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Abstract. In this paper, we introduce the notion of a polar ideal of a pseudo ring and investigate its
related properties. We prove that the polar of an atom forms a maximal ideal. And also, we establish
a one-to-one correspondence between the set of atoms and the set of all maximal ideals of an atomic
pseudo ring. Further, we prove that every pseudo ring R is isomorphic to the direct product of quotient
pseudo rings R/I and R/I⊥ for a suitable ideal I .

1 Introduction

It is MH-Stone [7] who has shown that the class of Boolean algebras and the class of Boolean rings with
unity are equivalent. The notion of Boolean rings has been generalized in many ways by many authors.
p-rings by MeCoy,[5] Regular rings by Neumann,[8] BZS rings by M. Farag [3] and pre-p-rings by A.
Yaqub [9] are a few ring theoretic generalizations. Chajda and Länger in [2] introduced the notion of
pseudo rings, which are generalizations of Boolean rings. It is clear that a pseudo ring is not even a ring;
it is a generalization of a Boolean ring. The notion of ideals is introduced and studied in pseudo rings
by the authors in [6]. For some related study see [4], [1]. In this paper, we introduce polar ideals and
study their properties. We obtain the relations between polar ideals and maximal ideals. We prove that
the polar of an atom is a maximal ideal. Also, we establish that there is a one-to-one correspondence
between the set of all atoms and the set of maximal ideals of the atomic pseudo ring.Finally we show
that every pseudo ring can be expressed as the product of quotient pseudo rings.

2 Preliminaries

Definition 2.1. [2, Definition 3.1] A pseudo ring is an algebra R = (R,+, ·, 1) of type (2, 2, 0) satisfy-
ing the following axioms:

P1. (xy)z = x(yz);

P2. xy = yx;

P3. x1 = x;

P4. 1 + (1 + x) = x;

P5. x0 = 0;

P6. (1 + x(1 + y))(1 + y) = (1 + y(1 + x))(1 + x);

P7. 1 + (1 + x(1 + y))(1 + y(1 + x)) = x+ y;

where 0 denotes the element 1 + 1.

Remark 2.2. Commutative of ′+′ follows from (P2) and (P7).

Definition 2.3. [2] Define x ≤ y for any two elements x, y ∈ R if and only if x and y satisfy the
condition (y + 1)x = 0.
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Proposition 2.4. [2] The following proprieties follow directly from the definition.

N1. x(x+ 1) = 0, ∀x ∈ R.

N2. y(1 + 0) = y, ∀y ∈ R and 1 + 0 = 1.

N3. x+ 0 = x.

N4. Char R = 2.

Remark 2.5. From P6 of definition 2.1 it can be concluded that x(1 + (y + 1)x) = y(1 + (x+ 1)y).

Definition 2.6. [6] Let I ⊆ R. I become an ideal of R if and only if the following holds.

(i) 0 ∈ I.

(ii) 1 + (x+ 1)(y + 1) ∈ I for every x, y ∈ I.

(iii) For any x ∈ R and y ∈ I, x ≤ y ⇒ x ∈ I).

Proposition 2.7. [6] I is an ideal of R if and only if the following holds:

(i) 0 ∈ I,

(ii) 1 + (x+ 1)(y + 1) ∈ I for every x, y ∈ I,

(iii) (y + 1)x, y ∈ I ⇒ x ∈ I.

Definition 2.8. [6] Let P be a proper ideal of R. If P is prime then for all x, y ∈ R either t x(y+ 1) ∈ P
or y(x+ 1) ∈ P.

Definition 2.9. [6] A proper ideal M of R is called maximal if and only if x ∈ M or x+ 1 ∈ M but not
both for every x ∈ R

Definition 2.10. [6] Let R1 and R2 be two pseudo rings. A pseudo ring homomorphism is a mapping
φ : R1 −→ R2 that meets the following conditions:

1) φ(1) = 1,

2) φ(x · y) = φ(x) · φ(y),
3) φ(x+ y) = φ(x) + φ(y) for every x, y ∈ R1.

Theorem 2.11. [6] Let φ : R1 → R2 is a pseudo ring epimorphism. If I is an ideal of R1 and ker(φ) ⊆
I, then φ(I) is an ideal of R2.

