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Abstract Let
(
Hn

)
n≥0 be the generalized Padovan sequence defined by Hn = Hn−2+Hn−3

for n ≥ 3 with initial terms H0 = a,H1 = b and H2 = c, where a, b, c are real numbers, not all
being zero. This paper aims to provide an explicit formula for computing the sum

∑n
r=1 Hrx

r,
and a recursive formula for

∑n
r=1 r

mHrx
r for all integers m ≥ 1, where x is any real number

such that 1 − x2 − x3 ̸= 0. Furthermore, an exact formula for the infinite sum
∑∞

r=1 Hrx
r

is provided, along with a recurrence formula for
∑∞

r=1 r
mHrx

r for all integers m ≥ 1 within
the interval of convergence. Additionally, formulas for such sums related to Padovan, Perrin,
and Van der Laan sequences are deduced. Finally, algorithms for finding such infinite sums are
developed, provided that they converge.

1 Introduction

The Padovan sequence
(
Pn

)
n≥0 is defined by

Pn = Pn−2 + Pn−3, (1.1)

for n ≥ 3 with initial terms P0 = P1 = P2 = 1. It is well-known that the sequence
(

Pn+1
Pn

)
n≥0

converges to the number ρ = 3

√
1
2 +

√
23
108 + 3

√
1
2 −

√
23
108 , the real root of x3 = x + 1. The

approximate value of ρ is 1.32471795724. The Padovan sequence can be extended to negative
subscripts by

P−n = P−(n−3) − P−(n−1),

for n ≥ 1. The Perrin sequence
(
Qn

)
n≥0 and the Van der Laan sequence

(
Vn

)
n≥0 are also

defined by the same recurrence (1.1) with initial terms Q0 = 3, Q1 = 0, Q2 = 2, and V0 =
1, V1 = 0, V2 = 1. These numbers are extensively studied by many researchers (see [3, 7, 9, 11,
12, 13, 15, 14, 16]). Some intriguing summation identities about Padovan and Perrin numbers
can be found in [2]. Recently, Dişkaya and Menken [8] derived an expression for the Brousseau
weighted sum

∑n
r=1 r

mPr of the Padovan numbers.
The generalized Padovan sequence

(
Hn

)
n≥0 is defined by Hn = Hn−2+Hn−3 for n ≥ 3 with

initial terms H0 = a,H1 = b and H2 = c, where a, b, c are real numbers with (a, b, c) ̸= (0, 0, 0).
These numbers can be extended to negative subscripts by H−n = H−(n−3)−H−(n−1), for n ≥ 1.
Note that the ratio Hn+1

Hn
also converges to ρ as n → ∞. In this paper, we find an explicit formula

for the sum
n∑

r=1

Hrx
r,
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and a recurrence formula for the sum
n∑

r=1

rmHrx
r,

where m is a positive integer and x is any real number with 1 − x2 − x3 ̸= 0. Using these
formulas, we establish a recurrence scheme for the finite sums

n∑
r=1

rmPrx
r,

n∑
r=1

rmQrx
r, and

n∑
r=1

rmVrx
r.

Similar types of sums (with x = 1) involving the classical Fibonacci numbers were first studied
by Brousseau [5, 6]. For some related studies, see [1, 10]. The generating functions of Padovan,
Perrin, and Van der Laan numbers can be retrieved as well. We also develop recurrence formulas
to find the sum of the power series

∞∑
r=1

rmPrx
r,

∞∑
r=1

rmQrx
r, and

∞∑
r=1

rmVrx
r

in their interval of convergence. The method we employ is akin to the approach utilized by
Brandão and Martins [4] for the classical Fibonacci numbers.

2 Finite Sums

In this section, we find a recurrence formula for the sum
∑n

r=1 r
mHrx

r for all integers m,n ≥ 1,
where x is any real number with 1 − x2 − x3 ̸= 0. We use that formula (along with the exact
formula for m = 0) to derive numerous summation identities related to Padovan-type sequences
such as Padovan, Perrin, and Van der Laan sequences.

2.1 Explicit formulas

We begin with finding an explicit formula for the sum
∑n

r=k Hrx
r, for all integers n ≥ k ≥ 1.

