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Abstract In this paper, we introduce and study the notions of statistical means and statistical
ratios. We utilize these concepts to develop statistical analogs of certain well established classi-
cal results, including Cauchy’s theorems on limits and Cauchy’s formula on limits. Additionally,
we present a statistical version of the squeeze principle for the convergence of real sequences.

1 Introduction

The concept of statistical convergence has been widely generalized and extensively studied in
functional analysis, leveraging statistical and number theory attributes. To develop the theory
of convergence of sequences, statistical convergence of sequences was introduced by Fast [12]
in a short note in 1951, exemplified as ’Convergence in density’ by Buck [5] in 1953, and inde-
pendently studied as a summability method by Schoenberg [25] in 1959. It is also contained in
Zygmund [30] (see lemma in p. 181) as almost convergence. Later, the investigation of statisti-
cal convergence from the perspective of sequence space and its connection to summability was
carried out by Connor [9], Fridy and Orhan [16], Kolk [18], Maddox [20], Rath and Tripathy
[23], Šalàt [24], Tripathy [26], Tripathy and Sen [28], and numerous others. In the literature,
statistical boundedness, statistical limit point, statistical cluster point, statistical limit superior,
statistical limit inferior and many more notions were independently introduced and subsequently
combined to enhance the field of summability theory over time. One can refer to ( [1], [2], [4],
[7], [8], [10], [11], [14], [15], [17], [19], [21], [27] and [29] ) for associated works in the field
of statistical convergence.

Statistical convergence relies on the pillar of natural density. The natural density of a subset
A of natural numbers is a measure of how "dense" or abundant the subset is within the set of
natural numbers. If the natural density of A is 1(unity), it means that A contains a "large" pro-
portion of the natural numbers. Conversely, if the natural density is 0, it indicates that A contains
a negligible proportion of the natural numbers. Thus, the density of a subset of natural numbers
quantifies the relative abundance or "density" of the subset within the infinite set of natural num-
bers. The idea of asymptotic density (natural density), as discussed by Niven, Zuckerman, and
Montgomery [22], plays a crucial role in understanding the concept of statistical convergence.

Definition 1.1. ([22]): The asymptotic density (or simply natural density δ(A)) of a subset A of
N is defined as

lim
n→∞

1
n

∣∣{m ≤ n : m ∈ A}
∣∣

provided that the limit exists finitely, where
∣∣{m ≤ n : m ∈ A}

∣∣ is the cardinality of the set of
those elements of A which are less than or equal to n.

Clearly, all finite subsets of N have zero natural density; δ(N) = 1. For a fixed natural
number k, δ(kN) = 1

k . Additionally, δ(Nk) = 0, where Nk = {1k, 2k, 3k, 4k, . . . }, and δ(kN) =
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0, where kN = {k1, k2, k3, k4, . . . }. Furthermore, the density of the complement of A is given by
δ(Ac) = δ(N−A) = 1 − δ(A). It is to be noted that k ≥ 2 is a fixed natural number.

We also present some other important definitions and results which will be used in the sequel.

Definition 1.2. ([6]): A subset A of the set N is said to be statistically dense if δ(A) = 1. Set A
may also be referred to as a unital density set.

Lemma 1.3. ([6]):

(i) A statistically dense subset of a statistically dense set is a statistically dense set.

(ii) The intersection and union of two statistically dense sets are statistically dense sets.

Definition 1.4. ([13]): A given number sequence z = (zm) is called statistically convergent to L
if for every ϵ > 0,

δ
(
{m ∈ N : |zm − L| ≥ ϵ}

)
= 0.

We write zm
stat.−−→ L or stat-limm→∞ zm = L.

Definition 1.5. ([13]): A sequence z = (zm) is said to be statistically Cauchy if for every ϵ > 0,
there exists n0 = n0(ϵ) ∈ N such that

δ
(
{m ∈ N : |zm − zn0 | ≥ ϵ}

)
= 0.

