New approach to third-order Jacobsthal sequence

Gamaliel Morales

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 11B39; Secondary 11B99.

Keywords and phrases: Third-order Jacobsthal sequence, third-order Jacobsthal-Lucas sequence, Mersenne sequence, Jacobsthal sequence.

Abstract For any real nonzero number k. In this paper, we first define generalizations of third-order Jacobsthal and third-order Jacobsthal–Lucas sequences by recurrence relations

$$J_n^{(3)}(k) = (k-1)J_{n-1}^{(3)}(k) + (k-1)J_{n-2}^{(3)}(k) + kJ_{n-3}^{(3)}(k)$$

and

$$j_n^{(3)}(k) = (k-1)j_{n-1}^{(3)}(k) + (k-1)j_{n-2}^{(3)}(k) + kj_{n-3}^{(3)}(k),$$

with initial conditions $J_0^{(3)}(k) = 0$, $J_1^{(3)}(k) = 1$, $J_2^{(3)}(k) = k-1$, and $j_0^{(3)}(k) = 2$, $j_1^{(3)}(k) = k-1$, $j_2^{(3)}(k) = k^2 + 1$, respectively. We give generating functions and Binet's formulas for these sequences. Also, we obtain some new identities of these sequences.

1 Introduction

The Jacobsthal numbers have many interesting properties and applications in many fields of science (see, [1, 7, 9]). The Jacobsthal numbers $\{J_n^{(2)}\}_{n\geq 0}$ are defined by the recurrence relation

$$J_0^{(2)} = 0, \ J_1^{(2)} = 1, \ J_{n+2}^{(2)} = J_{n+1}^{(2)} + 2J_n^{(2)}, \ n \ge 0.$$
 (1.1)

Another important sequence is the Jacobsthal-Lucas sequence. This sequence is defined by the recurrence relation $j_{n+2}^{(2)} = j_{n+1}^{(2)} + 2j_n^{(2)}$, where $j_0^{(2)} = 2$ and $j_1^{(2)} = 1$ (see, [8]). In [6] the Jacobsthal recurrence relation is extended to higher order recurrence relations and

In [6] the Jacobsthal recurrence relation is extended to higher order recurrence relations and the basic list of identities provided by Horadam [8] is expanded and extended to several identities for some of the higher order cases. Furthermore, Cook and Bacon defined the third-order Jacobsthal numbers, $\{J_n^{(3)}\}_{n\geq 0}$, and third-order Jacobsthal-Lucas numbers, $\{j_n^{(3)}\}_{n\geq 0}$, are defined by

$$J_{n+3}^{(3)} = J_{n+2}^{(3)} + J_{n+1}^{(3)} + 2J_n^{(3)}, \ J_0^{(3)} = 0, \ J_1^{(3)} = J_2^{(3)} = 1, \ n \ge 0,$$
(1.2)

and

$$j_{n+3}^{(3)} = j_{n+2}^{(3)} + j_{n+1}^{(3)} + 2j_n^{(3)}, \ j_0^{(3)} = 2, \ j_1^{(3)} = 1, \ j_2^{(3)} = 5, \ n \ge 0,$$
(1.3)

respectively.

Some of the following properties given for third-order Jacobsthal numbers and third-order Jacobsthal-Lucas numbers are used in this paper (for more details, see [2, 3, 4, 5, 6]). Note that Eqs. (1.7) and (1.12) have been corrected in this paper, since they have been wrongly described in [6].