3 Polar ideal of a pseudo ring

We begin with the following

Proposition 3.1. If R is a pseudo ring, then for all x, y, z ∈ R the following properties hold:

i. x ≤ y if and only if 1 + y ≤ x+ 1;

ii. if x ≤ y ⇒ 1 + (x+ 1)(z + 1) ≤ 1 + (y + 1)(z + 1);

iii. if x ≤ y, then xz ≤ yz.

Proof. i. Suppose x ≤ y, then (y+1)x = 0. From P4 it follows that ((x+1)+1)(1+y) = 0. Hence
1 + y ≤ 1 + x. Conversely, suppose 1 + y ≤ 1 + x, then 0 = ((x+ 1) + 1)(1 + y) = x(1 + y).
Thus x ≤ y.

ii. Let x ≤ y. Take z = y(1 + x). Then y = 1 + (x + 1)(1 + z) by P4 and P6. This implies
x ≤ 1 + (x+ 1)(z + 1) ⇒ y ≤ 1 + (y + 1)(z + 1) for any z ∈ R. Hence 1 + (x+ 1)(z + 1) ≤
1 + (y + 1)(z + 1).

iii. Let x, y, z ∈ R, with x ≤ y. From proposition 3.1 (i), we have x ≤ y ⇒ y+1 ≤ x+1, applying
the result in (ii) to this result, we obtain 1+((y+ 1)+ 1)((z+ 1)+ 1) ≤ 1+((x+ 1)+ 1)((z+
1) + 1), p4 ⇒ 1 + yz ≤ 1 + xz ⇒ xz ≤ yz, ∀z ∈ R.
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Definition 3.2. A non zero element h of R is called an atom if (h+1)x = 0, then either x = 0 or x = h.

Remark 3.3. For any atom h of R, hn = h for all n ∈ Z+.

Proposition 3.4. Let h be an atom of R, then h ≤ x if and only if h = hx.

Proof. Suppose h ≤ x. Then by Remark 3.3 and Proposition 3.1(iii), h2 ≤ hx ⇒ h ≤ hx. Hence
h = hx. Conversely suppose h = hx. By definition 2.3 it follows that h = hx ≤ x.

Proposition 3.5. For any atoms h, h1, h2 ∈ R, the following are true:

i) If x be any non-zero element of R, either h1 ≤ x or h1 ≤ x+ 1;

ii) Either h1 = h2 or h1(1 + (h2 + 1)h1) = 0;

iii) For any a, b ∈ R with h1 ≤ 1 + (a(b+ 1) + 1)(b+ 1), either h1 ≤ a or h1 ≤ b;

iv) Let h ≤ 1 + (h1 + 1)(1 + h2(h1 + 1)), then h = h1 or h = h2.

Proof. i) Consider (1+(x+ 1))h1 = xh1. Clearly by Definition 2.3, xh1 ≤ h1, by the definition of
an atom it follows that xh1 = 0 or xh1 = h1. If xh1 = 0, then h1 ≤ x+ 1. If xh1 = h1, then by
Proposition 3.4, h1 ≤ x. If h1 ≤ x and h1 ≤ x+ 1 at the same time,then by Proposition 3.4 and
Definition 2.3, h1 = h1x = 0. This contradicts the fact that h1 is an atom. Hence either h1 ≤ x
or h1 ≤ x+ 1 not both.

ii) Assume h1 ̸= h2. Clearly h1(1+(h2+1)h1) ≤ h1. Since h1, h2 are atoms, h1(1+(h2+1)h1) = 0
or h1 = h1(1 + (1 + h2)h1). If h1 = h1(1 + (1 + h2)h1) from Remark 2.5, h1(1 + h1(h2 +
1)) = h2(1+h2(h1 +1)) = h2. This contradicts the fact that h1 ̸= h2. Thus h1(1+(h2 +1)h1) =
0 .

iii) Let h1 ≤ 1+(a(b+ 1)+ 1)(b+ 1). If b = 0, then h1 ≤ 1+(a+ 1) = a. Assume b ̸= 0. It is clear
that b(1 + (h1 + 1)b) ≤ h1, Since h1 is an atom b(1 + (h1 + 1)b) = 0 or b(1 + (h1 + 1)b) = h1.
If b(1 + (h1 + 1)b) = 0, then by Remark 2.5, Definition 2.3 and Proposition 3.4 respectively,
h1 ≤ b + 1 by Proposition 3.1 it follows that, h1(a(b + 1) + 1) ≤ (a(b + 1) + 1)(b + 1). Hence
h1 ≤ b + 1 ⇒ h1(a(b + 1) + 1) ≤ (a(b + 1) + 1)(b + 1) ⇒ h1 ≤ 1 + (a(b + 1) + 1)(b + 1) ≤
1 + h1(a(b + 1) + 1) ⇒ h2

