
Palestine Journal of Mathematics

Vol 14(1)(2025) , 517–529 © Palestine Polytechnic University-PPU 2025

On polynomials whose roots are totally real

Ahmed Charifi, Rachid Echarghaoui and Abdelouhab Hatimi

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 12E05; Secondary 12D05.

Keywords and phrases: Circulant matrices, eigenvalues, Polynomial Equation, Real roots.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that
improved the quality of our paper.

Corresponding Author: A. HATIMI

Abstract Using circulant matrices, we establish characterization criteria for a class of alge-
braic equations of degree less than or equal to 5 whose roots are totally real, and we explicitly
calculate these roots.

1 Introduction

Polynomials are significant in mathematics because they are relatively easy to study and can be
utilized to model various real-world phenomena. The study of polynomial equations has been
one of the oldest areas of focus in algebra for centuries. The challenge was to find formulas that
could provide the roots of polynomials based on their coefficients. Early on, first order equations
were solved, and centuries later, the Arabic mathematician Al-Khwarizmi (780-850) developed
a method for solving quadratic equations, Omar Khayyam’s studies on cubic equations inspired
the 12th century Persian mathematician Sharaf al-Din Tusi to investigate the number of positive
roots [8, 2]. In 1545, the solutions for cubic and quartic equations became well-known after the
publication of Geronimo Cardano’s Ars Magna. The hint for solving the cubic was obtained
from Niccolo Tartaglia, and the solution to the quartic was first discovered by Ludovico Fer-
rari. The discovery of solutions for cubic and quartic equations using radicals was the most
important accomplishment in mathematics of the sixteenth century. These discoveries inspired
mathematicians to attempt solving quintic (fifth degree) and higher degree equations using radi-
cals. In 1824, the Norwegian mathematician Neils Abel (1802-1829) proved that it is impossible
to solve the general equation of the fifth degree in terms of radicals, closing the door on further
exploration in this direction. Around the same time, a French mathematician, Evarist Galois
(1811-1832), extended this proof to all degrees greater than five [4].

Polynomials with only real zeros arise often in combinatorics and other branches of mathe-
matics (see [12] and the references therein). This subject has interested several mathematicians
who have treated it by using different approaches. In this article, we propose a matrix approach
for the real roots of polynomials based on the circulant matrices (see [7, 9, 11, 13]). First of
all, we find the necessary and sufficient conditions that must be verified by coefficients of these
polynomials of degree less than 4 so that its roots are totally real. After passing to extend their
method and use circulant matrices to find expressions for the exact roots of many families of
quintic polynomial equations and characterizing some classes of equations including their real
roots.

2 Priliminary

In this section, we introduce some standard notations and definitions which will be useful to
prove our main results.
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Definition 2.1. [5] A n× n circulant matrix is a square matrix of the form:

C =



c0 c1 · · · · · · cn−2 cn−1

cn−1 c0
. . . cn−2

...
. . . . . . . . .

...

c2 · · ·
. . . c0 c1

c1 c2 · · · cn−1 c0


.

The whole circulant is evidently determined by the first row. We may also write a circulant in
the form:

C = (cjk) = (ck−j mod n) = circ (c0, c1, · · · , cn−1) .

Properties of circulant matrices can be studied using W matrix as defined in[5], a special
permutation matrix of the form:

W =



0 1 0 · · · · · · 0
...

. . . 1 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · ·
. . . . . . . . . 1

1 0 · · · · · · · · · 0


.

Lemma 2.2. We list some properties of permutation matrices which can be easily verified:

(i) The nth exponent of W is the identity matrix In.

(ii) W k = circ(0, · · · , 0, 1, 0, · · · , 0), where 1 is in the (k + 1)th position.

Proof. For the proof we refer to [5].

Remark 2.3. We can represent a circulant matrix using W matrix as follows:

C = circ (c0, c1, · · · , cn−1) = c0In + c1W + · · ·+ cn−1W
n−1 = q(W ).

Where q(t) = c0 + c1t+ · · ·+ cn−1t
n−1.

Proposition 2.4. [5] The eigenvalues of a circulant matrix C = circ (c0, c1, · · · , cn−1) are given
by

λm(C) =
n−1∑
k=0

ck exp
(

2πmki

n

)
, 0 ≤ m < n.

Proof. The characteristic polynomial of W is:

PW (λ) = det(λIn −W ) =

∣∣∣∣∣∣∣∣∣∣
λ −1 0 · · · 0
0 λ −1 · · · 0
...

. . .
...