$$3J_n^{(3)} + j_n^{(3)} = 2^{n+1}, (1.4)$$

$$j_n^{(3)} - 3J_n^{(3)} = 2j_{n-3}^{(3)}, \ n \ge 3,$$
(1.5)

$$J_{n+2}^{(3)} - 4J_n^{(3)} = \begin{cases} -2 & \text{if } n \equiv 1 \pmod{3} \\ 1 & \text{if } n \not\equiv 1 \pmod{3} \end{cases},$$
(1.6)

$$j_n^{(3)} - 4J_n^{(3)} = \begin{cases} 2 & \text{if } n \equiv 0 \pmod{3} \\ -3 & \text{if } n \equiv 1 \pmod{3} \\ 1 & \text{if } n \equiv 2 \pmod{3} \end{cases},$$
(1.7)

$$j_{n+1}^{(3)} + j_n^{(3)} = 3J_{n+2}^{(3)},$$
(1.8)

$$j_n^{(3)} - J_{n+2}^{(3)} = \begin{cases} 1 & \text{if } n \equiv 0 \pmod{3} \\ -1 & \text{if } n \equiv 1 \pmod{3} \\ 0 & \text{if } n \equiv 2 \pmod{3} \end{cases},$$
(1.9)

$$\left(j_{n-3}^{(3)}\right)^2 + 3J_n^{(3)}j_n^{(3)} = 4^n,$$
 (1.10)

$$\sum_{k=0}^{n} J_{k}^{(3)} = \begin{cases} J_{n+1}^{(3)} & \text{if } n \not\equiv 0 \pmod{3} \\ J_{n+1}^{(3)} - 1 & \text{if } n \equiv 0 \pmod{3} \end{cases}$$
(1.11)

and

$$\left(j_n^{(3)}\right)^2 - 9\left(J_n^{(3)}\right)^2 = 2^{n+2}j_{n-3}^{(3)}, \ n \ge 3.$$
 (1.12)

Using standard techniques for solving recurrence relations, the auxiliary equation, and its roots are given by

$$x^{3} - x^{2} - x - 2 = 0; x = 2, \text{ and } x = \frac{-1 \pm i\sqrt{3}}{2}.$$

Note that the latter two are the complex conjugate cube roots of unity. Call them ω_1 and ω_2 , respectively. Thus the Binet formulas can be written as

$$J_n^{(3)} = \frac{1}{7} \left[2^{n+1} - \left(\frac{3+2i\sqrt{3}}{3} \right) \omega_1^n - \left(\frac{3-2i\sqrt{3}}{3} \right) \omega_2^n \right]$$
(1.13)

and

$$j_n^{(3)} = \frac{1}{7} \left[2^{n+3} + \left(3 + 2i\sqrt{3} \right) \omega_1^n + \left(3 - 2i\sqrt{3} \right) \omega_2^n \right], \tag{1.14}$$

respectively. Now, we use the notation

$$Z_{n} = \frac{A\omega_{1}^{n} - B\omega_{2}^{n}}{\omega_{1} - \omega_{2}} = \begin{cases} 2 & \text{if } n \equiv 0 \pmod{3} \\ -3 & \text{if } n \equiv 1 \pmod{3} \\ 1 & \text{if } n \equiv 2 \pmod{3} \end{cases},$$
 (1.15)

where $A = -3 - 2\omega_2$ and $B = -3 - 2\omega_1$. Furthermore, note that for all $n \ge 0$ we have

$$Z_{n+2} + Z_{n+1} + Z_n = 0, \ Z_0 = 2 \text{ and } Z_1 = -3.$$
 (1.16)

From the Binet formulas (1.13), (1.14) and Eq. (1.15), we have

$$J_n^{(3)} = \frac{1}{7} \left(2^{n+1} - Z_n \right) \text{ and } j_n^{(3)} = \frac{1}{7} \left(2^{n+3} + 3Z_n \right).$$
 (1.17)

Motivated essentially by the works [2], [4] and [6], in this paper we introduce the generalized third-order Jacobsthal and third-order Jacobsthal–Lucas sequences and we give some properties, including the Binet-style formula and the generating functions for these sequences. Some new identities involving these sequences are also provided.