Theorem 2.1. If 1 − x2 − x3 ̸= 0, then for all integers n ≥ k ≥ 1, the following identity holds:
n∑

r=k

xrHr =
xk

(
Hk + xHk+1 + x2Hk−1

)
− xn+1

(
Hn+1 + xHn+2 + x2Hn

)
1 − x2 − x3 . (2.1)

Proof. Let S denote the sum on the left-hand side of (2.1). Then

(1 − x2 − x3)S = (1 − x2 − x3)
n∑

r=k

xrHr

=
n∑

r=k

xrHr −
n∑

r=k

xr+2Hr −
n∑

r=k

xr+3Hr.

Applying a suitable change of variable in the last two summations on the right-hand side yields

(1 − x2 − x3)S =
n∑

r=k

xrHr −
n+2∑

r=k+2

xrHr−2 −
n+3∑

r=k+3

xrHr−3

= xkHk + xk+1Hk+1 + xk+2Hk+2 +
n∑

r=k+3

xrHr

− xk+2Hk − xn+1Hn−1 − xn+2Hn −
n∑

r=k+3

xrHr−2

− xn+1Hn−2 − xn+2Hn−1 − xn+3Hn −
n∑

r=k+3

xrHr−3.
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Thus,

(1 − x2 − x3)S = xkHk + xk+1Hk+1 + xk+2(Hk+2 −Hk

)
− xn+1(Hn−1 +Hn−2

)
− xn+2(Hn +Hn−1

)
− xn+3Hn +

n∑
r=k+3

xr
(
Hr −Hr−2 −Hr−3

)
.

Now, using the Padovan recurrence Hi = Hi−2 +Hi−3, we obtain

(1 − x2 − x3)S = xkHk + xk+1Hk+1 + xk+2Hk−1 − xn+1Hn+1 − xn+2Hn+2 − xn+3Hn.

Thus,

S =
xk

(
Hk + xHk+1 + x2Hk−1

)
− xn+1

(
Hn+1 + xHn+2 + x2Hn

)
1 − x2 − x3 .

Setting k = 1 in (2.1) yields the following corollary:

Corollary 2.2. If 1 − x2 − x3 ̸= 0, then for all integers n ≥ 1, the following identity holds:
n∑

r=1

xrHr =
x
(
ax2 + cx+ b

)
− xn+1

(
Hn+1 + xHn+2 + x2Hn

)
1 − x2 − x3 . (2.2)

In particular,
n∑

r=1

xrPr =
x
(
x2 + x+ 1

)
− xn+1

(
Pn+1 + xPn+2 + x2Pn

)
1 − x2 − x3 ,

n∑
r=1

xrQr =
x
(
3x2 + 2x

)
− xn+1

(
Qn+1 + xQn+2 + x2Qn

)
1 − x2 − x3 ,

and
n∑

r=1

xrVr =
x
(
x2 + x

)
− xn+1

(
Vn+1 + xVn+2 + x2Vn

)
1 − x2 − x3 .

Corollary 2.3. For all integers n ≥ 1, we have
n∑

r=1

Hr = Hn +Hn+1 +Hn+2 − (a+ b+ c). (2.3)

In particular,
n∑

r=1

Pr = Pn + Pn+1 + Pn+2 − 3, (2.4)

n∑
r=1

Qr = Qn +Qn+1 +Qn+2 − 5, (2.5)

and
n∑

r=1

Vr = Vn + Vn+1 + Vn+2 − 2. (2.6)

Proof. It follows by setting x = 1 in Corollary 2.2.

Since Hn +Hn+1 +Hn+2 = Hn+5, the identity (2.3) simplifies to
n∑

r=1

Hr = Hn+5 − (a+ b+ c).

Therefore,
n∑

r=1

Pr = Pn+5 − 3,
n∑

r=1

Qr = Qn+5 − 5, and
n∑

r=1

Vr = Vn+5 − 2.
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Corollary 2.4. For all integers n ≥ 1, the following identity holds:
n∑

r=1

(−1)rHr = (−1)n
(
Hn +Hn+1 −Hn+2

)
− (a+ b− c). (2.7)

In particular,
n∑

r=1

(−1)rPr = (−1)n
(
Pn + Pn+1 − Pn+2

)
− 1, (2.8)

n∑
r=1

(−1)rQr = (−1)n
(
Qn +Qn+1 −Qn+2

)
− 1, (2.9)

and
n∑

r=1

(−1)rVr = (−1)n
(
Vn + Vn+1 − Vn+2

)
. (2.10)

Proof. It follows by setting x = −1 in Corollary 2.2.