Definition 1.6. ([3, 16]): A real number sequence z = (zm) is said to be statistically bounded if
there is a number K such that

δ
(
{m ∈ N : |zm| > K}

)
= 0.

Lemma 1.7. ([25]): If D- lim zm = z and g(u), defined for all real u, is continuous at u = z,
then D- lim g(zm) = g(z).

Using Lemma 1.7 and the definition of statistical convergence, we have the following:

Lemma 1.8. If stat-limm→∞ zm = z and g(u), defined for all real u, is continuous at u = z,
then

stat-limm→∞ g(zm) = g(z),

i.e., continuity preserves statistical convergence.

Fridy [13] and Šalàt [24] established some relations between statistical convergence and
convergence of sequences. We procure those results below.

Theorem 1.9. [Fridy 13] For a sequence z = (zm), the following statements are equivalent:

(i) (zm) is a statistically convergent sequence;

(ii) (zm) is a statistically Cauchy sequence;

(iii) (zm) is a sequence for which there is a convergent sequence (ym) such that (ym) = (zm)
a.a.m.

Theorem 1.10. [Šalàt 24] A sequence (zm) statistically converges to L if and only if there exists
a set M = {m1 < m2 < · · · < mn < · · · } ⊂ N such that δ(M) = 1 and limn→∞ zmn = L.

In this paper, we introduce statistical arithmetic means, statistical geometric means, statisti-
cal ratios and statistical inequalities for real sequences. We explore these concepts and establish
significant results, which generalize classical results such as Cauchy’s first and second theorems
on limits, Cauchy’s formula on limits, and the squeeze principle, all of which are fundamental in
analysis.

In the second section, we introduce sequences of statistical arithmetic means and statistical
geometric means, generalizing Cauchy’s first and second theorems on limits, as well as Cauchy’s
formula on limits. Moreover, we introduce statistical inequalities, extending the existing squeeze
principle for real sequence convergence in the third section.

Throughout the paper, a sequence refers to a sequence of real numbers.
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2 Sequence of Statistical Means

Fridy [13] introduced the notion of “almost all m” (a.a.m.) as follows: If z = (zm) is any
sequence of real numbers satisfying a property P for all indices m of its terms, excluding a set
of indices having zero natural density, then one can say that z = (zm) satisfies property P for
“almost all m”, and abbreviate it as a.a.m..

Using this notion, statistical convergence is redefined as follows: A real sequence z = (zm)
is statistically convergent to L if for a given ϵ > 0, |zm − L| < ϵ a.a.m..

In this section of our work, we introduce the concept of a sequence of statistical means,
leveraging the notion of “almost all m”, which proves fruitful in generalizing some important
classical notions and results regarding the convergence of real sequences.

2.1 Sequence of Statistical Arithmetic Means

Definition 2.1. (Sequence of Statistical Arithmetic Means): Let z = (zm) be any sequence of
real numbers such that zm satisfies some property P for “almost all m”. We construct a sequence
z′ = (z′m) as follows:

z′m =

{ ∑m
k=1;k∈M zk

|{k∈M :1≤k≤m}| m ∈ M

zm m /∈ M

where M = {m ∈ N : zm satisfies property P} and |{k ∈ M : 1 ≤ k ≤ m}| denotes the
cardinality of the set {k ∈ M : 1 ≤ k ≤ m}. Then z′ = (z′m) is called the sequence of statistical
arithmetic means of the sequence z = (zm) corresponding to M .

Example 2.2. Consider the sequence

zm =

{
(−1)m if m ̸= 2n

m if m = 2n
n = 1, 2, 3, . . .

No doubt, |zm| ≤ 1 a.a.m., i.e., z = (zm) is statistically bounded. Here, the corresponding
dense set is M = {m ∈ N : m ̸= 2n}. The sequence of statistical arithmetic means of the
sequence z = (zm) corresponding to M is given by

z′ = (z′m) = (−1, 2,−1, 4,−1,−1
2
,−3

5
, 8,−2

3
,−3

7
, . . . ).

