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Abstract We prove that the set of proper ideals of a monoid endowed with coarse lower
topology is a spectral space.

1 Introduction

The aim of this section is to highlight on the study conducted on spectral spaces in relation to
diverse structures and a variety of topologies. The concept of a spectral space was first intro-
duced in [17]. In this framework, spectral spaces are defined as the spectra of prime ideals of
rings, equipped with the Zariski topology. Since its inception, the study of spectral spaces has
expanded across various contexts. Several instances illustrate this diversification. Apart from
the Zariski topology, multiple other topologies such as Lawson, Scott, lower, upper, ultra-filter,
patch, inverse, and others have been explored for prime ideals (for comprehensive insights, we
refer our reader to [11]).

Among distinct classes of ideals, the characterization of the set of all ideals under the lower
topology as a spectral space was established in [21]. Furthermore, [12] demonstrated that spaces
of all ideals, proper ideals, and radical ideals of a ring, endowed with a hull-kernel-type topology,
are also spectral. It is noteworthy that the Zariski-Riemann space of valuation domains within a
given field stands as an early example of a specialized spectral space (see [8, 9, 14]).

In [13], investigation into semistar operations (of finite type) led to the identification of their
space, equipped with a topology reminiscent of the Zariski topology, as a spectral space. Addi-
tionally, [23] established that the collection of continuous valuations on a topological monoid,
with the topology determined by any finitely generated ideal, forms a spectral space.

In the context of module, [4] introduced conditions under which prime spectra of modules
qualify as spectral spaces. Another pertinent avenue involving spectral spaces is the realm of
Stone duality. The prime filters of a distributive lattice, equipped with the Stone topology, con-
stitute a spectral space (see [11, Chapter 3]). Similarly, the proper filters of a Boolean algebra
or, more generally, an ortholattice, endowed with a Stone-like topology, exhibit spectral space
properties (for references, see [5, 20]).

Although there are intensive studies of various classes of ideals for monoids (or semigroups
with identity) have been done (see [1, 2, 3, 6, 7, 10, 15, 16, 18, 19, 22, 24, 25]), to the best of
the author’s knowledge, the concept of spectrality within the context of monoids has not pre-
viously been studied. This endeavour seeks to furnish an exemplification of a spectral space
linked to monoids. The proof of our main result is self-contained and remains constructible
topology-independent of any specific topology. In establishing the notion of spectrality, we have
employed a technique (see Lemma 3.2) that circumvents the need to verify existence condition
of certain type of basis of a spectral space. It is worth mentioning that the extension of the alge-
braic structure to semigroups does not offer a viable generalization when exploring spectrality.
Notably, for the fulfilment of quasi-compactness–a condition integral to spectrality–the presence
of a multiplicative identity assumes necessary (see §3, Proof (ii)).

To ensure the self-contained nature of this paper, all essential definitions and proofs have
been incorporated.
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2 Preliminaries

A (multiplicative) commutative monoid is a system (M, ·, 1) such that (M, ·) is a commutative
(multiplicative) semigroup with 1 as the multiplicative identity. For simplicity, we shall write
ab for a · b, for all a, b ∈ M . An ideal of M is a nonempty subset I of M such that im ∈ I ,
whenever i ∈ I and m ∈ M . If {Iλ}λ∈Λ is a family of ideals of M , then so are their intersection⋂

λ∈Λ
Iλ and their sum

∑
λ∈Λ

Iλ(that is, the ideal generated by
⋃

λ∈Λ
Iλ). The notation IM will

denote the set of all ideals of M . It is easy to see that IM is a complete lattice. An ideal I of M
is called proper if I ̸= M , and by I+

M , we shall denote the set of all proper ideals of M . We say
a proper ideal J of M is maximal if there is no proper ideal of M that properly contains J .

Let L be a complete lattice and x ∈ L. A cover of x is a family {yλ}λ∈Λ of elements of L
such that x ⩽

∨
λ∈Λ

yλ. An element x of L is called compact if every cover of x has a finite
subcover. A lattice is algebraic if it is complete and every element is a least upper bound of
compact elements. It is easy to see that the complete lattice I(M) is algebraic, for every ideal is
a sum of finitely generated (and hence compact) ideals of M . This property of I(M) is going to
play a crucial role in our proof of the main result.

Let us now recall a few relevant terminologies from topology. A space is called quasi-
compact if every open cover of it has a finite subcover, or equivalently, the space satisfies the
finite intersection property. In this definition of quasi-compactness, we do not assume the space
is T2. A closed subset S of a space X is called irreducible if S is not the union of two prop-
erly smaller closed subsets of X . A space X is called sober if every non-empty irreducible
closed subset K of X is of the form: K = C{x}, the closure of an unique singleton set {x}. By
[17], a spectral space is a topological space that is quasi-compact, sober, admitting a basis of
quasi-compact open subspaces that is closed under finite intersections.

