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Abstract This article develops a block method of order six to solve fifth order initial value
problems (IVPs) directly. This implies that the fifth order IVPs considered in this article were
not reduced to a system of first order IVPs before solving. The schemes in the developed block
method were derived using a linear block approach with the basic properties for convergence
and stability satisfied. Since the method has generalised points, the steplength with efficient ac-
curacy was investigated while also comparing with existing studies. From the numerical results
obtained, it was observed that the developed method performs well as its results were quite close
to the exact solution and better than existing methods.

1 Introduction

Numerical methods are constantly being introduced with the main aim of obtaining more accu-
rate approximate solutions to differential equation models [1, 2, 3, 4]. Studies such as [5, 6, 7]
have explored solving first, second, third, and fourth orders differential equations in various do-
mains. The objective of this article is to develop a new method with good accuracy for solving
fifth order initial value problems (IVPs) of the form

y® = f (w,yvy’,y”,y”’,y(“)) ;

y (0) = a,y' (x0) = b,y (z0) = ¢,y (w9) = d,y¥ (z0) = f;
o € [w()7$n]. (11)

Although few articles consider the numerical solution of fifth order IVPs, the quest for approx-
imate solutions with better accuracy than existing approaches is still being studied by recent
literature. [8], and [9] developed a multistep block method with better accuracy than inbuilt
MATLAB ODEA45 software, conventional linear multistep methods (LMM), and analytical solu-
tions. The one-step hybrid block method of order six by [10] performed better than the implicit
LMM by [3] and order eight one-step hybrid method by [11]. Other studies that have shown
improved accuracy over other numerical approaches for solving fifth order IVPs include [12]
and [13] whose generalised Runge-Kutta method integrators and general implicit block method
solved fifth order IVPs efficiently.

This article aims to develop a numerical approach with better accuracy than these existing
studies and thus develops a block method with generalised points for solving fifth order IVPs.
Linear block approach is adopted for the development of the method and its basic properties to
ensure convergence and stability are investigated before implementing the method to solve prob-
lems in the form of Equation (1.1). The flow chart for the whole manuscript which summarizes
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the phases in the development and implementation of the proposed method in this article are

displayed in Figure 1 below:

Develop block methods with generalised points for fifth order IVPs |17

Block methods satisfy
convergence and absolute
stability properties

Develop computer programs for solving fifth order IVPs

Results obtained better than existing
approaches

Document results

Figure 1. Flowchart of Development and Implementation of Developed Method

Section 2 discusses the phase of the development of the block method with generalised points
for solving fifth order initial value problems while Section 3 tests if the developed method sat-
isfies the convergence and absolute stability conditions of linear multistep methods. Having
justified the properties in Section 3, sample numerical problems are considered and compari-
son is made with existing studies. The computation of results and conclusion of the study are
documented in Sections 4 and 5 respectively.

2 Methodology

A block method is developed in this article with generalised points using a linear block approach
and taking the form

h)
ynmzz(g” +Z¢@fn+m, £=1,2,....5 @.1)

=0

for the main scheme, while its required derivative schemes are obtained from

S5—(a+l)

a h (i+
y7(1+>§r = Z (f:‘ ) + wazafn+rz 5

=0 ’ =0
o = 1(5:1’ 2,---,5) 2(5:17 2,0, 5)r 5(5:1_’ 2,---,5)" (22)
In Equations (2.1) and (2.2), h is the step-size and r is the equal distance between consecutive
points. The value of the steplength is selected as 5 to produce a block method of order 6 which

will be of the same or lesser order than the existing methods used for comparison in the numerical
results section. This follows the proposition by [14] which states that the order of a -step block

method of the form A%Y,.¢ = A'Y,_¢ + z By, +pm (COY +Ciy! ) is¢+ 1. In

7?—

that regard, the linear block approach is adopted to obtain the values of ¢¢; and we;, in Equations
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(2.1) and (2.2) respectively.
The resultant main scheme of the block method is thus obtained as:

r 2
Yntr = Yn + (1h) yp, + ( zhg) Yn + " 31) Yn + = 4|) ygz) + 7§57600 (42157f,
+ 34845 frr1r — 29530 frsar + 18830 fp43r + 6915 frar + 1093 frisy)  (2.3)

Ynsar = Yn + (2rh) o, + oy o QoY Qe @) (k) (3853 f,
+ 6035 fp i1y — 41105420 4 2570 fr 430 — 935 fnar + 147 fris,)  (2.4)