Since Hn +Hn+1 −Hn+2 = Hn−2, the identity (2.7) simplifies to
n∑

r=1

(−1)rHr = (−1)nHn−2 − (a+ b− c).

Therefore,
n∑

r=1

(−1)rPr = (−1)nPn−2−1,
n∑

r=1

(−1)rQr = (−1)nQn−2−1, and
n∑

r=1

(−1)rVr = (−1)nVn−2.

2.2 Recurrence formulas

Let us now derive our main recurrence formula. Let x be any real number. For all integers m ≥ 0
and n ≥ 1, we define

S(m)
n (x) =

n∑
r=1

rmHrx
r. (2.11)

Theorem 2.5. If S(m)
n (x) is as defined in (2.11) and 1 − x2 − x3 ̸= 0, then for all integers

m,n ≥ 1, we have

S(m)
n (x) =

1
1 − x2 − x3

[
ax3 + (−1)mbx− nmHn+2x

n+2 − (n− 1)mHn+1x
n+1

− (n+ 1)mHnx
n+3 +

m∑
j=1

(
x3 − (−2)j

)(m
j

)
S(m−j)
n (x)

]
.

In particular,

n∑
r=1

rmPrx
r =

1
1 − x2 − x3

[
x3 + (−1)mx− nmPn+2x

n+2 − (n− 1)mPn+1x
n+1

− (n+ 1)mPnx
n+3 +

m∑
j=1

(
x3 − (−2)j

)(m
j

)( n∑
r=1

rm−jPrx
r

)]
,

n∑
r=1

rmQrx
r =

1
1 − x2 − x3

[
3x3 − nmQn+2x

n+2 − (n− 1)mQn+1x
n+1 − (n+ 1)mQnx

n+3

+
m∑
j=1

(
x3 − (−2)j

)(m
j

)( n∑
r=1

rm−jQrx
r

)]
,
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and

n∑
r=1

rmVrx
r =

1
1 − x2 − x3

[
x3 − nmVn+2x

n+2 − (n− 1)mVn+1x
n+1 − (n+ 1)mVnx

n+3

+
m∑
j=1

(
x3 − (−2)j

)(m
j

)( n∑
r=1

rm−jVrx
r

)]
.

Proof. We have

S(m)
n (x) = 1mH1x+ 2mH2x

2 + 3mH3x
3 + · · ·+ nmHnx

n

= 1m

( n∑
j=1

Hjx
j −

n∑
j=2

Hjx
j

)
+ 2m

( n∑
j=2

Hjx
j −

n∑
j=3

Hjx
j

)

+ 3m

( n∑
j=3

Hjx
j −

n∑
j=4

Hjx
j

)
+ · · ·+ nm

( n∑
j=n

Hjx
j

)
.

Now, by regrouping the terms, this becomes

S(m)
n (x) = 1m

n∑
j=1

Hjx
j + (2m − 1m)

n∑
j=2

Hjx
j + · · ·+ (nm − (n− 1)m)

n∑
j=n

Hjx
j

=
n∑

r=1

(rm − (r − 1)m)

( n∑
j=r

Hjx
j

)
.

Next, we apply Theorem 2.1 to obtain

S(m)
n (x) =

1
1 − x2 − x3

[ n∑
r=1

(rm − (r − 1)m)xr
(
Hr + xHr+1 + x2Hr−1

)
− xn+1(Hn+1 + xHn+2 + x2Hn

) n∑
r=1

(rm − (r − 1)m)

]

=
1

1 − x2 − x3

[ n∑
r=1

(rm − (r − 1)m)
(
Hr + xHr+1 + x2Hr−1

)
xr

− nm
(
Hn+1 + xHn+2 + x2Hn

)
xn+1

]
.

