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Abstract. This article is devoted to representations of the Cauchy-Fantappiè integral formula
in some domains of the space Cn, and studied one can be considered as a Bochner-Hua Lo-ken
integral formula in matrix domains.

1 Introduction

In classical complex analysis, the significance of Cauchy’s integral formula is well-known, which
has the following remarkable properties: Firstly, it is true for any domain with a smooth or piece-
wise smooth boundary and does not depend on the type of domain (property of universality).
Secondly, the kernel of this formula is holomorphic with respect to the outer variable.

In multidimensional complex analysis, there are numerous analogues of Cauchy’s integral
formula, but they do not simultaneously have these two properties. For example, Cauchy’s mul-
tiple integral formulas for a polydisc, Leray’s formula for ball, the Weil formula for polyhedra
and the Bochner-Hua Lo-Ken integral formula for classical domains are with holomorphic ker-
nels and are not universal, but the integral formula Martinelli-Bochner is a universal formula
with a non-holomorphic kernel (see [1, 2, 3, 4]). In [6] the properties of the functions from Hp

class are given in the polydisk, it is given by descriptions of traces for several concrete functional
classes on polyballs defined with the help of Bergman metric ball. These results are new even in
polydisk. In [8] the eigenfunctions and eigenvalues of the Bochner-Martinelli operator in a half-
space are investigated. The work [5] is devoted to the regularity of the Cauchy-Fantappiè integral
on strictly convex domains and the monograph [4] is devoted to integral representations of holo-
morphic several complex variable functions, such as integral formulas of Bochner-Martinelli,
Cauchy-Fantappiè, Koppelman and multidimensional logarithmic residue, etc., and their bound-
ary properties. The applications under consideration are problems of analytic continuation of
functions from the boundary of a bounded domain in Cn. The Cauchy-Fantappiè integral for-
mula, which contains all the most commonly used integral formulas, depends on an unknown
function, associated with the domain, i.e. this formula has an unknown kernel. We present the
Cauchy-Fantappiè integral formula (see [1]).

Theorem 1.1. For any domain D ⊂ Cn with piecewise smooth boundary for and any function
f(z) ∈ A(D)1 holds

f(z) =
(n− 1)!
(2πi)n

∫
∂D

f(ζ)
δ(λ(ζ)) ∧ dζ

⟨ζ − z, λ(ζ)⟩n
, (1.1)

where λ(ζ) is an arbitrary smooth vector function on ∂D such that

1The function f belongs to the function space A(D), if f is holomorphic in D and continuous on the closure of D, i. e.
f(z) ∈ O(D) ∩ C(D).
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⟨ζ − z, λ(ζ)⟩ ≠ 0 for all z ∈ D and ζ ∈ ∂D, dζ = dζ1 ∧ dζ2 ∧ . . . ∧ dζn,

ζ − z = (ζ1 − z1, ζ2 − z2, . . . , ζn − zn), δ(w) =
n∑

ν=1
(−1)ν−1wνdw[ν] ,

dw[ν] = dw1 ∧ dw2 ∧ ... ∧ dwν−1 ∧ dwν+1 ∧ ... ∧ dwn, ⟨z, w⟩ =
n∑

ν=1
zνwν .

2 Cauchy-Fantappiè integral formula in some domain

Despite the great generality of the Cauchy-Fantappiè formula, the question of finding integral
representations with a holomorphic kernel for specific domains from Cn is not removed. In
this article, the formula (1.1) integral formulas with holomorphic kernels are obtained for some
domains from Cn.

onsider the domain D1 ⊂ Cn of the following type:

D1 =

{
z ∈ Cn :

n∑
ν=1

|zν |2 < 1
}

.

For D1 in formula (1.1) we choose the vector function λ(ζ) in the form

λ(ζ) =

(
1
ζ1
,

1
ζ2
, . . . ,

1
ζn

)
, ζ ∈ ∂D1.

Then
⟨ζ − z, λ(ζ)⟩ =

〈
(ζ1 − z1, ζ2 − z2, . . . , ζn − zn),

(
1
ζ1
, . . . ,

1
ζn

)〉
=

= n−
n∑

ν=1

1
ζν

zν ̸= 0

for z ∈ D1 and ζ ∈ ∂D1.
Further,

δ(λ(ζ)) ∧ dζ =
n∑

ν=1

(−1)ν−1|ζν |2dζ[ν] ∧ dζ.