−1 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣
= λn − 1 =

n−1∏
k=0

(
λ− ωk

)
.

Where, ω = ei
2π
n . Since C = q(W ), then the eigenvalues of C are q(ωk), for 0 ≤ k < n.

Proposition 2.5. [10] The circulant matrice C has all eigenvalues real if, and only if, it is self-
adjoint or, equivalently, if its coefficients satisfy the reflection property

c0 ∈ R, cn−k = ck, k = 1, . . . , n.

Proof. It is clear that C is self-adjoint if, and only if, the reflection property holds. So, this
property implies the reality of the spectrum of C. Conversely, if all the eigenvalues λj of C are
real, then from Proposition 2.4 one has

λj = c0 + cn−1ωj−1 + cn−2ω
2
j−1 + · · ·+ c1ω

n−1
j−1 = λj , j = 1, . . . , n.
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3 Main Results

In this section, we characterize the polynomial equations with degree less than or equal than 5
of which all the roots are real, and we give the expressions of its roots.

Tschirnhaus gave transformations for the elimination of some of the intermediate terms in a
polynomial [1], for example: the general result, for p(x) = xn+an−1x

n−1+...+a1x+a0, is that
the substitution y = x− an−1

n
eliminates the term of degree n− 1 (reduced form or depressed).

Recall that an−1 equals the sum of the roots of p. If p is the characteristic polynomial of a matrix
C, then the sum of the roots is the sum of the eigenvalues, that is, the trace, of C. Accordingly,
eliminating the degree n− 1 term corresponds to making the trace vanish.

3.1 Quadratic equation:

Proposition 3.1. Let α and β be two real numbers, the roots of the quadratic polynomial equation

x2 − αx− β = 0 are all real if and only if α2 + 4β ≥ 0, and are given by: x1 =
α
2 +

√
α2+4β

2

and x2 =
α
2 −

√
α2+4β

2 .

Proof. Consider a general quadratic polynomial : p(x) = x2−αx−β. We must find a general 2×

2 symetric circulant matrix of the form C =

(
b c

c b

)
= circ (a, b) , such as his characteristic

polynomial is p.
The characteristic polynomial of C is

PC(x) = x2 − 2bx+ b2 − c2. (3.1)

Identifying p(x) with PC(x), results in the nonlinear system

b =
α

2
(3.2)

c2 − b2 = β. (3.3)

Substituting for b in the equation (3.3), we obtain

c2 =
α2

4
+ β ≥ 0. (3.4)

Here, b = α
2 and c = ±

√
α2

4
+ β. For convenience we define c with the positive sign. Hence

C =

 α
2

√
α2+4β

2√
α2+4β

2
α
2


and

q(t) =
α

2
+ t

√
α2 + 4β

2
.

The roots of the original quadratic equation are now found by applying q to the two square roots
of unity:

x1 = q(1) =
α

2
+

√
α2 + 4β

2
,

x2 = q(−1) =
α

2
−
√

α2 + 4β
2

.
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3.2 Cubic equation:

Starting from the cubic equation x3 + bx2 + cx + d = 0, where b, c, and d are real numbers,
we will achieve the desired simplification by changing variables to obtain an equation with no
degree-two term.

Lemma 3.2. Let a, b, and c be three real numbers. Then the general cubic of the form x3 +bx2 +
cx + d can be reduced to a depressed form by a suitable substitution involving a new variable.
Accodingly, the substitution takes the form of: x = y − b

3 .
The depressed cubic takes the form: y3 − ry− s , where r and s are expressed in the forms:

r =
b2

3
− c and s =

bc

3
− 2b3

27
− d.

Proof. For the proof we refer to [6].

Lemma 3.3. Let α and β be two real numbers, such that, β2 − 4α3

27 ≥ 0. The roots of the cubic
polynomial equation x3 −αx− β = 0 are given by: xm = b exp

( 2πmi
3

)
+ c exp

( 4πmi
3

)
, m =

0, 1, 2, with

b =
3

√√√√β +
√
β2 − 4α3

27

2
,

c =
3

√√√√β −
√

β2 − 4α3

27

2
.

Proof. The roots of p(x) = x3 − αx − β = 0 as the eigenvalues of a traceless circulant matrix.

Let C =

 0 b c

c 0 b

b c 0

, its characteristic polynomial is x3 − 3bcx− b3 − c3. This equals p(x) if

b3 + c3 = β,

3bc = α,

which on solving gives

b =
3

√√√√β +
√
β2 − 4α3

27

2
,

c =
3

√√√√β −
√

β2 − 4α3

27

2
.