1(a(b + 1) + 1) = 0 ⇒ h1 ≤ a(b + 1) ≤ a. As a result h1 ≤ a and
h1 ≤ b+ 1. If b(1 + (h1 + 1)b) = h1, then h1 ≤ b. The same is true if a = 0 and a ̸= 0. If both
a ̸= 0 and b ̸= 0 at the same time, by (i) either h1 ≤ a or h1 ≤ a+ 1 and h1 ≤ b or h1 ≤ b+ 1. We
need to show the case when h1 ≤ a + 1 and h1 ≤ b + 1. If h1 ≤ a + 1, then h1a = 0. Similarly
h1b = 0. Since h1 ≤ 1+(a(b+1)+1)(b+1) ⇒ h1(a(b+1)+1)(b+1) = 0 ⇒ h1(b+1) ≤ a(b+1).
By Proposition 3.4 and Proposition 3.1 (iii) h1(b+ 1) ≤ h1a(b+ 1) = 0(b+ 1) = 0 ⇒ h1 ≤ b and
similarly h1 ≤ a. This contradicts the fact in (i). Thus h1 ≤ a+ 1 and h1 ≤ b+ 1 does not hold at
the same time.

iv) Let h ≤ 1 + (h1 + 1)(1 + h2(h1 + 1)). By Definition 3.2 and (iii), it follows that either h = h1 or
h = h2.

Definition 3.6. Let X be a non-empty subset of R. Then the set X⊥ = {y ∈ R : y(1 + (x + 1)y) =
0, ∀x ∈ X} is called a polar of X in R.

Theorem 3.7. Let X be a non-empty subset of R. X⊥ is an ideal of R.

Proof. i. Clearly 0 ∈ X⊥.

ii. Let a, b ∈ X⊥. By Remark 2.5 and definition of polar, it follows that x(1 + (a + 1)x) = a(1 +
(x+ 1)a) = 0. By Definition 2.3, x = (a+ 1)x. Consider (1+(a+ 1)(b+ 1))[1+(x+ 1)(1+
(a+1)(b+1))] = x(1+x(a+1)(b+1)) by Remark 2.5. It follows that x(1+x(a+1)(b+1)) =
x(1 + x(b+ 1)) = 0. Hence 1 + (a+ 1)(b+ 1) ∈ X⊥.

iii. Let a ∈ R and b ∈ X⊥ with a ≤ b. By Proposition 3.1 (i) and (iii) x(b+ 1) ≤ x(a+ 1). By similar
proposition and steps x(1 + (a+ 1)x) ≤ x(1 + (b+ 1)x). By Remark 2.5 a(1 + (x+ 1)a) = 0.
Hence a ∈ X⊥.

Theorem 3.8. If X ⊆ R, then the following are true.
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i. If X ∩X⊥ ̸= ∅, then X ∩X⊥ = {0}.

ii. X ⊆ X⊥⊥.

Proof. i. Let X ∩X⊥ ̸= ∅. Then there exists x ∈ X and x ∈ X⊥ such that x = x(1+(x+1)x) =
0 ⇒ X ∩X⊥ = {0}.

ii. Let x ∈ X. It follows that for all a ∈ X⊥, by Remark 2.5, a(1+(x+1)a) = x(1+(a+1)x) = 0.
Thus x ∈ X⊥⊥.

Proposition 3.9. For every non-zero ideal I of R, I⊥ is a proper subset of R.

Proof. Assume I⊥ is not a proper subset of R. It follows that 1 ∈ I⊥ ⇒ a = 1 · (1 + (a+ 1) · 1) = 0,
for all a ∈ I. Implies a = 0, ∀a ∈ I ⇒ I = {0}. This contradicts the fact that I ̸= {0}. Thus I⊥ is
proper subset of R.

Proposition 3.10. Let P be a non-zero prime ideal of R. If P⊥ ̸= {0}, then P = P⊥⊥.

