)(z) = (⟨xa⟩⟨yb⟩)(z) = (⟨(xy)a∧b⟩)(z) = a ∧ b ≤ 1ξ(z) ⊆ ξ(z).

Now, since ξ is prime fuzzy hyperideal of R, so either ⟨xa⟩ ⊆ ξ or ⟨yb⟩ ⊆ ξ, thus xa ⊆ ξ or
yb ⊆ ξ.

Conversely, let µ ◦ ν ⊆ ξ; µ, ν ∈ FI (R). Now, we give, µ = xa and ν = yb, x, y ∈ R,
a, b ∈ [0, 1], so by hypothesis, we obtian, xa ⊆ ξ or yb ⊆ ξ, i.e., µ ⊆ ξ or ν ⊆ ξ.

Theorem 5.6. Let R be a fuzzy hyperring with identity. Every maximal fuzzy hyperideal of R is
a prime fuzzy hyperideal.

Proof. Let ξ ∈ FI (R) is maximal fuzzy hyperideal of R and xa ◦ yb ⊆ ξ, x, y ∈ R, a, b ∈ [0, 1].
We suppose, xa ⊈ ξ, so for z ∈ ξ such that z /∈ xa, we have; ⟨xa⟩ ⊆ ⟨xa, z⟩ ⊆ ξ, by maximalty
⟨xa, z⟩ = ξ. Therefore there exist m,n ∈ Z such that mx + xn + z = 1, so for y ∈ R,
mxy + xny + zy = y. thus z ∈ yb, i.e. yb ⊆ ξ.

Example 5.7. (i). For every prime hyperideal P , χP is a prime fuzzy hyperideal. Since, if
A,B ⊆ p, then for every x, y ∈ P and z ∈ xy, we have;

(1A ◦ 1B)(z) ≤ 1P (z) = χP (z) ⇒
∨

z∈xy χA(x) ∧ χB(y) ≤ χP (z) ⇒ χAB(z) ≤ χP (z)
⇒ AB ⊆ P .

By hypothesis, we have; A ⊆ P or B ⊆ P . Thus χA ⊆ χP or χB ⊆ χP .
(ii). Let R be a hyperring and P be a prime hyperideal of R. Define a fuzzy subset ξ of R as

follow:

ξ(x) =

{
1; x ∈ P

α; x /∈ P, α ∈ [0, 1]
.

then ξ is prime fuzzy hyperideal. Since, let µ ◦ ν ⊆ ξ; µ, ν ∈ FI (R). So for every x, y ∈ P and
z ∈ xy ⊆ P , we have; ∨

z∈xy µ(x) ∧ ν(y) ≤ ξ(z).

Now, since P is prime hyperideal ofR, so x ∈ P or y ∈ P , thus µ(x) = 1 , ν(y) = 0 or µ(x) = 0
, ν(y) = 1, i.e., ν(z) = 0 ≤ α = ξ(z) or µ(z) = 0 ≤ α = ξ(z). Therefore, µ ⊆ ξ or ν ⊆ ξ.

Definition 5.8. A hyperring R is called prime hyperring, if for all non-zero hyperideales A and
B of R, AB ̸= 0.

Definition 5.9. A hyperringR is called prime fuzzy hyperring, if for non-zero fuzzy hyperideales

µ and ν of R, µ ◦ ν ̸= 10 (=
∼
0).

Proposition 5.10. R is a prime fuzzy hyperring if and only if all non-zero fuzzy hyperideales µ
and ν of R, µν ̸= 0.

Proof. Let R be a prime fuzzy hyperring and µ and ν be non-zero fuzzy hyperideales of R. So
µ ◦ ν ̸= 10, thus for xi, yi ∈ P and z ∈ xiyi, we have;

∨
z∈xiyi

µ(xi)∧ ν(yi) ̸= 10(z). Therefore,∨
z∈xiyi

(
∧

i µ(xi) ∧ ν(yi)) ̸= 10(z), then µν ̸= 0 and conversely.

Definition 5.11. A proper fuzzy hyperideal P of commutative fuzzy hyperring with identity is
called a semiprime fuzzy hyperideal if for every I ∈ FI (R), I ◦ I ⊆ P implies I ⊆ P .

Theorem 5.12. Let P be proper fuzzy hyperideal. Then P is semiprime fuzzy hyperideal if and
only if for every µ ∈ FI (R) and µ2 = µ ◦ µ ⊆ P implies µ ⊆ P .

Proof. Let P be proper semiprime fuzzy hyperideal and for every µ ∈ FI (R) and µ ◦ µ ⊆ P .
We give µ = 1I , I ∈ FI (R). So we have; 1I ◦ 1I ⊆ P , then for every x, y ∈ P and z ∈ xy, we
obtian;

(1I ◦1I)(z) ≤ 1P (z) = χP (z) ⇒
∨

z∈xy χI(x)∧χI(y) ≤ χP (z) ⇒ χI2(z) ≤ χP (z) ⇒ I2 ⊆ P .
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By hypothesis, we have; I ⊆ P . Thus χI ⊆ P , i.e., µ ⊆ P .

Remark 5.13. Clearly, every prime fuzzy hyperideal is fuzzy semiprime, but the convers is not
true, because let P is semiprime fuzzy hyperideal which is not prime. Then χP is a semiprime
fuzzy hyperideal, which is not prime fuzzy hyperideal.

Theorem 5.14. If ξ is semiprime fuzzy hyperideal of R, then ξ∗ is semiprime fuzzy hyperideal of
R.

Proof. Let ξ is semiprime fuzzy hyperideal of R and A2 ⊆ ξ∗. Then 1A ◦ 1A ⊆ 1ξ∗ ⊆ ξ. Now,
since ξ is semiprime fuzzy hyperideal of R, so 1A ⊆ ξ, thus A ⊆ ξ∗.

Theorem 5.15. Let ξ ∈ F (R). Then ξ is semiprime fuzzy hyperideal of R if and only if ξ∗ is
semiprime fuzzy hyperideal of R and ξ(0) = 1, ξ(R) = {1, α}, for α ∈ [0, 1]\{1}.

Theorem 5.16. Let ξ ∈ F (R). Then ξ is semiprime fuzzy hyperideal of R if and only if ξ is
non-constant and xα ◦ xβ ⊆ ξ, x ∈ R, α, β ∈ [0, 1], then either xα ⊆ ξ or xβ ⊆ ξ.
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