2 Generalized third-order Jacobsthal and third-order Jacobsthal–Lucas sequences

In this section, we define generalizations of third-order Jacobsthal and third-order Jacobsthal– Lucas sequences. Then, we give generating functions and Binet's formulas for these generalized sequences.

Definition 2.1. For any real nonzero number k, the third-order k-Jacobsthal sequence $\{J_n^{(3)}(k)\}$ and the third-order k-Jacobsthal–Lucas sequence $\{j_n^{(3)}(k)\}$ are defined recursively, for $n \ge 3$, by

$$J_n^{(3)}(k) = (k-1)J_{n-1}^{(3)}(k) + (k-1)J_{n-2}^{(3)}(k) + kJ_{n-3}^{(3)}(k),$$
(2.1)

$$j_n^{(3)}(k) = (k-1)j_{n-1}^{(3)}(k) + (k-1)j_{n-2}^{(3)}(k) + kj_{n-3}^{(3)}(k),$$
(2.2)

with initial conditions $J_0^{(3)}(k) = 0$, $J_1^{(3)}(k) = 1$, $J_2^{(3)}(k) = k-1$, and $j_0^{(3)}(k) = 2$, $j_1^{(3)}(k) = k-1$, $j_2^{(3)}(k) = k^2 + 1$, respectively.

It is obvious that, in Eqs. (2.1) and (2.2), if we take k = 2, we obtain classical third-order Jacobsthal and third-order Jacobsthal–Lucas sequences.

The following theorem gives us generating functions for generalized third-order Jacobsthal and third-order Jacobsthal–Lucas sequences:

Theorem 2.2. For any real nonzero number k, the generating functions of the third-order k-Jacobsthal sequence $\{J_n^{(3)}(k)\}$ and the third-order Jacobsthal–Lucas sequence $\{j_n^{(3)}(k)\}$ are given, respectively, by

$$J(k;x) = \frac{x}{1 - (k-1)x - (k-1)x^2 - kx^3}$$
(2.3)

and

$$j(k;x) = \frac{2 - (k-1)x + 2x^2}{1 - (k-1)x - (k-1)x^2 - kx^3}.$$
(2.4)

Proof. The generating functions J(k; x) and j(k; x) can be written as $J(k; x) = \sum_{n \ge 0} J_n^{(3)}(k) x^n$ and $j(k; x) = \sum_{n \ge 0} j_n^{(3)}(k) x^n$. Then, we write

$$\begin{split} J(k;x) &= \sum_{n\geq 0} J_n^{(3)}(k) x^n = J_0^{(3)}(k) + J_1^{(3)}(k) x + J_2^{(3)}(k) x^2 + \sum_{n\geq 3} J_n^{(3)}(k) x^n \\ &= x + (k-1) x^2 \\ &+ (k-1) \sum_{n\geq 3} J_{n-1}^{(3)}(k) x^n + (k-1) \sum_{n\geq 3} J_{n-2}^{(3)}(k) x^n + k \sum_{n\geq 3} J_{n-3}^{(3)}(k) x^n \\ &= x + (k-1) x^2 - (k-1) x^2 \\ &+ (k-1) x \sum_{n\geq 0} J_n^{(3)}(k) x^n + (k-1) x^2 \sum_{n\geq 0} J_n^{(3)}(k) x^n + k x^3 \sum_{n\geq 0} J_n^{(3)}(k) x^n \\ &= x + (k-1) x J(k;x) + (k-1) x^2 J(k;x) + k x^3 J(k;x). \end{split}$$

Thus, we obtain

$$(1 - (k - 1)x - (k - 1)x^2 - kx^3) J(k; x) = x$$

Hence, we have

$$J(k;x) = \frac{x}{1 - (k-1)x - (k-1)x^2 - kx^3}$$

Similarly, we obtain the Eq. (2.4).