Proof. Let x0 ∈ P⊥⊥. It follows that a(1+(x0+1)a) = 0, ∀a ∈ P⊥. Since P⊥ ̸= {0}, in particular let
a ̸= 0. As P is prime, either x0(a+1) ∈ P or a(x0+1) ∈ P. If a(x0+1) ∈ P, since a(1+(x0+1)a) = 0,
a = a(1 + (a(x0 + 1) + 1)a) = 0 which contradicts the fact that a ̸= 0. Hence x0(a + 1) ∈ P. If
x0(a+ 1) ∈ P , then a(1 + (x0 + 1)a) = 0 ∈ P. This implies that by Remark 2.5 and Proposition 2.7,
x0 ∈ P . Thus by Theorem 3.8 (ii) P = P⊥⊥.

Proposition 3.11. Let I be an ideal of R. If I⊥ is a prime ideal, then I is totally ordered.

Proof. Let x, y ∈ I. Since I⊥ is prime, either x(y + 1) ∈ I⊥ or y(x + 1) ∈ I⊥. Since I is an ideal,
if x(y + 1) ∈ I⊥, then by Theorem 3.8 (i), x(y + 1) = 0 ⇒ x ≤ y. Similarly, if y(x + 1) ∈ I⊥, then
y ≤ x.

Lemma 3.12. x ∈ h⊥ ⇔ x = (h+ 1)x ⇔ h = (x+ 1)h.

Proof. By Definition 3.6, and Definition 2.3, it follows that x = (h+ 1)x. Similarly in addition using
Remark 2.5, we have x ∈ h⊥ ⇔ h = (x+ 1)h.

Theorem 3.13. The polar of any atom h in R, denoted by the symbol h⊥, is a maximal ideal of R.

Proof. Follows from Theorem 3.7, Proposition3.5(i) and Definition 2.9.

R is called an atomic pseudo ring if, for every non-zero element x ∈ R, there is an atom h ∈ R such
that h ≤ x.

Theorem 3.14. An atomic pseudo ring R contains an atom h /∈ M such that h⊥ = M for any maximal
ideal M of R.

Proof. Let M be a maximal ideal of R with x /∈ M. It follows that x ̸= 0. By Proposition 3.5(i), for
each atom h ∈ R either h ≤ x or h ≤ x+ 1. For the case h ≤ x+ 1, it follows that hx = 0. Thus x is
an atom different from h or there is an atom h′ ̸= h such that h′ ≤ x. If x is an atom, let y ∈ x⊥. Then
y(1 + (x+ 1)y) = 0 ∈ M. Since M is maximal, by Definition 2.3, Definition 2.9 and Proposition 2.7,
y(x+ 1) ≤ x+ 1 ∈ M it follows y ∈ M. Hence by Corollary 3.13, we have x⊥ = M.
If x is not an atom, then there is an atom h′ ∈ R such that h′ ≤ x. Thus the following case will
demonstrate it. For the case h ≤ x, let y ∈ h⊥. It follows y(1 + (h + 1)y) = 0 ∈ M. Since maximal
ideal is prime, either y(h+ 1) ∈ M or h(y + 1) ∈ M. Thus by Remark 2.5 and Proposition 2.7, either
y ∈ M or h ∈ M. Since h /∈ M, it follows y ∈ M . Hence h⊥ = M.

Corollary 3.15. Let At(R) be a set of all atoms of an atomic R and IdM (R) be a set of all maximal
ideals of atomic pseudo ring R. Then there is a one-to-one correspondence between At(R) and IdM (R).

Note. The intersection of any family of ideals of R is an ideal. Let H be a subset of R. Then the
intersection of all ideals I ⊇ H is the smallest ideal containing H and is denoted by ≺ H ≻.

Lemma 3.16. Let the map φ : R1 → R2 is an epimorphism, then the following properties holds.

a. If h is an atom of R1, then [h] is an atom of R1/ker(φ). Where [h] is the equivalence class
determined by h with respect to ker(φ).
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b. If [h] is an atom of R1/ker(φ), then φ(h) is also an atom of R2.

c. If M is the maximal ideal of R1 and ker(φ) ⊆ M, then φ(M) is the maximal ideal of R2.