3 5
Yntar = Yo + (3rh) oy, + Gy Gt oy Beh @) (h)2 (71253,
152685 f 1y — 78570 2y + 52110 3, — 19035 sy +2997f15,)  (2.5)

Tn 2 7 T 3 i Th
Yot = Yo+ (4rh) ), + S5yl Bl o Gl (0 4 (100 (38336,
9792011, — 3584012, + 294403, — 105605 + 1664f,5,)  (26)

T 2 T 3 T s
Yn+sr = Yn + (5Th) 3y, + (52};) Yn + (537) Y + (547) X 2(90}?04

(2003125, + 5703125 f,, 1, — 1406250 f 2, + 17187503,
— 546875 fn14r + 88125 f015,).  (2.7)

The first derivative schemes are obtained as

Yopr = Yo (rh) il + TRy TR0 4 (R (49126,
+49045f,, 11, — 40160 f, 12, + 25430 f 13, — 9310 fn iy + 1469fys,)  (2.8)

Yntor = Yn + (2rh) Yy + e ) o+ ‘(2T3}!L)3 9514) + 54175 (4264,
+ 7960fn+1r — 4910 fpn42r + 3080 fr 13, — 1120 f5 14, + 176 f1,15.)  (2.9)

Vs = Yo+ (Brh) yll + GOty Gy ) (1) (95488,
+ 63315 i1 — 26460 f1 12, + 19170 13, — 7020 f 14 + 1107 frry5,)  (2.10)

T 2 T 3
Unrar = U+ (4rh) gyl + Gy 4 Ry () BH (40448,
+ 116480 f,, 11, — 29440, 12 + 33280 f,1 13, — 11360 f, 14 + 1792 fy5.)  (2.11)

Vs, = Y+ (Srh) ) 4 SOy Srh? @) ()% (418250 f,,
+ 1315625 f, 41 — 175000 f, 2, + 418750 f ;13- — 106250 f,, 147
+18625f,.5.). (2.12)

Similarly, the second, third, and fourth derivative schemes are given below

Yl =yl + (rh)y + Ty 4 63999 f, 4 4975F, 4,
— 3862 fn12r + 2422 f1 43 — 883 frtar + 139f04s,)  (2.13)
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2 3
Yo =y A rh) Y + Ey ) C (317 F, 4 T34 f 40,
380 00 + 244 f0iar — 89y + 14f0ss,)  (2.14)

Yiar = Y+ Grh) ! + Byl 4 GRE (54815, + 161191,
- 4374fn+27‘ =+ 4230f’ﬂ+37‘ - 1539fn+47' =+ 243fn+57') (2.15)

2 3
Yl var = Yo+ (drh) g+ B @ (712 f, 4 2336 fr
- 224fn+2r + 704fn+3r - 200fn+4r + 32fn+57‘) (216)

2 3
Yilese = v+ (Sth) ! + S5yl + G (29125, + 101875 f,11,
+ 1250fn+2r + 38750fn+3r - 4375fn+4r + 1375fn+5r) (217)

Y =y 4 )y + S (2462, + 43151, — 3044 f 0,
+ 1882 f 13 — 682 friar + 107 fir1s.)  (2.18)

Y =y 4 (2rh) y® + T (355 F, + 1088 fu 1y — 370 fsa
+272fps3r — 101 friar + 16 fnis,)  (2.19)

Yl s =yt + (3rh) yd) + UV (984f, 4 3501 fri 1y — T2 ni2r
870 130 — 288 fniar +45furs,)  (2.20)

Yl ar = Y+ (drh) g + C(376 1, + 1424 f 1, + 176 fn12,
+ 608fn+3r - 80fn+4r + 16fn+5r) (221)

sy =yl + (5rh) y® + S12(3050f, + 11875 f, 41,
42500000y + 6250 fn3r + 1250 fnsar + 275 nrss) (2.22)

g =y @ 4+ C (475 F, 41427 f 1y — T98 frsar + 482 Fnsar
T3 fiar + 2 frss)  (2.23)

y =y T8 f, 4129 f i1 4 14fniar + 14f0ss,
- 6fn+4r + fn+5r) (224)

@ =y £ ST 4 219f, 1y + 114 faiy + 14 fn s,

yn+3r - 1
=21 fnsar + 3fnssr)  (2.25)