Thus,

S(m)
n (x) =

1
1 − x2 − x3

[
T (m)
n (x)− nm

(
Hn+1 + xHn+2 + x2Hn

)
xn+1

]
, (2.12)

where

T (m)
n (x) =

n∑
r=1

(rm − (r − 1)m)
(
Hr + xHr+1 + x2Hr−1

)
xr

=
n∑

r=1

(rm − (r − 1)m)Hrx
r +

n∑
r=1

(rm − (r − 1)m)Hr+1x
r+1

+
n∑

r=1

(rm − (r − 1)m)Hr−1x
r+2.

Applying a suitable change of variable in the second and third summations on the right-hand
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side, we get

T (m)
n (x) =

n∑
r=1

(
rm − (r − 1)m

)
Hrx

r +
n+1∑
r=2

(
(r − 1)m − (r − 2)m

)
Hrx

r

+
n−1∑
r=0

(
(r + 1)m − rm

)
Hrx

r+3

=
n∑

r=1

(
rm − (r − 1)m + (r − 1)m − (r − 2)m + x3((r + 1)m − rm)

)
Hrx

r

+
(
nm − (n− 1)m

)
Hn+1x

n+1 +H1(−1)mx−
(
(n+ 1)m − nm

)
Hnx

n+3 +H0x
3.

This simplifies to

T (m)
n (x) =

n∑
r=1

(
rm − (r − 2)m + x3((r + 1)m − rm

))
Hrx

r +
(
nm − (n− 1)m

)
Hn+1x

n+1

−
(
(n+ 1)m − nm

)
Hnx

n+3 + ax3 + (−1)mbx.

(2.13)

Using the binomial expansion, we have

rm − (r − 2)m = −
m∑
j=1

(
m

j

)
(−2)jrm−j ,

and

(r + 1)m − rm =
m∑
j=1

(
m

j

)
rm−j .

Substituting this into (2.13) yields

T (m)
n (x) =

n∑
r=1

m∑
j=1

(
m

j

)(
x3 − (−2)j

)
rm−jHrx

r + (nm − (n− 1)m)Hn+1x
n+1

− ((n+ 1)m − nm)Hnx
n+3 + ax3 + (−1)mbx

=
m∑
j=1

(
m

j

)(
x3 − (−2)j

)
S(m−j)
n (x) + (nm − (n− 1)m)Hn+1x

n+1

− ((n+ 1)m − nm)Hnx
n+3 + ax3 + (−1)mbx.

Substituting this into (2.12), we obtain

S(m)
n (x) =

1
1 − x2 − x3

[
ax3 + (−1)mbx− (n+ 1)mHnx

n+3 − (n− 1)mHn+1x
n+1

− nmHn+2x
n+2 +

m∑
j=1

(
m

j

)(
x3 − (−2)j

)
S(m−j)
n (x)

]
,

as desired. This completes the proof.

Setting x = 1 in Theorem 2.5, we obtain the following recurrence about the Brousseau
weighted sums of the generalized Padovan numbers:

Corollary 2.6. For all integers n,m ≥ 1, the following identity holds:
n∑

r=1

rmHr =(n+ 1)mHn + (n− 1)mHn+1 + nmHn+2 − a− (−1)mb

−
m∑
j=1

(
1 − (−2)j

)(m
j

)( n∑
r=1

rm−jHr

)
.
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In particular,
n∑

r=1

rmPr =(n+ 1)mPn + (n− 1)mPn+1 + nmPn+2 − 1 − (−1)m

−
m∑
j=1

(
1 − (−2)j

)(m
j

)( n∑
r=1

rm−jPr

)
,

(2.14)

n∑
r=1

rmQr = (n+ 1)mQn + (n− 1)mQn+1 + nmQn+2 − 3

−
m∑
j=1

(
1 − (−2)j

)(m
j

)( n∑
r=1

rm−jQr

)
,

(2.15)

and
n∑

r=1

rmVr =(n+ 1)mVn + (n− 1)mVn+1 + nmVn+2 − 1

−
m∑
j=1

(
1 − (−2)j

)(m
j

)( n∑
r=1

rm−jVr

)
.

(2.16)

Likewise, setting x = −1 in Theorem 2.5, we obtain the following recurrence about the
alternating weighted sums of the generalized Padovan numbers:

Corollary 2.7. For all integers n,m ≥ 1, we have
n∑

r=1

(−1)rrmHr =(−1)n
[
(n+ 1)mHn + (n− 1)mHn+1 − nmHn+2

]
− a− (−1)mb

−
m∑
j=1

(
1 + (−2)j

)(m
j

)( n∑
r=1

(−1)rrm−jHr

)
.