Proof. Let the map φ : R1 → R2 be an epimorphism.

a. Suppose h is an atom of R1. Let ([h]+[1])[t] = [0] with [h] ̸= [t]. As a result we have φ((h+1)t) =
0 ⇒ (h + 1)t ∈ ker(φ). If (x + 1)t = 0 ∈ ker(φ), then either x ̸= t or x = t. If x ̸= t, then
t = 0. This implies [t] = [0]. If x = t ⇒ [x] = [t] contradiction.Therefore [x] is an atom of
R1/ker(φ).

b. Clearly f : R1/ker(φ) → R2 defined by f([x]) = φ(x) is an isomorphism. Hence [x] an atom of
R1/ker(φ) ⇒ φ(x) is an atom of R2.

c. Let M be maximal ideal of R1 and ker(φ) ⊆ M. By Theorem 2.11 φ(M) is an ideal of R. Assume
φ(M) is not maximal ideal of R2. Then there is J ideal of R2 such that φ(M) ⊊ J ⊆ R2 ⇒ ∃y ∈ J
and y /∈ φ(M). Since y is in R2 and φ is an onto map, there is t in R1 such that φ(t) = y and t is
not in M. Since M is maximal ideal of R1 ⇒ ≺ M ∪ {t} ≻= R1 ⇒ 1 ∈≺ M ∪ {t} ≻⇒ 1 ∈ φ(≺
M ∪ {t} ≻) ⇒ 1 ∈ J ⇒ J = R2.

Theorem 3.17. The polar of the homomorphic image of an atom is a maximal ideal if it contains its
kernel.

Proof. Follows Theorem 3.13 and lemma 3.16.

Corollary 3.18. If φ : R1 → R2 be onto homomorphism with ker φ ⊆ h⊥ for an atom h ∈ R1, then
φ(h⊥) = (φ(h))⊥.

Definition 3.19. Two ideals I and J of R are said to be adjacent if I ∩ J⊥ ̸= {0} and J ∩ I⊥ ̸= {0}.

Proposition 3.20. I and J are adjacent ideals of R if and only if I⊥ ̸= J⊥.

Proof. Suppose I and J are adjacent ideals of R. Thus I ∩ J⊥ ̸= {0} and J ∩ I⊥ ̸= {0}. Let a ∈
I ∩ J⊥ ⇒ a ∈ I and a ∈ J⊥. Hence a(1 + (x + 1)a) = 0 for all x ∈ J. In particular if a ∈ J,
then it follow from Theorem 3.8 a = 0. This contradicts the fact that I ∩ J⊥ ̸= {0}. Conversely
suppose I⊥ ̸= J⊥. Assume I and J are not adjacent. This implies I ∩ J⊥ = {0} and J ∩ I⊥ = {0}.
Let x ∈ I⊥. If x /∈ J⊥, then x(1 + (a + 1)x) = 0 for all a ∈ I and x(1 + (y + 1)x) ̸= 0 for
some y ∈ J. Since J and I⊥ are ideals y(1 + (x+ 1)y) ∈ J and x(1 + (y + 1)x) ∈ I⊥. It follows that
x(1+(y+1)x) ∈ J∩I⊥ = {0} ⇒ x(1+(y+1)x) = 0. This contradicts the fact that x(1+(y+1)x) ̸= 0.
Thus I and J are adjacent.

Similar results also hold in the annihilator ideal graph of a lattice for example see [4].

Theorem 3.21. Every polar of a non-empty subset of R is a metric ideal.

Proof. Let X be a non-empty subset of R and a ∈ X⊥ with a⊛0 ≤ y⊛0, for some y ∈ R. This implies
a+ 1 ≤ y + 1 ⇔ x(1 + (y + 1)x) ≤ x(1 + (a+ 1)x), for all x ∈ X. It follows from Remark 2.5
and Definition 3.6, y(1+ (x+ 1)y) = 0 for all x ∈ X. Thus y ∈ X⊥. Therefore by Definition 4.1 [6]),
X⊥ is a metric ideal.

Proposition 3.22. Let I and J be a metric ideal of R. Then the following holds:

i. (I ∪ J)⊥ = I⊥ ∩ J⊥;

ii. I⊥ ∪ J⊥ ⊆ (I ∩ J)⊥.