It is evident that |z′m| ≤ 1 for all m ∈ M . As δ(M) = 1, z′ = (z′m) is also statistically
bounded. Thus, the present illustration demonstrates that the sequence of statistical arithmetic
means follows the same property of boundedness as its original sequence for a.a.m..

The question arises whether the sequence of statistical arithmetic means exhibits all the prop-
erties of its original sequence for a.a.m.. The answer is no, in light of Example 2.2., where the
sequence z = (zm) is not statistically convergent, but the sequence of its statistical arithmetic
means statistically converges to 0.

Another natural question arises: Is the sequence of statistical arithmetic means of a statis-
tically convergent sequence statistically convergent, similar to how the sequence of arithmetic
means of a convergent sequence converges in the ordinary sense? The answer is positive, and it
can be presented in the following form:

Theorem 2.3. The sequence z′ = (z′m) of statistical arithmetic means of a statistically conver-
gent sequence z = (zm) is also statistically convergent with the same limit L, i.e., if

stat-limm→∞zm = L,

then
stat-limm→∞z′m = L.



On Some New Approaches in Statistical Convergence 359

Proof. Let z = (zm) be any real number sequence which is statistically convergent to L. Theo-
rem 1.10. assures the existence of a statistically dense set M such that limm∈M zm = L.
Let z′ = (z′m) be the sequence of statistical arithmetic means of the sequence z = (zm), corre-
sponding to this M , defined as

z′m =


m∑

k=1;k∈M

zk

|{k∈M :1≤k≤m}| m ∈ M

zm m /∈ M

In order to prove
stat-limm→∞z′m = L,

construct a sequence y = (ym) as follows:

ym =

{
zm − L m ∈ M

zm m /∈ M.

As limm∈M zm = L, therefore, limm∈M ym = 0. It implies

stat-limm→∞ym = 0

due to δ(M) = 1. Now z = (zm) can be written as:

zm =

{
ym + L m ∈ M

ym m /∈ M.

Building upon it, z′ = (z′m) may be rewritten as:

z′m =


m∑

k=1;k∈M

(yk+L)

|{k∈M :1≤k≤m}| m ∈ M

ym m /∈ M

=

 |{k∈M :1≤k≤m}|L
|{k∈M :1≤k≤m}| +

m∑
k=1;k∈M

yk

|{k∈M :1≤k≤m}| m ∈ M

ym m /∈ M

=

L+

m∑
k=1;k∈M

yk

|{k∈M :1≤k≤m}| m ∈ M

ym m /∈ M.

In reference to it, proving the given statement amounts to proving y′m statistically converges
to zero when

stat-limm→∞ym = 0,

where

y′m =


m∑

k=1;k∈M

yk

|{k∈M :1≤k≤m}| m ∈ M

ym m /∈ M.

As limm∈M ym = 0, so, for a given ϵ > 0, there exists a non-negative integer p0 such that:

|ym| < ϵ

2
for all m(∈ M) ≥ p0. (2.1)

As (ym) is statistically convergent, it is necessarily statistically bounded. As such, there
exists a positive number t such that:

|ym| < t for all m ∈ M. (2.2)
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By the use of the triangle inequality, we have∣∣∣∣∣
∑m

k=1;k∈M yk

|{k ∈ M : 1 ≤ k ≤ m}|

∣∣∣∣∣ ≤ 1
|{k ∈ M : 1 ≤ k ≤ m}|

m∑
k=1;k∈M

|yk|

≤ 1
|{k ∈ M : 1 ≤ k ≤ m}|

 p0∑
k=1;k∈M

|yk|+
m∑

k=p0+1;k∈M

|yk|


≤ 1

|{k ∈ M : 1 ≤ k ≤ m}| [
|{k ∈ M : 1 ≤ k ≤ p0}|t

+|{k ∈ M : p0 + 1 ≤ k ≤ m}| ϵ
2

]
for all m(∈ M) ≥ p0 [By (2.1) and (2.2)]