In particular,
n∑

r=1

(−1)rrmPr =(−1)n
[
(n+ 1)mPn + (n− 1)mPn+1 − nmPn+2

]
− 1 − (−1)m

−
m∑
j=1

(
1 + (−2)j

)(m
j

)( n∑
r=1

(−1)rrm−jPr

)
,

(2.17)

n∑
r=1

(−1)rrmQr =(−1)n
[
(n+ 1)mQn + (n− 1)mQn+1 − nmQn+2

]
− 3

−
m∑
j=1

(
1 + (−2)j

)(m
j

)( n∑
r=1

(−1)rrm−jQr

)
,

(2.18)

and
n∑

r=1

(−1)rrmVr =(−1)n
[
(n+ 1)mVn + (n− 1)mVn+1 − nmVn+2

]
− 1

−
m∑
j=1

(
1 + (−2)j

)(m
j

)( n∑
r=1

(−1)rrm−jVr

)
.

(2.19)

Example 2.8. If we put m = 1 into (2.14), we get
n∑

r=1

rPr = (n+ 1)Pn + (n− 1)Pn+1 + nPn+2 − 3
n∑

r=1

Pr.
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Now using (2.4), this becomes

n∑
r=1

rPr = (n− 2)Pn + (n− 4)Pn+1 + (n− 3)Pn+2 + 9. (2.20)

By setting m = 2 in (2.14), we obtain

n∑
r=1

r2Pr = (n+ 1)2Pn + (n− 1)2Pn+1 + n2Pn+2 − 2 −
(

6
n∑

r=1

rPr − 3
n∑

r=1

Pr

)
.

Substituting (2.4) and (2.20) yields

n∑
r=1

r2Pr = (n2 − 4n+ 16)Pn + (n2 − 8n+ 28)Pn+1 + (n2 − 6n+ 21)Pn+2 − 65.

Similarly, we have

n∑
r=1

r3Pr =(n3 − 6n2 + 48n− 170)Pn + (n3 − 12n2 + 84n− 298)Pn+1

+ (n3 − 9n2 + 63n− 225)Pn+2 + 693,

and so on.
Setting m = 1, 2, . . . in (2.15) in succession and using (2.5), we get

n∑
r=1

rQr = (n− 2)Qn + (n− 4)Qn+1 + (n− 3)Qn+2 + 12,

n∑
r=1

r2Qr = (n2 − 4n+ 16)Qn + (n2 − 8n+ 28)Qn+1 + (n2 − 6n+ 21)Qn+2 − 90,

n∑
r=1

r3Qr =(n3 − 6n2 + 48n− 170)Qn + (n3 − 12n2 + 84n− 298)Qn+1

+ (n3 − 9n2 + 63n− 225)Qn+2 + 960,

and so on.
Similarly, setting m = 1, 2, . . . in (2.16) in succession and using (2.6), we get

n∑
r=1

rVr = (n− 2)Vn + (n− 4)Vn+1 + (n− 3)Vn+2 + 5,

n∑
r=1

r2Vr = (n2 − 4n+ 16)Vn + (n2 − 8n+ 28)Vn+1 + (n2 − 6n+ 21)Vn+2 − 37,

n∑
r=1

r3Vr =(n3 − 6n2 + 48n− 170)Vn + (n3 − 12n2 + 84n− 298)Vn+1

+ (n3 − 9n2 + 63n− 225)Vn+2 + 395,

and so on.

Example 2.9. When we put m = 1 in (2.17), we get

n∑
r=1

(−1)rrPr = (−1)n
[
(n+ 1)Pn + (n− 1)Pn+1 − nPn+2

]
+

n∑
r=1

(−1)rPr.
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Now using (2.8), this becomes

n∑
r=1

(−1)rrPr = (−1)n
[
(n+ 2)Pn + nPn+1 − (n+ 1)Pn+2

]
− 1. (2.21)

If we let m = 2 in (2.17), we get

n∑
r=1

(−1)rr2Pr =(−1)n
[
(n+ 1)2Pn + (n− 1)2Pn+1 − n2Pn+2

]
− 2 + 2

n∑
r=1

(−1)rrPr

− 5
n∑

r=1

(−1)rPr.