We now give the Binet's formulas for the third-order k-Jacobsthal and third-order k-Jacobsthal– Lucas sequences by following:

Theorem 2.3. For any real nonzero number k, the n-th terms of the third-order k-Jacobsthal and third-order k-Jacobsthal–Lucas sequences are given by

$$J_n^{(3)}(k) = \frac{1}{k^2 + k + 1} \left[k^{n+1} - Z_n(k) \right],$$
(2.5)

$$j_n^{(3)}(k) = \frac{1}{k^2 + k + 1} \left[\left(k^2 + k + 2 \right) k^n + (k+1)Z_n(k) \right]$$
(2.6)

and

$$Z_n(k) = \frac{(k\omega_1 - 1)\omega_1^n - (k\omega_2 - 1)\omega_2^n}{\omega_1 - \omega_2},$$
(2.7)

where ω_1 and ω_2 are the roots of the equation $x^2 + x + 1 = 0$.

Proof. Using the partial fraction decomposition, J(k; x) can be expressed as

$$J(k;x) = \frac{1}{k^2 + k + 1} \left[\frac{k}{1 - kx} + \frac{x - k}{x^2 + x + 1} \right].$$

However, note that $\omega_1 + \omega_2 = -1$, $\omega_1 \omega_2 = 1$ and $(1 - \omega_1 x)(1 - \omega_2 x) = x^2 + x + 1$. Then, we have

$$J(k;x) = \frac{x}{1 - (k-1)x - (k-1)x^2 - kx^3}$$

= $\frac{1}{k^2 + k + 1} \left[\frac{k}{1 - kx} - \frac{k - x}{x^2 + x + 1} \right]$
= $\frac{1}{k^2 + k + 1} \sum_{n \ge 0} \left[k^{n+1} - \left(\frac{(k\omega_1 - 1)\omega_1^n - (k\omega_2 - 1)\omega_2^n}{\omega_1 - \omega_2} \right) \right] x^n$
= $\frac{1}{k^2 + k + 1} \sum_{n \ge 0} \left[k^{n+1} - Z_n(k) \right] x^n.$

Inspecting the above expressions, we get the following:

$$J_n^{(3)}(k) = \frac{1}{k^2 + k + 1} \left[k^{n+1} - Z_n(k) \right].$$

Similarly, we can obtain the result of the Eq. (2.6).

Note that sequence $Z_n(k)$ is simple, since it satisfies relation $Z_n(k) = -Z_{n-1}(k) - Z_{n-2}(k)$, where $Z_0(k) = k$ and $Z_1(k) = -(k+1)$. Then,

$$Z_n(k) = \begin{cases} k & \text{if } n \equiv 0 \pmod{3} \\ -(k+1) & \text{if } n \equiv 1 \pmod{3} \\ 1 & \text{if } n \equiv 2 \pmod{3} \end{cases}$$

3 Some identities on third-order *k*-Jacobsthal and third-order *k*-Jacobsthal–Lucas sequences

In this section, we give well-known identities Catalan's, Cassini's and d'Ocagne's for the thirdorder k-Jacobsthal and third-order k-Jacobsthal–Lucas sequences. Further, we investigate some nameless identities of these generalized sequences, and give some relations between these new sequences.

Theorem 3.1 (Catalan's Identity). For any real nonzero number k, any integers m and r such that $m \ge r$, we have

$$J_{m+r}^{(3)}(k)J_{m-r}^{(3)}(k) - \left[J_m^{(3)}(k)\right]^2 = \frac{1}{\sigma_k^2} \left\{ \begin{array}{c} k^{m+1} \left(k^r - k^{-r}\right) X_r Z_{m+1}(k) \\ -k^{m+1} \left(k^r X_{r+1} - k^{-r} X_{r-1} - 2\right) Z_m(k) \\ -(k^2 + k + 1) X_r^2 \end{array} \right\}$$