=
|{k ∈ M : 1 ≤ k ≤ p0}|
|{k ∈ M : 1 ≤ k ≤ m}|

t+
|{k ∈ M : p0 + 1 ≤ k ≤ m}|

|{k ∈ M : 1 ≤ k ≤ m}|
ϵ

2

≤ |{k ∈ M : 1 ≤ k ≤ p0}|
|{k ∈ M : 1 ≤ k ≤ m}|

t+
ϵ

2
. (2.3)

Choose a positive integer p1 such that

|{k ∈ M : 1 ≤ k ≤ p0}|
|{k ∈ M : 1 ≤ k ≤ m}|

t <
ϵ

2
, for all m(∈ M) ≥ p1.

Taking p = max{p0, p1}, we have∣∣∣∣∣
∑m

k=1;k∈M yk

|{k ∈ M : 1 ≤ k ≤ m}|

∣∣∣∣∣ < ϵ for all m(∈ M) ≥ p [By (2.3)].

This implies
lim
m∈M

y′m = 0.

As δ(M) = 1, therefore, y′m statistically converges to 0. Hence, z′m statistically converges to
L. This amounts to the stated result.

Corollary 2.4. (Cauchy’s First Theorem on Limits): If any sequence z = (zm) of real numbers
converges to L, then the sequence of arithmetic means of terms of the sequence z = (zm) also
converges to L, i.e., if

lim
m→∞

zm = L,

then

lim
m→∞

1
m

m∑
k=1

zk = L.

Proof. Taking M = N in Theorem 2.3., the result follows.

2.2 Sequence of Statistical Geometric Means

Definition 2.5. (Sequence of Statistical Geometric Means): Let z = (zm) be any sequence of
positive real numbers such that zm satisfies some property P for “almost all m”. We construct a
sequence z′′ = (z′′m) as follows:

z′′m =


(∏m

k=1;
k∈M

zk

)1/q

m ∈ M

zm m /∈ M

where M = {m ∈ N : zm satisfies property P} and q = |{k ∈ M : 1 ≤ k ≤ m}|.
Then, the sequence z′′ = (z′′m) is called the sequence of statistical geometric means of the

sequence z = (zm) corresponding to M .
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Theorem 2.6. If a sequence z = (zm) of positive real numbers converges to a positive statistical
limit L, then so does the sequence z′′ = (z′′m) of its geometric statistical means, i.e., if

stat-limm→∞zm = L,

then
stat-limm→∞z′′m = L.

Proof. Let z = (zm) be any sequence of positive real numbers which is statistically convergent
to L (L > 0). In view of Theorem 1.10., there exists a statistically dense set M such that

lim
m∈M

zm = L.

Let z′′ = (z′′m) be the sequence of statistical geometric means of the sequence z = (zm), corre-
sponding to this M , defined as

z′′m =

{(∏m
k=1; k∈M zk

)1/q if m ∈ M

zm if m /∈ M.

Let t = (tm) = (log zm). In view of Lemma 1.8.,

stat-limm→∞tm = stat-limm→∞ log zm = log (stat-limm→∞zm) = logL.

Let t′ = (t′m) be the sequence of statistical arithmetic means of the sequence t = (tm),
corresponding to this M , i.e.,

t′m =

{ ∑m
k=1; k∈M tk

|{k∈M :1≤k≤m}| if m ∈ M

tm if m /∈ M

which can also be expressed as

t′m =

{ ∑m
k=1; k∈M log zk

|{k∈M :1≤k≤m}| if m ∈ M

log zm if m /∈ M

and hence

t′m =

{
log

(∏m
k=1; k∈M zk

)1/q if m ∈ M

log zm if m /∈ M
= log z′′m.

As a consequence of Theorem 2.3.,

stat-limm→∞t′m = stat-limm→∞tm = logL,

which implies that
stat-limm→∞ log z′′m = logL.