Applying the identities (2.8) and (2.21), this becomes

n∑
r=1

(−1)rr2Pr =(−1)n
[
(n2 + 4n)Pn + (n2 − 4)Pn+1 − (n2 + 2n− 3)Pn+2

]
+ 1.

Similarly, we have

n∑
r=1

(−1)rr3Pr =(−1)n
[
(n3 + 6n2 − 22)Pn + (n3 − 12n− 6)Pn+1

− (n3 + 3n2 − 9n− 17)Pn+2
]
+ 11,

and so on.
If we put m = 1, 2, . . . in (2.18) in succession and use (2.9), we obtain

n∑
r=1

(−1)rrQr = (−1)n
[
(n+ 2)Qn + nQn+1 − (n+ 1)Qn+2

]
− 4,

n∑
r=1

(−1)rr2Qr =(−1)n
[
(n2 + 4n)Qn + (n2 − 4)Qn+1 − (n2 + 2n− 3)Qn+2

]
− 6,

n∑
r=1

(−1)rr3Qr =(−1)n
[
(n3 + 6n2 − 22)Qn + (n3 − 12n− 6)Qn+1

− (n3 + 3n2 − 9n− 17)Qn+2
]
+ 32,

and so on.
Similarly, if we put m = 1, 2, . . . in (2.19) in succession and use (2.10), we obtain

n∑
r=1

(−1)rrVr = (−1)n
[
(n+ 2)Vn + nVn+1 − (n+ 1)Vn+2

]
− 1,

n∑
r=1

(−1)rr2Vr =(−1)n
[
(n2 + 4n)Vn + (n2 − 4)Vn+1 − (n2 + 2n− 3)Vn+2

]
− 3,

n∑
r=1

(−1)rr3Vr =(−1)n
[
(n3 + 6n2 − 22)Vn + (n3 − 12n− 6)Vn+1

− (n3 + 3n2 − 9n− 17)Vn+2
]
+ 5,

and so on.
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2.3 Sums with rising and falling powers

By substituting specific values for x, a wide range of new identities associated with Padovan,
Perrin, and Van der Laan numbers can be discovered. Let’s examine a few instances.

If we set x = 2 in (2.2), we obtain

11 ·
n∑

r=1

2rHr = 2n+1(4Hn +Hn+1 + 2Hn+2
)
− 2

(
4a+ b+ 2c

)
. (rising powers of 2)

In particular, we have the following identities:

11 ·
n∑

r=1

2rPr = 2n+1(4Pn + Pn+1 + 2Pn+2
)
− 14,

11 ·
n∑

r=1

2rQr = 2n+1(4Qn +Qn+1 + 2Qn+2
)
− 32,

11 ·
n∑

r=1

2rVr = 2n+1(4Vn + Vn+1 + 2Vn+2
)
− 12.

Likewise, if we set x = 1
2 in (2.2) and then multiply through by 2n, we obtain

5 ·
n∑

r=1

2n−rHr = (a+ 4b+ 2c) · 2n −
(
Hn + 4Hn+1 + 2Hn+2

)
, (falling powers of 2)

and hence

5 ·
n∑

r=1

2n−rPr = 7 · 2n −
(
Pn + 4Pn+1 + 2Pn+2

)
,

5 ·
n∑

r=1

2n−rQr = 7 · 2n −
(
Qn + 4Qn+1 + 2Qn+2

)
,

5 ·
n∑

r=1

2n−rVr = 3 · 2n −
(
Vn + 4Vn+1 + 2Vn+2

)
.

3 Infinite Sums

For each non-negative integer m, consider the power series
∞∑
r=1

rmHrx
r, (3.1)

where
(
Hn

)
n≥0 is the generalized Padovan sequence. By applying the ratio test, it can be con-

cluded that the power series (3.1) will converge (absolutely) for all non-negative integers m

and for all x within the interval
(

−1
ρ , 1

ρ

)
, where ρ = 3

√
1
2 +

√
23
108 + 3

√
1
2 −

√
23
108 . Note that

1 − x2 − x3 ̸= 0 for all x ∈
(

−1
ρ , 1

ρ

)
.