Proof. i. Let x ∈ (I ∪ J)⊥. The definition of polar implies that x(1 + (a + 1)x) = 0 for all a ∈
I ∪ J. In particular x(1 + (a + 1)x) = 0 for all a ∈ I. Hence x ∈ I⊥. And similarly x ∈ J⊥.
Thus x ∈ I⊥ ∩ J⊥. Conversely let x ∈ I⊥ ∩ J⊥. Implies x ∈ I⊥ and x ∈ J⊥. It follows that
x(1+(a+1)x) = 0 for all a ∈ I and x(1+(b+1)x) = 0 for all b ∈ J. Hence x(1+(a+1)x) = 0
for all a ∈ I ∪ J. Thus (I ∪ J)⊥ = I⊥ ∩ J⊥.

ii. Let x ∈ I⊥ ∪ J⊥. It follows either x ∈ I⊥ or x ∈ J⊥. If x ∈ I⊥, then x(1 + (a+ 1)x) = 0 for all
a ∈ I⊥. In particular x(1 + (a+ 1)x) = 0 for all a ∈ (I ∩ J). Hence x ∈ (I ∩ J)⊥. Similarly if
x ∈ J⊥, then x ∈ (I ∩ J)⊥. Thus I⊥ ∪ J⊥ ⊆ (I ∩ J)⊥.
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Lemma 3.23. For any x, y, a, b ∈ R, (x+1)(a+1)(1+(y+1)(b+1)) ≤ 1+(1+(x+1)y)(1+(a+1)b).

Proof. Consider (x + 1)(a + 1)(1 + (y + 1)(b + 1))[(x + 1)y + 1)((a + 1)r + 1)]. By Definition
2.1, (x+ 1)(a+ 1)(1 + (y + 1)(b+ 1))[(x+ 1)y + 1)((a+ 1)b+ 1)] = (x+ 1)((x+ 1)y + 1)(a+
1)((a+1)b+1)[1+(y+1)(b+1)] = (y+1)((y+1)x+1)(b+1)((b+1)a+1)[1+(y+1)(b+1)] =
((y + 1)x+ 1)((b+ 1)a+ 1)(b+ 1)(y + 1)[1 + (y + 1)(b+ 1)] = 0.

Lemma 3.24. Let I be an ideal of R. If x+ y, a+ b ∈ I , then (x+ 1)(a+ 1) + (y + 1)(b+ 1) ∈ I .

Proof. Let x + y, a + b ∈ I. By Definition 2.6, 1 + (x + y + 1)(a + b + 1) ∈ I. By Lemma
3.23, (x + 1)(a + 1)(1 + (y + 1)(b + 1)) ≤ 1 + (1 + (x + 1)y)(1 + (a + 1)b). And similarly
(y + 1)(b + 1)(1 + (x + 1)(a + 1)) ≤ 1 + (1 + (y + 1)x)(1 + (b + 1)a). Thus by Proposition 3.1,
(x+ 1)(a+ 1) + (y + 1)(b+ 1) ≤ 1 + (x+ y + 1)(a+ b+ 1).

Lemma 3.25. If x+ y, a+ b ∈ I, Then x · a+ y · b ∈ I.

Proof. Since x + 1 + y + 1 = x + y ∈ I and a + 1 + b + 1 ∈ I. By Lemma 3.24, it follows that
x · a+ y · b ∈ I.

Definition 3.26. Let I be an ideal of R. Define a ∈ R, a/I = {x ∈ R : x+ a ∈ I} and hence for any
a, b ∈ R, a/I = b/I if and only if a+ b ∈ I.

Notation: a/I = a+ I = ā.

Theorem 3.27. If I is an ideal of R, then R/I is a pseudo ring with x/I+y/I = x+y/I x/I ·y/I = x·y/I.

Proof. First, we need to show the operations are well-defined. Define a/I + b/I = a + b/I and
a/I · b/I = a · b/I. Let x, y, a, b ∈ R such that x/I = a/I and y/I = b/I. By Remark 3.1 [6] and
Definition 3.26, x+ a+ y+ b ∈ I. It follows that x/I+ y/I = x+ y/I = a+ b/I = a/I+ b/I. Since
x/I = y/I and a/I = b/I, implies by Definition 3.26, x+y, a+b ∈ I. By Lemma 3.25 x ·a+y ·b ∈ I.
Hence x ·a/I = y · b/I. Verifying the axioms P1 through P7 of a pseudo ring is straight forward. Hence
R/I is a pseudo ring.

Theorem 3.28. Every pseudo ring R is embedded into a direct product of the quotient pseudo rings R/I
and R/I⊥ for any ideal I of R.