Now formula (1.1) takes the form

f(z) =
(n− 1)!
(2πi)n

∫
∂D1

f(ζ)

n∑
ν=1

(−1)ν−1|ζν |2dζ[ν] ∧ dζ(
n−

n∑
ν=1

1
ζν
zν

)n . (2.1)

b) We consider the domain

D2 = {z ∈ Cn : |z1z2|2 + |z2z3|2 + . . .+ |znz1|2 < 1}.

In this case, choosing

λ(ζ) =
(
ζ1|ζ2|2, . . . , ζn−1|ζn|2, ζn|ζ1|2

)
, ζ ∈ ∂D2,

we have
⟨ζ − z, λ(ζ)⟩ =

=
〈
(ζ1 − z1, ζ2 − z2, . . . ζn − zn),

(
ζ1|ζ2|2, . . . , ζn−1|ζn|2, ζn|ζ1|2

)〉
=

=
(
|ζ1ζ2|2 + |ζ2ζ3|2 + . . .+ |ζnζ1|2

)
−
(
ζ1|ζ2|2z1 + ζ2|ζ3|2z2 + . . .+ ζn|ζ1|2zn

)
=

= 1 −
n∑

ν=1

ζν |ζν+1|2zν ̸= 0,

for ζ ∈ ∂D2 and z ∈ D2 (where ζn+1 = ζ1).
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Now, let’s calculate

δ(λ(ζ)) ∧ dζ =

(
n∑

ν=1

(−1)ν−1ζν |ζν+1|2∂ζ1
(ζ1|ζ2|2) ∧ . . . [ν] . . . ∧ ∂ζn(ζn|ζ1|2) ∧ dζ

)
=

=
n∏

k=1

|ζk|2
n∑

ν=1

(−1)ν−1ζνdζ[ν] ∧ dζ.

Therefore, formula (1.1) in this case has the form

f(z) =
(n− 1)!
(2πi)n

∫
∂D2

f(ζ)

n∏
k=1

|ζk|2
n∑

ν=1
(−1)ν−1ζνdζ[ν] ∧ dζ(

1 −
n∑

ν=1
ζν |ζν+1|2zν

)n . (2.2)

Note that for n = 1 formulas (2.1) and (2.2) coincide with the Cauchy’s integral formula for
the unit circle.

c) Let’s consider a domain with a more difficult configuration:

D3 = {z ∈ Cn : α1|z1z2|2β1 + α2|z2z3|2β2 + . . .+ αn|znz1|2βn < 1},

αν > 0, βν ≥ 1, ν = 1, . . . , n.
For this domain λ(ζ) can be taken as a vector - function of the following form:

λ(ζ) =
(
α1ζ

β1−1
1 ζ

β1
1 |ζ2|2β1 , . . . , ανζ

βν−1
ν ζ

βν

ν |ζν+1|2βν , . . . , αnζ
βn−1
n ζ

βn

n |ζ1|2βn

)
, ζ ∈ ∂D3.

In this case

⟨ζ − z, λ(ζ)⟩ = 1 −
n∑

ν=1

ανζ
βν−1
ν ζ

βν

ν |ζν+1|2βνzν ̸= 0,

where ζ ∈ ∂D3 and z ∈ D3 (ζn+1 = ζ1).
The expression δ(λ(ζ)) ∧ dζ has the form:

δ(λ(ζ)) ∧ dζ =

=
n∏

k=1

(αkβk)|ζ1|2β1 · · · |ζn|2βn

n∑
ν=1

(−1)ν−1 1
ανβν

|ζν |2(βν−1)ζνdζ[ν] ∧ dζ.

Therefore, formulas (1.1) gives the following integral representation:

f(z) =
(n− 1)!
(2πi)n

∫
∂D3

f(ζ)×

×

n∏
k=1

(αkβk)|ζ1|2β1 · · · |ζn|2βn

n∑
ν=1

(−1)ν−1 1
ανβν

|ζν |2(βν−1)ζνdζ[ν] ∧ dζ(
1 −

n∑
ν=1

ανζ
βν−1
ν ζ

βν

ν |ζν+1|2βνzν

)n . (2.3)

It should be noted that for αν = βν = 1, ν = 1, . . . , n, representation (2.2) follows from
formula (2.3).