Theorem 3.1. If x ∈
(

−1
ρ , 1

ρ

)
, then we have

∞∑
r=1

Hrx
r =

x
(
ax2 + cx+ b

)
1 − x2 − x3 . (3.2)

In particular,
∞∑
r=1

Prx
r =

x+ x2 + x3

1 − x2 − x3 ,
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∞∑
r=1

Qrx
r =

2x2 + 3x3

1 − x2 − x3 ,

and
∞∑
r=1

Vrx
r =

x2 + x3

1 − x2 − x3 .

Proof. Since the power series on the left-hand side of (3.2) converges for all x ∈
(

−1
ρ , 1

ρ

)
, it

follows that Hnx
n → 0 as n → ∞. Now, the identity (3.2) follows by letting n → ∞ in

(2.2).

Note that the generating function f(x) =
(c− a)x2 + bx+ a

1 − x2 − x3 (see [14, Lemma 2.1]) for the

generalized Padovan numbers can be retrieved by adding H0 = a on both sides of (3.2).

Theorem 3.2. If x ∈
(

−1
ρ , 1

ρ

)
, then for all integers m > 0, we have

∞∑
r=1

rmHrx
r =

1
1 − x2 − x3

[
ax3+(−1)mbx+

m∑
j=1

(
x3−(−2)j

)(m
j

)( ∞∑
r=1

rm−jHrx
r

)]
. (3.3)

In particular,

∞∑
r=1

rmPrx
r =

1
1 − x2 − x3

[
x3 + (−1)mx+

m∑
j=1

(
x3 − (−2)j

)(m
j

)( ∞∑
r=1

rm−jPrx
r

)]
,

∞∑
r=1

rmQrx
r =

1
1 − x2 − x3

[
3x3 +

m∑
j=1

(
x3 − (−2)j

)(m
j

)( ∞∑
r=1

rm−jQrx
r

)]
,

and
∞∑
r=1

rmVrx
r =

1
1 − x2 − x3

[
x3 +

m∑
j=1

(
x3 − (−2)j

)(m
j

)( ∞∑
r=1

rm−jVrx
r

)]
.

Proof. From Theorem 2.5, we have

n∑
r=1

rmHrx
r =

1
1 − x2 − x3

[
ax3 + (−1)mbx− nmHn+2x

n+2 − (n− 1)mHn+1x
n+1

− (n+ 1)mHnx
n+3 +

m∑
j=1

(
x3 − (−2)j

)(m
j

)( n∑
r=1

rm−jHrx
r

)]
. (3.4)

We will prove (3.3) by letting n → ∞ in (3.4). Since the power series on the left-hand side of
(3.3) converges for all integers m ≥ 0 and x ∈

(
−1
ρ , 1

ρ

)
, it follows that nmHnx

n → 0 as n → ∞.
Then

nmHn+2x
n+2 =

(
(n+ 2)− 2

)m
Hn+2x

n+2

=
m∑
j=0

(
m

j

)
(−2)j(n+ 2)m−jHn+2x

n+2 → 0,

as n → ∞. Likewise,

(n− 1)mHn+1x
n+1 → 0, and (n+ 1)mHnx

n+3 → 0,

as n → ∞. Therefore, the identity (3.3) follows by letting n → ∞ in (3.4).
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Corollary 3.3. If x ∈
(

−1
ρ , 1

ρ

)
, then

∞∑
r=1

rHrx
r =

bx+ 2cx2 + (3a+ b)x3 + 2bx4 + (c− a)x5

(1 − x2 − x3)2 .

In particular,
∞∑
r=1

rPrx
r =

x+ 2x2 + 4x3 + 2x4

(1 − x2 − x3)2 ,

∞∑
r=1

rQrx
r =

4x2 + 9x3 − x5

(1 − x2 − x3)2 ,

and
∞∑
r=1

rVrx
r =

2x2 + 3x3

(1 − x2 − x3)2 .

Proof. Setting m = 1 in (3.3) and using (3.2), we get

∞∑
r=1

rHrx
r =

1
1 − x2 − x3

[
(x3 + 2)

( ∞∑
r=1

Hrx
r

)
+ ax3 − bx

]

=
1

1 − x2 − x3

[
(x3 + 2)

(
ax3 + cx2 + bx

1 − x2 − x3

)
+ ax3 − bx

]
=

bx+ 2cx2 + (3a+ b)x3 + 2bx4 + (c− a)x5

(1 − x2 − x3)2 .