Now, using Lemma 1.8. and the continuity of the exponential function, we have

stat-limm→∞z′′m = L.

Corollary 2.7. (Cauchy’s Second Theorem on Limits): If any sequence z = (zm) of positive
real numbers converges to L, then the sequence of geometric means of the terms of the sequence
z = (zm) also converges to L.

Proof. Taking M = N in Theorem 2.6., the result follows.
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2.3 Sequence of Statistical Ratios and Sequence of Statistical q-th Roots

Definition 2.8. (Sequence of Statistical Ratios):
Let z = (zm) be any sequence of real numbers possessing positive terms for “almost all m”.

Take M = {m ∈ N : zm > 0}, then δ(M) = 1. Construct a sequence α = (αm) as follows:

αm =

{
zm
zλm

if m ∈ M

|zm| if m /∈ M

where for any m ∈ M , λm = max{k : k ∈ M and k < m} ∪ {0} and z0 = 1. We call α = (αm)
the sequence of statistical ratios for z = (zm).

Definition 2.9. (Sequence of Statistical q-th Roots): Let z = (zm) be any sequence of real
numbers possessing positive terms for “almost all m”. Let M = {m ∈ N : zm > 0}, then
δ(M) = 1. Construct a sequence β = (βm) as follows:

βm =

{
z

1/q
m if m ∈ M

|zm| if m /∈ M

where q = |{k ∈ M : 1 ≤ k ≤ m}|. We refer to β = (βm) as the sequence of statistical q-th
roots for z = (zm).

Example 2.10. Consider the sequence z = (zm), where

zm =

{
m if m ̸= 7n

0 if m = 7n
n = 1, 2, 3, . . .

Both the sequence α = (αm), the sequence of statistical ratios, and the sequence β = (βm), the
sequence of statistical q-th roots for z = (zm), have the same statistical limit of 1.

Example 2.11. Consider the sequence z = (zm), where

zm =

{
3(−m+(−1)m) if m ̸= n2

−m3 if m = n2 n = 1, 2, 3, . . .

The sequence α = (αm) of statistical ratios for z = (zm) does not converge statistically, but the
sequence β = (βm), the sequence of statistical q-th roots for z = (zm), statistically converges to
1
3 .

From Example 2.10. and Example 2.11., a natural question arises: Is there any connection
between the statistical convergence of sequence of statistical q-th roots and sequence of statisti-
cal ratios of a given sequence. The answer to this question is affirmative in form of following:

Theorem 2.12. For a sequence z = (zm) possessing positive terms for “almost all m”, the
statistical limits of the sequence β = (βm) of statistical q-th roots and the sequence α = (αm)
of statistical ratios of the sequence z = (zm) are equal, provided the latter statistical limit exists.

Proof. We have

βm =


(∏m

k=1;k∈M
zk
zλk

)1/q
if m ∈ M

|zm| if m /∈ M.

Taking the logarithm:

logβm =

{
1
q

∑m
k=1;k∈M log zk

zλk

if m ∈ M

log |zm| if m /∈ M.

Let

Ak = log
zk
zλk

for all k (1 ≤ k ≤ m; m ∈ M) ∈ M, Am = log |zm| for m /∈ M.
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Thus

logβm =


(
∑m

k=1; k∈M Ak)
|{k∈M :1≤k≤m}| if m ∈ M

Am if m /∈ M

= A′
m.

Where (A′
m) is the sequence of statistical arithmetic means of the sequence (Am) corresponding

to the statistical dense set M . It implies that

stat-limm→∞ logβm = stat-limm→∞A′
m.

Using Theorem 2.3. on statistical arithmetic means, we have

stat-limm→∞A′
m = stat-limm→∞Am.

Thus,
stat-limm→∞ logβm = stat-limm→∞Am.

Since Am = logαm, it follows that

stat-limm→∞ logβm = stat-limm→∞ logαm.

By the continuity of the exponential function and Lemma 1.8., we have

stat-limm→∞βm = stat-limm→∞αm.