O =y E (4 f 4 64f, 1 + 24 2 + 6403

y7(144)»5'r = ygl) +

(27.8};) (95f" + 375fn+lr + 250fn+2r + 250fn+31*
+ 375 frvar +95fnise). (2.27)

The next section discusses the basic properties to ensure convergence and stability of the method.
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3 Properties of the Developed Method

The properties examined for the derived block method in this section will include those required
to assure convergence criterion and absolute stability. For the properties that assure convergence,
a linear multistep method is said to be convergent if and only if it is consistent and zero-stable.
Zero-stability guarantees that the block method’s solution converges in the limit as h tends to
zero. This indicates that the numerical solution converges to the exact/precise solution as h
approaches zero. Additionally, the method’s consistency shows that the local truncation error
goes to zero faster than the step length, i. The local truncation error denoted by LTE is defined
as the difference between the method’s result y,,, ; and the precise solution of the equation at a
given mesh point x,,1 ¢ provided that all prior numbers up to and including y,4s—1,- .., Yy, are
exact.

In addition, a linear multistep method is said to be absolutely stable for a given A if, for that
h, all the roots 7, of the stability polynomial 7 (r, h) = p(r) — ho(r) = 0, satisfy |r,| < 1,5 =
1,2,...,k [1]. Furthermore, an interval («, 8) of the real line is said to be an interval of stability
if the method is absolutely stable for all h € (a, 3). A region R 4 of the complex plane is said to
be a region of absolute stability if the method is stable for all h in R 4.

This section will demonstrate how the derived technique satisfies these convergence and ab-
solute stability properties.

3.1 Zero-Stability Property of the Developed Block Method

According to [1], a linear multi-step method (LMM) is said to be zero-stable if it satisfies the
root condition. In other words, LMM is said to be zero-stable if no root of the 1st characteristic
polynomial has modulus greater than one, and if every root with modulus one is simple (not
repeated). Therefore, to analyse the zero-stability property of the derived block method, it will
be shown that the root of the first characteristic polynomial

0 00 01
0 00 01
d(o)=|cls— [0 0 0 O 1 (3.1
0 0001
0 00 01
must be less than unity and simple.
Thus,
1 00 00O 00 0 0 1
01 00O 00 0 01
S(o)y=1locl0o 01 0 0[]0 00 0 1|/=0c*(—-1) (3.2)
0001O0 00 0 01
0 0 0 0 1 00 0 0 1
Solving Equation (3.2), one obtains
§(0)=0*(c—1)=0 (3.3)

Therefore, o = 0,0,0,0, 1. This shows that the derived block method is zero stable, since 6 (o)
has roots satisfying |o;| < 1.

3.2 Order of the Developed Block Method

To obtain the order of accuracy of the derived method, the values and values in the equation
4

i 5

§rh)

yn+£r_z(i7!)y£z)_z¢§ifn+ri:07 5217 27...,5 (34)
i=0 i=0

are evaluated using Taylor series expansions about the point x = x,, to obtain the order of the

integrators of the block method to be of order [6,6,6,6, 6]T. Therefore, the block method is
consistent since each integrator has order greater than 1.
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3.3 Convergence Property of the Developed Block Method

The derived block method is consistent and zero stable, hence it is convergent.

3.4 Absolute Stability Property of the Developed Block Method

Considering the correctors of the block method in Equation(2.1), the stability region is obtained
by plotting the loci of the roots of the stability polynomial

m—1 i k
m(g;2) = —(¢°) + Z (Zg') + 2™ <Z ¢i§qi> =12,k (3.5)

[ ;
i=0

=0

for z = €% as 0 ranges from 0 to 27. The resultant stability polynomial of the developed block
method is obtained as

) 1 15,25 25 2108233 15,.20 .20 447985 15,1515 , 38293 _15..10_10

m(¢:2) = pgomzd " 2" + mEstisoond T4+ 1rososTmd T2 taiamed T2
15 18245 10,25 _25 377479 10,24 24 34270373 10,23 23 7425157 10,22 22

— 4" t 537700684 T T mimnesd T4 T 865991209 74T t goezisesond T A
24446851691 10,2121 , 193211143529 10,2020 1345765625 10..19 19 _ 16705625 10..18 18

t 1185137049 000¢ 7 % t 138265080 120000¢ | 2 —1aagsaiisd T F 3001685764 T ?