The Cauchy-Fantappiè representation has proven to be very useful and has many applications
in multidimensional complex analysis. For example, receiving integral representations have
holomorphic kernels by variable z, which makes it possible to uniformly approximate holomor-
phic functions in corresponding domains by polynomials.
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3 Multiple integral Bochner-Hua Lo-ken formula as a generalized
Cauchy-Fantappiè formula in matrix domains

The group of automorphisms can be used to find integral formulas for homogeneous domains.
Domains with rich automorphism groups are often realize as matrix domains (see [13], [12]).
These domains turned out to be useful in solving various problems in the theory of several
complex variable functions.

Complex homogeneous bounded domains represent great interest from different points of
view. This is explained by the fact that they are a relatively wide class of domains in Cn, for
which a number of meaningful, essentially multidimensional results have been obtained in [9].

In 1935 E.Cartan (see [10]) initiated a systematic study of homogeneous domains and found
all bounded homogeneous domains in the space C2 and C3. It is shown that in the space C2 any
bounded homogeneous domain can be biholomorphically mapped into the ball

B2 (1) =
{
z ∈ C2 : |z1|2 + |z2|2 < 1

}
,

or bicircle
U2 =

{
z ∈ C2 : |z1| < 1, |z2| < 1

}
.

There are some differences for the space C3, in this space any bounded homogeneous domain
can be mapped biholomorphically into one of the following four domains:

1) the ball
B3 (1) =

{
z ∈ C3 : |z1|2 + |z2|2 + |z3|2 < 1

}
;

2) the domain

G = B2 (1)×U1 =
{
z ∈ C3 : |z1|2 + |z2|2 < 1, |z3| < 1

}
;

3) the polydisc
U3 =

{
z ∈ C3 : |z1| < 1, |z2| < 1, |z3| < 1

}
;

4) a bounded domain, which is obtained by a biholomorphic mapping from the domain

τ+ (2) =
{
z ∈ C3 : (Im z3)

2
> (Im z1)

2
+ (Im z2)

2
, Im z3 > 0

}
to the future tube (see[11]).

In multidimensional complex analysis, E. Cartan [10] proposed a classification of all bounded
symmetric domains. With respect to biholomorphic mappings, these bounded symmetric do-
mains are divided into equivalence classes. Each such class can be specified by specifying one
domain belonging to it. After this, it is obvious that it suffices to consider only irreducible
classes, i.e., classes of domains that are inexpressible as products of bounded symmetric do-
mains of lower dimensions. E. Cartan [10] established that there are six types of classes of
irreducible bounded symmetric domains. Domains belonging to four of these types are called
classical because their automorphism groups are classical semisimple Lie groups. Two of these
types are special in the sense that each of them occurs in the space Cn of only one dimension n,
respectively for n = 16 and n = 27.

Consider the classical domains (according to E. Cartan’s classification) (see [9, 10]):

ℜI (m, k) =
{
Z ∈ C [m× k] : I(m) − ZZ̄ ′ > 0

}
,

ℜII (m) =
{
Z ∈ C [m×m] : I(m) − ZZ̄ > 0,∀Z ′ = Z

}
,

ℜIII (m) =
{
Z ∈ C [m×m] : I(m) + ZZ̄ > 0,∀Z ′ = −Z

}
,

ℜIV (n) =
{
z ∈ Cn : |⟨z, z̄⟩|2 − 2|z|2 + 1 > 0, |⟨z, z̄⟩| < 1

}
,

where I(m) is the identity matrix of order m, Z̄ ′− is the complex conjugate matrix of the trans-
posed matrix Z ′. (H > 0 for a Hermitian matrix H means, as usual, that H is positive definite).
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All these domains are homogeneous, symmetric, convex, complete, circular domains centered at
O (O is zero matrix). All these domains are biholomorphically non-equivalent, so the complex
analysis for them is constructed in different ways.

The E.Cartan domains ℜV and ℜV I in C16 and C27, respectively, are quite essential. The
question of an efficient description of these two domains is still open.