 \square

and

$$j_{m+r}^{(3)}(k)j_{m-r}^{(3)}(k) - \left[j_m^{(3)}(k)\right]^2 = \frac{k+1}{\sigma_k^2} \left\{ \begin{array}{c} \rho_k k^m \left(k^{-r} - k^r\right) X_r Z_{m+1}(k) \\ + \rho_k k^m \left(k^r X_{r+1} - k^{-r} X_{r-1} - 2\right) Z_m(k) \\ - (k^2 + k + 1)(k+1) X_r^2 \end{array} \right\},$$

where $Z_n(k)$ as in Eq. (2.7), $X_r = \frac{\omega_1^r - \omega_2^r}{\omega_1 - \omega_2}$, $\sigma_k = k^2 + k + 1$ and $\rho_k = \sigma_k + 1$.

Proof. Using the notation $\sigma_k = k^2 + k + 1$, $\rho_k = \sigma_k + 1$ and Binet's formula of the third-order k-Jacobsthal–Lucas sequence in Theorem 2.3, we write

$$\sigma_k^2 \left(j_{m+r}^{(3)}(k) j_{m-r}^{(3)}(k) - \left[j_m^{(3)}(k) \right]^2 \right)$$

= $\left(\rho_k k^{m+r} + (k+1) Z_{m+r}(k) \right) \left(\rho_k k^{m-r} + (k+1) Z_{m-r}(k) \right)$
- $\left(\rho_k k^m + (k+1) Z_m(k) \right)^2$
= $\rho_k (k+1) k^m \left(k^r Z_{m-r}(k) + k^{-r} Z_{m+r}(k) - 2 Z_m(k) \right)$
+ $(k+1)^2 \left(Z_{m+r}(k) Z_{m-r}(k) - \left[Z_m(k) \right]^2 \right).$

Using the following identity for the sequence $Z_m(k)$:

$$Z_{m+r}(k) = X_r Z_{m+1}(k) - X_{r-1} Z_m(k),$$

where $X_r = \frac{\omega_1^r - \omega_2^r}{\omega_1 - \omega_2}$ and $X_{-r} = -X_r$. Thus, we obtain

$$j_{m+r}^{(3)}(k)j_{m-r}^{(3)}(k) - \left[j_m^{(3)}(k)\right]^2 = \frac{k+1}{\sigma_k^2} \left\{ \begin{array}{c} \rho_k k^m \left(k^{-r} - k^r\right) X_r Z_{m+1}(k) \\ + \rho_k k^m \left(k^r X_{r+1} - k^{-r} X_{r-1} - 2\right) Z_m(k) \\ - (k^2 + k + 1)(k+1) X_r^2 \end{array} \right\}.$$

Using Binet's formula of the third-order k-Jacobsthal sequence, the first identity can be proved in a similar manner.

Taking r = 1 in Theorem 3.1, we obtain the following:

Corollary 3.2 (Cassini's Identity). Let m be any integer $m \ge 1$. Then, we have

$$J_{m+1}^{(3)}(k)J_{m-1}^{(3)}(k) - \left[J_m^{(3)}(k)\right]^2 = \frac{1}{\sigma_k^2} \left\{ \begin{array}{c} (k^{m+2} - k^m) Z_{m+1}(k) \\ +k^{m+1} (k+2) Z_m(k) - (k^2 + k + 1) \end{array} \right\}$$

and

$$j_{m+1}^{(3)}(k)j_{m-1}^{(3)}(k) - \left[j_m^{(3)}(k)\right]^2 = \frac{k+1}{\sigma_k^2} \left\{ \begin{array}{c} \rho_k k^m \left(k^{-1} - k\right) Z_{m+1}(k) \\ -\rho_k k^m \left(k+2\right) Z_m(k) \\ -(k^2 + k + 1)(k+1) \end{array} \right\}$$