This completes the proof.

3.1 An algorithm for finding the infinite sums

For all integers m ≥ 0, we define

S
(m)
P (x) =

∞∑
r=1

rmPrx
r,

S
(m)
Q (x) =

∞∑
r=1

rmQrx
r,

and

S
(m)
V (x) =

∞∑
r=1

rmVrx
r.

Then, by Theorem 3.1, we obtain the following algorithms to find the sums S
(m)
P (x), S

(m)
Q (x),

and S
(m)
V (x) for all x ∈

(
−1
ρ , 1

ρ

)
:

S
(0)
P (x) =

x+ x2 + x3

1 − x2 − x3 ,

S
(i)
P (x) =

1
1 − x2 − x3

[
x3 + (−1)ix+

i∑
j=1

(
i

j

)(
x3 − (−2)j

)
S
(i−j)
P (x)

]
, i = 1, 2, . . . ,m;


S
(0)
Q (x) =

2x2 + 3x3

1 − x2 − x3 ,

S
(i)
Q (x) =

1
1 − x2 − x3

[
3x3 +

i∑
j=1

(
i

j

)(
x3 − (−2)j

)
S
(i−j)
Q (x)

]
, i = 1, 2, . . . ,m;
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and
S
(0)
V (x) =

x2 + x3

1 − x2 − x3 ,

S
(i)
V (x) =

1
1 − x2 − x3

[
x3 +

i∑
j=1

(
i

j

)(
x3 − (−2)j

)
S
(i−j)
V (x)

]
, i = 1, 2, . . . ,m.

For example, when x = 1
2 ∈

(
−1
ρ , 1

ρ

)
, we obtain

∞∑
r=1

rPr

2r
=

104
25

,

∞∑
r=1

rQr

2r
=

134
25

,

∞∑
r=1

rVr

2r
=

56
25

;

∞∑
r=1

r2Pr

2r
=

2576
125

,

∞∑
r=1

r2Qr

2r
=

3546
125

,

∞∑
r=1

r2Vr

2r
=

1464
125

;

∞∑
r=1

r3Pr

2r
=

94016
625

,

∞∑
r=1

r3Qr

2r
=

130286
625

,

∞∑
r=1

r3Vr

2r
=

53624
625

;

∞∑
r=1

r4Pr

2r
=

4565408
3125

,

∞∑
r=1

r4Qr

2r
=

6323418
3125

,

∞∑
r=1

r4Vr

2r
=

2601912
3125

;

and so on. Similarly, if x = − 1
2 ∈

(
−1
ρ , 1

ρ

)
, then we have

∞∑
r=1

(−1)rrPr

2r
= −24

49
,

∞∑
r=1

(−1)rrQr

2r
= − 6

49
,

∞∑
r=1

(−1)rrVr

2r
=

8
49

;

∞∑
r=1

(−1)rr2Pr

2r
= −272

343
,

∞∑
r=1

(−1)rr2Qr

2r
= −558

343
,

∞∑
r=1

(−1)rr2Vr

2r
= − 40

343
;

∞∑
r=1

(−1)rr3Pr

2r
= −3840

2401
,

∞∑
r=1

(−1)rr3Qr

2r
= −18894

2401
,

∞∑
r=1

(−1)rr3Vr

2r
= −4600

2401
;

∞∑
r=1

(−1)rr4Pr

2r
= −29024

16807
,

∞∑
r=1

(−1)rr4Qr

2r
= −485790

16807
,

∞∑
r=1

(−1)rr4Vr

2r
= −168424

16807
;

and so on.

4 Conclusion

In this article, we presented a new recurrence formula for the finite sum
∑n

r=1 r
mHrx

r associated
with the generalized Padovan sequence, for all integers m,n ≥ 1, provided 1 − x2 − x3 ̸= 0.
This formula yields numerous identities for sums involving the Padovan, Perrin, Van der Laan,
and many more sequences. Furthermore, it provides a method for calculating the sum of the
Padovan-type power series. The approach used to obtain these findings can also be applied to
similar series. In future work, we intend to find an explicit polynomial expression for the sum∑n

r=1 r
mHr for all integers m ≥ 0.
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