In the theory of functions of a single complex variable, we often study the theory of functions
in the unit circle U = {z ∈ C : |z| < 1}, since in the general case all symmetric domains are
equivalent to the unit circle, therefore, the above four classes (symmetric classical domains) play
an important role in multidimensional complex analysis. By explicitly writing out the transitive
automorphism group of the four types of classical domains and matrix balls (see e.g. [14],
[15]) associated with classical domains, one can find the Bergman and Cauchy-Szegő kernels
for these domains by direct calculation. Then, using the properties of the Poisson kernel, we find
a formula that restores the value of the holomorphic function in the domain itself from its values
on some boundary sets of uniqueness. In [7] paper presents the functional properties of the
Poisson integral on a Lie ball (a classical sphere of the fourth type). In this case, the scheme for
finding the Bergman and Cauchy-Szegő kernels from [9] is used. In [18] the volumes of a matrix
ball of the third type and a generalized Lie ball are calculated. To find the kernels of integral
formulas for these domains (Bergman, Cauchy-Szegő, Poisson kernels, etc.), the total volumes
of these domains are needed, and these volumes are also used for the integral representation
of holomorphic functions in these domains, in the mean value theorem, and in other important
concepts (see for exam. [16], [17] ).

Now, let us consider the holomorphic continuation of the classical domain of the first type
ℜI (m, k) and its skeleton XI . Consider the space L2 (XI , dµ), i.e., the space of square-integrable
functions f , with respect to the normalized Lebesgue measure dµ. It is the Haar measure on the
skeleton XI , and hence is invariant under rotations. As is known, the Hardy class H2 (ℜI (m, k))
consists of all functions f , that are holomorphic in the domain ℜI (m, k) for which

∥f∥H2 = sup
0<r<1

∫
XI

|f (rZ)|2dµ

 1
2

< ∞.

Since ℜI (m, k) is a bounded complete circular domain, functions f of class H2 (ℜI (m, k)) has
the following properties (see [12], [19]):

10. The slice functions fZ (λ) = f (λZ) (in measure µ) belong to the space H2 in the unit
circle ∆ =

{
λ ∈ C1 : |λ| < 1

}
, for almost all Z ∈ XI ;

20. The function f has radial boundary values

lim
r→1−0

f (rZ) = f∗ (Z) , Z ∈ XI ,

and these boundary values f∗ belong to the class L2 (XI , dµ);
30. The following formula is valid

lim
r→1−0

∫
XI

|f(rZ)| dµ =

∫
XI

|f∗(Z)| dµ;

40. If slice functions fZ (λ) of some function holomorphic in ℜI (m, k) the function f belong
to the Hardy class H2 in the unit circle for almost all Z ∈ XI and radial boundary values f∗ lie
down in L2 (XI , dµ), then f ∈ H2 (ℜI (m, k));

50. Any function f ∈ H2 (ℜI (m, k)) can be represented by the Bochner-Hua Lo-ken formula
as

f(Z) =

∫
XI

det−k
(
I(k) − ⟨Z,U⟩

)
f (U)dµ, (3.1)

the function f ∈ H2 (ℜI (m, k)) is restored to ℜI (m, k) by their radial boundary values f∗ .
60. If the set V ⊂ XI has positive measure (µ (V ) > 0), then V is a set of uniqueness for the

Hardy class H2 (ℜI (m, k));
70. The Hardy class H2 (ℜI (m, k)) is invariant under automorphisms of the ball ℜI (m, k).
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4 Conclusion remarks

The Bochner-Hua Lok-en integral formula (3.1) given above is a general case of the Cauchy-
Fantappiè formula considered in the previous section. If m = 1, then Bk (1) =

{
z ∈ Ck : |z| < 1

}
−

represents the Cauchy-Fantappiè formula for the unit ball, that is, the kernel of formula (3.1) ap-
pears as

detk(I − ⟨Z,U⟩) = {1 − ⟨z, u⟩}k.

Hence the required integral formula Bk (1) becomes the Cauchy-Fantappiè formula for the ball:

f(Z) =

∫
XI

f(U)

detn(I − ⟨Z,U⟩)
dµ(U) =

∫
Sk(1)

f(u)

{1 − ⟨z, u⟩}n
dµ(u) ,

where z = (z1, z2, ..., zk) ∈ Bk (1) and w = (w1, w2, ..., wk) ∈ Sk (1).
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