Theorem 3.3 (d'Ocagne's Identity). For any real nonzero number k. Let m and r be any integers such that $m \ge r$. Then, we have

$$J_m^{(3)}(k)J_{r+1}^{(3)}(k) - J_{m+1}^{(3)}(k)J_r^{(3)}(k) = \frac{1}{\sigma_k} \left[k^{m+1}X_r - k^{r+1}X_m + X_{m-r} \right]$$

and

$$j_m^{(3)}(k)j_{r+1}^{(3)}(k) - j_{m+1}^{(3)}(k)j_r^{(3)}(k) = \frac{k+1}{\sigma_k^2} \left[\rho_k k^{r+1} X_m - \rho_k k^{m+1} X_r + (k+1)\sigma_k X_{m-r}\right],$$

where $X_n = \frac{\omega_1^n - \omega_2^n}{\omega_1 - \omega_2}$, $\sigma_k = k^2 + k + 1$ and $\rho_k = \sigma_k + 1$.

Proof. Using Binet's formula of the third-order k-Jacobsthal sequence in Theorem 2.3, we write

$$\begin{aligned} \sigma_k^2 \left(J_m^{(3)}(k) J_{r+1}^{(3)}(k) - J_{m+1}^{(3)}(k) J_r^{(3)}(k) \right) \\ &= \left(k^{m+1} - Z_m(k) \right) \left(k^{r+2} - Z_{r+1}(k) \right) - \left(k^{m+2} - Z_{m+1}(k) \right) \left(k^{r+1} - Z_r(k) \right) \\ &= k^{m+1} \left(k Z_r(k) - Z_{r+1}(k) \right) - k^{r+1} \left(k Z_m(k) - Z_{m+1}(k) \right) \\ &+ Z_m(k) Z_{r+1}(k) - Z_{m+1}(k) Z_r(k) \\ &= \sigma_k \left[k^{m+1} X_r - k^{r+1} X_m + X_{m-r} \right], \end{aligned}$$

where $X_n = \frac{\omega_1^n - \omega_2^n}{\omega_1 - \omega_2}$. The second statement of the theorem can be proved similarly.

As a consequence of the Binet formulae of Theorem 2.3, we get, for the sequence of thirdorder k-Jacobsthal numbers, the following interesting identities.

Theorem 3.4. *Let* r *be any integer such that* $r \ge 2$ *. Then, we obtain*

$$j_r^{(3)}(k) = (k-1)J_r^{(3)}(k) + 2kJ_{r-1}^{(3)}(k) + 2kJ_{r-2}^{(3)}(k),$$

$$(\sigma_k+1)(k+1)J_r^{(3)}(k) = (k^2-k-2)j_r^{(3)}(k) + 2k^2j_{r-1}^{(3)}(k) + 2k^2j_{r-2}^{(3)}(k),$$

where $\sigma_k = k^2 + k + 1$.

Proof. Using $\sigma_k = k^2 + k + 1$ and Binet's formula of the third-order k-Jacobsthal sequence, we write

$$\sigma_k \left[(k-1)J_r^{(3)}(k) + 2kJ_{r-1}^{(3)}(k) + 2kJ_{r-2}^{(3)}(k) \right]$$

= $(k-1)k^{r+1} - (k-1)Z_r(k) + 2k \cdot k^r - 2kZ_{r-1}(k)$
+ $2k \cdot k^{r-1} - 2kZ_{r-2}(k)$
= $(k^2 + k + 2)k^r + (k+1)Z_r(k).$

This proves the first identity. the second identity can be proved in a similar manner.