Let M be a monoid. The coarse lower topology on I+
M is the topology for which the sets of

the type:
VJ =

{
I ∈ I+

M | J ⊆ I
}
, (J ∈ IM );

form a subbasis of closed sets, and by I+
M , we shall also denote the topological space.

3 The Main Theorem

We are now prepared to present and proof our main result.

Theorem 3.1. Let M be a monoid. Then the set I+
M of proper ideals of M endowed with coarse

lower topology is a spectral space.

To prove Theorem 3.1, we need to show the following:

(i) The space I+
M is quasi-compact.

(ii) The space I+
M is sober.

(iii) The coarse lower topology on I+
M admits a basis of quasi-compact open subspaces that is

closed under finite intersections.

Our strategy here is slightly different. Although (1) and (2) are comparatively easy to verify,
however, condition (3) is more cumbersome. Thanks to the next lemma, the checking of (3) can
be avoided with an expense of showing two additional requirements as we shall see after the
proof this lemma.

Lemma 3.2. A quasi-compact, sober, open subspace of a spectral space is spectral.

Proof. — Suppose that S is a quasi-compact, sober, open subspace of a spectral space X . Since
S is quasi-compact and sober, it is sufficient to prove that the set OS of compact open subsets of
S forms a basis of a topology that is closed under finite intersections. It is obvious that a subset
T of S is open in S if and only if T is open in X , and hence a subset T of S belongs to OS if and
only if T belongs to OX . Now using these facts, we argue as follows.

Let U be an open subset of S. Since U is also open in X , we have U = ∪U , for some subset
U of OX . But each element of U being a subset of U is a subset of S, and it belongs to OS .
Therefore, every open subset of S can be presented as a union of compact open subsets of S.
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Now it remains to prove that OS is closed under finite intersections, but this immediately follows
from the fact that OX is closed under finite intersections.

Proof of Theorem 3.1 — It is now clear that to prove the theorem, it is sufficient to check the
conditions in Lemma 3.2 by taking X = IM and S = I+

M . Therefore, our objective is now to
verify the following:

(i) IM is a spectral space;

(ii) I+
M is quasi-compact;

(iii) I+
M is sober.

(iv) I+
M is an open subspace of the space IM .

(i) Since IM is an algebraic lattice (see §2), the desired spectrality follows from [21, Theorem
4.2].

(ii) Let {Kλ}λ∈Λ be a family of subbasic closed sets of a normal structure space I+
M such

that
⋂

λ∈Λ
Kλ = ∅. Let {Iλ}λ∈Λ be a family of ideals of IM such that ∀λ ∈ Λ, Kλ = VIλ . Since⋂

λ∈Λ
VIλ = V⋃

λ∈Λ
Iλ , we get V⋃

λ∈Λ
Iλ = ∅. This implies that the ideal

∑
λ∈Λ

Iλ must be equal
to M . Then, in particular, we obtain 1 = nλ1 · · ·nλn , where nλi ∈ Iλi , for i = 1, . . . , n. This
implies M =

∑n
i=1 Iλi

. Hence,
⋂n

i=1 Kλi
= ∅, and I+

M is quasi-compact by Alexander Subbasis
Theorem.

(iii) To show the existence of generic points of irreducible closed subsets of I+
M , it is sufficient

to show that VI = CI , whenever I ∈ VI . Since CI is the smallest closed set containing I , and
since VI is a closed set containing I , obviously then CI ⊆ VI . For the reverse inclusion, if
CI = I+

M , then
I+
M = CI ⊆ VI ⊆ I+

M .

This proves that VI = CI . Suppose that CI ̸= I+
M . Since CI is a closed set, there exists an index

set, Λ, such that, for each λ ∈ Λ, there is a positive integer nλ and ideals Iλ1, . . . , Iλnλ
of M

such that

CI =
⋂
λ∈Λ

(
nλ⋃
i=1

VIλi

)
.

Since CI ̸= I+
M , we assume that

⋃nλ

i=1VIλi
is non-empty for each λ. Therefore, I ∈

⋃nλ

i=1VIλi
for

each λ, and hence

VI ⊆
nλ⋃
i=1

VIλi
,

that is, VI ⊆ CI as desired. To obtain the uniqueness of the generic point, it is sufficient to
prove that I+

M is a T0-space. Let I and I ′ be two distinct elements of I+
M . Then, without loss of

generality, we may assume that I ⊈ I ′. Therefore VI is a closed set containing I and missing I ′.
(iv) By considering coarse lower topology on IM , we immediately obtain

{M} = V(M) = CM ,

and hence IM \ I+
M is closed. This implies I+

M is open as required.
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