2147840375 10,17 17 _ 518068525 10,.16_16 _ 318943705 10.15_15 , 1051375 ,10,.14 14
— 210691031049 T # 35115171844 7O F 35115171844 7 F gigs2d T A

65217925 10,13 13 , 1571051012 12 , 265967 10,11 11 , 2910541 10,10 _10 , 390625,10..9_9
t 146332164 T A T 1035364 T ATt 035364 7 % T iosseand T F t s d T

78125 10,8 .8 | 15625 10,7 7 | 3125 10,66 | 625 10,55 625 10,4 4 , 125 10,3 3, 25 10,2 2
R e A e T AR e vl A ke o A v o A - AR e A

+5¢"%2+ 4" (3.6)

The region of absolute stability is determined by plotting the roots of the polynomial as shown
below.

2 .
AL \ ol
o LY 1/5 o ..................... - e |
A rvsgs
/ r=3/5 r=4/5 r=1
8 1 1 1 1 1 1 1
-8 -7 6 -5 - -3 -2 -1 0 1

Re(z)

Figure 2. Region of Absolute Stability for Two-Step Block Method for Second Order ODEs

Figure 2 shows the absolute stability region of the developed method for the values of r

1 1
where r = [r1,72,73,74,75] = @ : ( gs) : 4 as likewise adopted in the numerical examples.

According to [1], the interval of absolute stability cannot include the positive real line in the
neighbourhood of the origin, hence Figure 2 shows that the developed method is absolutely
stable for all values of r.
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4 Numerical Examples and Results

In the section, two objectives are considered. The first objective is to compare the efficiency of

(/) . (/) . 1

the values of  where r = [ry,r2,73,74,75] = |5+ :

~=5~ : 5| for solving various linear and
nonlinear fifth order IVPs, and the second objective is to compare solutions to existing studies
with developed methods of either equal or higher order. The following problems were solved.

Problem 1 [8]

y®) = — (cosz +sinx);

Exact Solution: y(z) = 2z — j2% 4+ 3;2* 4+ cosz — sinz.
Problem 2 [10]

YO =2y'y" — gy — oy — 8z + (2 — 22 —3) e”;

y(0) =1,4/(0) = 1,4”(0) = 3,5 (0) = 1,y¥(0) = 1. (4.2)

Exact Solution: y(z) = e® + 2.
Problem 3 [8]

y(S) — y(4) _|_y’ —y:

Exact Solution: y(z) = J (coshz — cos z).

Problem 4 [13]

y(s) =CoSZ;
y(0) = 0,4/(0) = 1,3(0) = 0,5 (0) = —1,5¥(0) = 0. (4.4)

Exact Solution: y(z) = sinz.

Tables 1 and 3 show comparison of the order 6 hybrid method developed in this article with
the order 10 method by [8] (denoted by JM), while Table 2 shows a comparison of the order 6
hybrid method developed in this article with the method by [10] (denoted by DM) of same order
and the problem whose results were displayed in Table 4 was not compared with any study,
although the problem was obtained from [13] but the results were presented graphically and not
numerically in [13]. Figures
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Figure 3. Solution of Problem 4 for r = [ry,72,73, 74, 75]

In Tables 1-4 and Figure 3, the newly developed block method performed better than the
existing methods compared with. Furthermore, regarding the different values of r, » = r4 had
the least maximum error for Problem 1, closely followed by » = 7|, r = rp, and » = r3. For
Problem 2, » = r| had the least maximum error, followed by the other values, while in Problem
3 r = rq and r = rs had the least maximum error followed by r3, and finally » = 7| had the
least maximum error in Problem 4 followed » = r4 . Overall, r = r; is the better performing

1 1
among the considered r = [ry, 2,73, 74,75] = {(gi) : ( éi) : ;} . This accuracy is also affirmed

in Figure 3.

5 Conclusion

A new method for solving fifth order IVPs is developed in this article. The IVPs considered
included both linear and nonlinear fifth order IVPs and the results displayed the new approach
being of better accuracy than existing studies. In addition, information is given about the best
value of in the interval considered. Moreover, it is worth mentioning that models describing real-
life scenarios may not have exact solutions and this article has shown that the developed method
has impressive accuracy compared to the exact solutions. Thus, the method will give accurate
results when adopted to solve fifth order IVP models void of exact solutions. In a nutshell, the
new hybrid block method is suitable method for solving fifth order IVPs with and without exact
solutions.
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