Theorem 3.5. *for every integer* $r \ge 0$ *, we have*

$$j_r^{(3)}(k) - k^2 J_r^{(3)}(k) + (k-2)k^r = \begin{cases} k & \text{if } r \equiv 0 \pmod{3} \\ -(k+1) & \text{if } r \equiv 1 \pmod{3} \\ 1 & \text{if } r \equiv 2 \pmod{3} \end{cases}$$
(3.1)

Proof. Using $\sigma_k = k^2 + k + 1$ and the Binet's formulas of the third-order k-Jacobsthal and third-order k-Jacobsthal-Lucas sequences, we write

$$j_r^{(3)}(k) - k^2 J_r^{(3)}(k) = \frac{1}{\sigma_k} \left[(k^2 + k + 1)k^r + (k + 1)Z_r(k) \right] - \frac{k^2}{\sigma_k} \left[k^{r+1} - Z_r(k) \right] = \frac{1}{\sigma_k} \left[-\sigma_k(k-2) \cdot k^r + \sigma_k Z_r(k) \right] = -(k-2) \cdot k^r + Z_r(k).$$

Considering $\omega_1 + \omega_2 = -1$, $\omega_1 \omega_2 = 1$ and

$$Z_{r}(k) = \begin{cases} k & \text{if } r \equiv 0 \pmod{3} \\ -(k+1) & \text{if } r \equiv 1 \pmod{3} \\ 1 & \text{if } r \equiv 2 \pmod{3} \end{cases}$$

we obtain desired result.

Some identities for third-order k-Jacobsthal and third-order k-Jacobsthal–Lucas numbers are given without proof in the next theorem.

Theorem 3.6. For any integer $r \ge 0$, we have

$$j_r^{(3)}(k) + (k+1)J_r^{(3)}(k) = 2k^r,$$
(3.2)

$$j_r^{(3)}(k) - (k+1)J_r^{(3)}(k) = 2\left[j_{r-3}^{(3)}(k) + (k-2)k^{r-3}\right], \ r \ge 3,$$
(3.3)

$$\left[j_r^{(3)}(k)\right]^2 - (k+1)^2 \left[J_r^{(3)}(k)\right]^2 = 4k^r \left[j_{r-3}^{(3)}(k) + (k-2)k^{r-3}\right],$$
(3.4)

$$J_{r+2}^{(3)}(k) - k^2 J_r^{(3)}(k) = \begin{cases} k-1 & \text{if } r \equiv 0 \pmod{3} \\ -k & \text{if } r \equiv 1 \pmod{3} \\ 1 & \text{if } r \equiv 2 \pmod{3} \end{cases},$$
(3.5)

$$(k-2)k^{r} + j_{r}^{(3)}(k) - J_{r+2}^{(3)}(k) = \begin{cases} 1 & \text{if } r \equiv 0 \pmod{3} \\ -1 & \text{if } r \equiv 1 \pmod{3} \\ 0 & \text{if } r \equiv 2 \pmod{3} \end{cases}$$
(3.6)

The next result will be also used in the statement of the new identities for the third-order k-Jacobsthal number sequence.

Theorem 3.7. *Let m and r be any integers. Then, we have*

$$J_{m+r+1}^{(3)}(k) = J_{m+1}^{(3)}(k)J_{r+1}^{(3)}(k) + \left((k-1)J_m^{(3)}(k) + kJ_{m-1}^{(3)}(k)\right)J_r^{(3)}(k) + kJ_m^{(3)}(k)J_{r-1}^{(3)}(k).$$
(3.7)

Proof. Using $\sigma_k = k^2 + k + 1$ and Binet's formula of the third-order k-Jacobsthal sequence, we write

$$\begin{split} &\sigma_k^2 \left[J_{m+1}^{(3)}(k) J_{r+1}^{(3)}(k) + \left((k-1) J_m^{(3)}(k) + k J_{m-1}^{(3)}(k) \right) J_r^{(3)}(k) + k J_m^{(3)}(k) J_{r-1}^{(3)}(k) \right] \\ &= k^{m+r+4} - k^{m+2} Z_{r+1}(k) - k^{r+2} Z_{m+1}(k) + Z_{m+1}(k) Z_{r+1}(k) \\ &+ (k-1) \left[k^{m+r+2} - k^{m+1} Z_r(k) - k^{r+1} Z_m(k) + Z_m(k) Z_r(k) \right] \\ &+ k \left[k^{m+r+1} - k^m Z_r(k) - k^{r+1} Z_{m-1}(k) + Z_{m-1}(k) Z_r(k) \right] \\ &+ k \left[k^{m+r+1} - k^{m+1} Z_{r-1}(k) - k^r Z_m(k) + Z_m(k) Z_{r-1}(k) \right] \\ &= \sigma_k \left[k^{m+r+2} - Z_{m+r+1}(k) \right] \\ &= \sigma_k^2 J_{m+r+1}^{(3)}(k). \end{split}$$