Proof. Define φ : R → R/I × R/I⊥ by φ(x) = (x/I, x/I⊥). Clearly φ(1) = (1/I, 1/I⊥). Consider
φ(x+ y) = (x+ y/I, x+ y/I⊥) = (x/I, x/I⊥) + (y/I, y/I⊥) = φ(x) + φ(y).
φ(x · y) = (x · y/I, x · y/I⊥) = (x/I · y/I, x/I⊥ · y/I⊥) = (x/I, x/I⊥) · (y/I, y/I⊥) = φ(x) · φ(y).
Hence φ is homomorphism.
Let x ∈ ker(φ). It follows that φ(x) = (x/I, x/I⊥) = (0/I, 0/I⊥). Implies x ∈ I and x ∈ I⊥. By
Theorem 3.8, x = 0. Thus φ is one-to-one.

Theorem 3.29. Let I be an ideal of R. Define φ : R → R/I × R/I⊥ by φ(x) = (x/I, x/I⊥) is an
isomorphism.

Proof. Clearly φ(1) = (1/I, 1/I⊥). Consider φ(x + y) = (x + y/I, x + y/I⊥) = (x/I, x/I⊥) +
(y/I, y/I⊥) = φ(x) + φ(y).
φ(x · y) = (x · y/I, x · y/I⊥) = (x/I · y/I, x/I⊥ · y/I⊥) = (x/I, x/I⊥) · (y/I, y/I⊥) = φ(x) · φ(y).
Hence φ is homomorphism.
Let x ∈ ker(φ). It follows that φ(x) = (x/I, x/I⊥) = (0/I, 0/I⊥). Implies x ∈ I and x ∈ I⊥. By
Theorem 3.8, x = 0. Thus φ is one-to-one. Let (a/I, b/I⊥) ∈ R/I × R/I⊥. If b ∈ I, and a ∈ I⊥

take y = a + b ∈ R, such that φ(y) = (a/I, b/I⊥). Suppose for a /∈ I or b /∈ I⊥. Assume {x ∈ R :
x + a ∈ I} ∩ {z ∈ R : z + b ∈ I⊥} = {0}. This contradicts the facts a /∈ I or b /∈ I⊥. Hence
{x ∈ R : x + a ∈ I} ∩ {z ∈ R : z + b ∈ I⊥} ≠ {0}. Thus there is y ∈ R such that y/I = a/I and
y/I⊥ = b/I⊥. Hence φ(y) = (y/I, y/I⊥) = (a/I, b/I⊥). Thus φ is onto.

Theorem 3.30. Let H = {I : I ∪ I⊥ = R for some ideal I of R}. Then R is isomorphic to the direct
product of a quotient pseudo rings R/I and R/I⊥ for any I ∈ H.

Proof. Clearly I = {0} ∈ H. Thus H is non empty. Also, it is Clear that φ(1) = (1/I, 1/I⊥). Consider
φ(x+ y) = (x+ y/I, x+ y/I⊥) = (x/I, x/I⊥) + (y/I, y/I⊥) = φ(x) + φ(y).
φ(x · y) = (x · y/I, x · y/I⊥) = (x/I · y/I, x/I⊥ · y/I⊥) = (x/I, x/I⊥) · (y/I, y/I⊥) = φ(x) · φ(y).



40 T. N. Natei, D. C. Kifetaw and K. Venkateswarlu

Hence φ is homomorphism.
Let x ∈ ker(φ). It follows that φ(x) = (x/I, x/I⊥) = (0/I, 0/I⊥). Implies x ∈ I and x ∈ I⊥. By
Theorem 3.8, x = 0. Thus φ is one-to-one. Let (a/I, b/I⊥) ∈ R/I × R/I⊥. If b ∈ I, and a ∈ I⊥

take y = a + b ∈ R, such that φ(y) = (a/I, b/I⊥). Suppose for a /∈ I or b /∈ I⊥. Assume {x ∈ R :
x + a ∈ I} ∩ {z ∈ R : z + b ∈ I⊥} = {0}. This contradicts the facts a /∈ I or b /∈ I⊥. Hence
{x ∈ R : x + a ∈ I} ∩ {z ∈ R : z + b ∈ I⊥} ≠ {0}. Thus there is y ∈ R such that y/I = a/I and
y/I⊥ = b/I⊥. Hence φ(y) = (y/I, y/I⊥) = (a/I, b/I⊥). Thus φ is onto.

Theorem 3.31. Every pseudo ring is decomposed into the quotient pseudo rings R/I and R/I⊥ for
some ideal I of R.

Proof. Follows from Theorem 3.30.
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