Corollary 2.13. (Cauchy’s Formula on Limits): Let z = (zm) be a sequence such that zm > 0
for all m. Then,

lim
m→∞

z1/m
m = lim

m→∞

zm
zm−1

,

provided the latter limit exists.

Proof. Taking M = N in Theorem 2.12., the result follows.

3 Generalization of Squeeze Principle

In this section of our work, we initialize with the statistical inequalities as follows:

Definition 3.1. Let z = (zm) and y = (ym) be two sequences of real numbers. We say that
zm ≤ ym for almost all m if δ(M) = 1, where M = {m ∈ N : zm ≤ ym}.

Example 3.2. Consider

zm =

{
1 if m is non-square
m+ 1 if m is a perfect square

and

ym =

{
3 if m is non-square
m if m is a perfect square

Clearly, M = {m ∈ N : zm ≤ ym} = {m ∈ N : m is non-square} and δ(M) = 1. Therefore,
zm ≤ ym a.a.m.

Definition 3.1 may also be generalized for three sequences of reals as follows:

Definition 3.3. Let z = (zm), y = (ym), and t = (tm) be three sequences of real numbers. We
say that zm ≤ ym ≤ tm for almost all m if δ(M) = 1, where M = {m ∈ N : zm ≤ ym ≤ tm}.
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Example 3.4. Consider

zm =

{
1

m+2 if m ̸= n3

m+ 2 if m = n3 n = 1, 2, 3, . . .

ym =

{
1

m+1 if m ̸= n3

m+ 1 if m = n3 n = 1, 2, 3, . . .

and

tm =

{
1
m if m ̸= n3

m if m = n3 n = 1, 2, 3, . . .

Clearly, zm ≤ ym ≤ tm a.a.m., as δ(M) = δ({m ∈ N : m ̸= n3}) = 1. From this example, we
observe that all three sequences converge to the same statistical limit, implying a result similar
to the squeeze principle.

Theorem 3.5. If sequences z = (zm) and t = (tm) statistically converge to the same limit L and
zm ≤ ym ≤ tm a.a.m., then y = (ym) also statistically converges to L.

Proof. Let stat-limm→∞zm = L, so there exists M1 ⊆ N such that δ(M1) = 1 and limm∈M1 zm =
L (refer to Theorem 1.10.). Similarly, there exists M2 ⊆ N such that δ(M2) = 1 and limm∈M2 tm =
L. Let M ′ = M1 ∩M2. Since the intersection of two statistically dense sets is again statistically
dense, we have δ(M ′) = 1, and

lim
m∈M ′

zm = lim
m∈M ′

tm = L.

On the other hand, zm ≤ ym ≤ tm a.a.m. suggests a statistically dense set M ′′ ⊆ N where
M ′′ = {m ∈ N : zm ≤ ym ≤ tm}. Construct a common unital density set M = M ′ ∩M ′′ such
that

lim
m∈M

zm = lim
m∈M

tm = L and zm ≤ ym ≤ tm for all m ∈ M.

Let ϵ > 0 be given. There exists a positive integer m0 such that

|zm − L| < ϵ and |tm − L| < ϵ for all m ∈ M and m ≥ m0.

Since zm ≤ ym ≤ tm for all m ∈ M , we have for any m ∈ M with m ≥ m0,

L− ϵ < zm ≤ ym ≤ tm < L+ ϵ

which implies
L− ϵ < ym < L+ ϵ for all m ∈ M and m ≥ m0.

Thus, |ym−L| < ϵ for all m ∈ M and m ≥ m0. Since δ(M) = 1, it follows that stat-limm→∞ym =
L by Theorem 1.10.

Corollary 3.6. (Squeeze Principle): If sequences z = (zm) and t = (tm) converge to the same
limit L and zm ≤ ym ≤ tm for all m ∈ N, then y = (ym) also converges to L.

Proof. Taking M = N in Theorem 3.5., the result follows.
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