Using $Z_n(k) = -Z_{n-1}(k) - Z_{n-2}(k)$, the theorem can be proved easily.

Taking m = r in Theorem 3.7, we obtain the following:

Corollary 3.8. Let r be any integer. Then,

$$J_{2r+1}^{(3)}(k) = \left[J_{r+1}^{(3)}(k)\right]^2 + (k-1)\left[J_r^{(3)}(k)\right]^2 + 2kJ_{r-1}^{(3)}J_r^{(3)}(k).$$

Taking m = r - 1 in Theorem 3.7 and Using Eq. (2.1), we obtain the following:

Corollary 3.9. Let r be any integer. Then,

$$J_{2r}^{(3)}(k) = k \left[J_{r-1}^{(3)}(k) \right]^2 - (k-1) \left[J_r^{(3)}(k) \right]^2 + 2J_r^{(3)}(k) J_{r+1}^{(3)}(k).$$

4 Conclusion

Sequences of numbers have been studied over several years, including the well-known Tribonacci sequence and, consequently, on the Tribonacci-Lucas sequence. In this paper we have also contributed for the study of generalized third-order Jacobsthal sequence, deducing some identities of these numbers, presenting the generating functions and their Binet-style formula. It is our intention to continue the study of this type of sequences, exploring some their applications in the science domain. For example, a new type of sequences using binomials form and their combinatorial properties in the spirit of Wani et al. [10].

References

- [1] P. Barry, Triangle geometry and Jacobsthal numbers, Irish Math. Soc. Bull., 51, 45–57, (2003).
- [2] G. Cerda-Morales, *Identities for Third Order Jacobsthal Quaternions*, Advances in Applied Clifford Algebras, 27 (2), 1043–1053, (2017).
- [3] G. Cerda-Morales, On a Generalization of Tribonacci Quaternions, Mediterranean Journal of Mathematics, 14:239, 1–12, (2017).
- [4] G. Cerda-Morales, *Dual Third-order Jacobsthal Quaternions*, Proyecciones (Antofagasta), 37 (4), 731–747, (2018).
- [5] G. Cerda-Morales, *Gaussian third-order Jacobsthal and Gaussian third-order Jacobsthal-Lucas polynomials and their properties*, Asian-European Journal of Mathematics, **14** (5), 1–12, (2021).
- [6] C.K. Cook and M.R. Bacon, *Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations*, Annales Mathematicae et Informaticae, **41**, 27–39, (2013).
- [7] A.F. Horadam, Jacobsthal and Pell Curves, The Fibonacci Quarterly, 26 (1), 79–83, (1988).
- [8] A.F. Horadam, Jacobsthal representation numbers, The Fibonacci Quarterly, 43 (1), 40-54, (1996).
- [9] N. Kilic, h(x)-Jacobsthal and h(x)-Jacobsthal-Lucas representation polynomials, Palestine Journal of Mathematics, **10** (1), 312–321, (2021).
- [10] A.A. Wani, G. Morales and N.A. Malik, *Matrix sequence of the binomial form of the complex combined Jacobsthal-Akin sequence*, Palestine Journal of Mathematics, **11** (1), 292–304, (2022).

Author information

Gamaliel Morales, Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Cerro Barón, Valparaíso, Chile. E-mail: gamaliel.cerda.m@mail.pucv.cl

Received: 2024-02-24 Accepted: 2024-06-23