By the Proposition 2.4, the roots of p(x) are the eigenvalues of C with b and c so obtained.

Theorem 3.4. For any real numbers α and β, the roots of the cubic polynomial equation x3 −

αx− β = 0 are all real, if and only if α > 0 and β2 − 4α3

27
≥ 0, and are given by:

x0 = 2b,

x1 = b−
√

α− 3b2,

x2 = b+
√

α− 3b2,

with b =
3

√
β−

√
β2− 4α3

27
16 +

3

√
β+

√
β2− 4α3

27
16 .
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Proof. Consider a reduced cubic polynomial : f(x) = x3−αx−β. We must find a general 3×3
self-adjoint circulant matrix of the form

C =

 0 b+ ic b− ic

b− ic 0 b+ ic

b+ ic b− ic 0

 = circ (0, b+ ic, b− ic) such as his characteristic

polynomial is f .
The characteristic polynomial of C is

PC(x) = x3 − 3(b2 + c2)x− 2b3 + 6bc2. (3.5)

Identifying f(x) with PC(x), results in the nonlinear system

b2 + c2 =
α

3
> 0, (3.6)

2b3 − 6bc2 = β. (3.7)

Substituting for c2 in the equation (3.7), we obtain

8b3 − 2αb− β = 0. (3.8)

When the discriminant of equation (3.8) is ∆ =
1
64

(
β2 − 4α3

27

)
≥ 0, and b is a real number,

then (by Lemma 3.3)

b =
3

√
β−

√
β2− 4α3

27
16 +

3

√
β+

√
β2− 4α3

27
16 and c =

√
α

3
− b2.

Let be
q(t) = (b+ ic)t+ (b− ic)t2.

The roots of the reduced cubic equation are now found by applying q to the three square roots of
unity:

x0 = q(1) = 2b,

x1 = q(j) = (b+ ic)ei
2π
3 + (b− ic)ei

4π
3 ,

x2 = q(j) = (b+ ic)ei
4π
3 + (b− ic)ei

8π
3 .

where j = ei
2π
3 =

1
2
+ i

√
3

2
, and j = ei

4π
3 = ei

−2π
3 =

1
2
− i

√
3

2
. It follows that

x0 = 2b,

x1 = b
(
ei

2π
3 + ei

−2π
3

)
+ ic

(
ei

2π
3 − ei

−2π
3

)
= b−

√
3c = b−

√
α− 3b2,

x2 = b
(
ei

4π
3 + ei

2π
3

)
+ ic

(
ei

4π
3 − ei

−2π
3

)
= b+

√
3c = b+

√
α− 3b2.

3.3 Quartic equation:

Lemma 3.5. Let f(x) = x4 −αx2 −βx− γ be a polynomial with real coefficients, then Rs(t) =

t3 − α
2 t

2 +
((

α
4

)2
+ γ

4

)
t−

(
β
8

)2
= 0, is a cubic resolvent of quartic equation f(x) = 0.

Proof. Consider a reduced quartic polynomial : f(x) = x4 − αx2 − βx − γ. We must find a
general 4 × 4 self-adjoint circulant matrix of the form

C =


0 p+ iq b p− iq

p− iq 0 p+ iq b

b p− iq 0 p+ iq

p+ iq b p− iq 0

 = circ (0, p+ iq, b, p− iq)
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such as his characteristic polynomial is f .
The characteristic polynomial of C is

PC(x) = x4 − 2
(
2p2 + 2q2 + b2)x2 − 8

(
bp2 − bq2)x+ b4 − 4b2p2 − 4b2q2 + 16p2q2. (3.9)

Identifying f(x) with PC(x), results in the nonlinear system

2(p2 + q2) + b2 =
α

2
, (3.10)

b(p2 − q2) =
β

8
, (3.11)

b4 − 4b2(p2 + q2) + 16p2q2 = −γ. (3.12)

If b = 0 then β = 0. We can regard f(x) = x4 − αx2 − γ as a quadratic polynomial in x2, use
the sign of α2 + 4γ to determine whether the two values of x2 occurring as roots are real.
If b ̸= 0

p2 + q2 =
α

4
− b2

2
, (3.13)

p2 − q2 =
β

8b
,

Then

p2 =
α

8
− b2

4
+

β

16b
, (3.14)

q2 =
α

8
− b2

4
− β

16b
, (3.15)

and

16p2q2 = b4 − αb2 +
α2

4
− β2

16b2 . (3.16)

By equations (3.10), (3.12) and (3.15), we obtain

b4 − 2b2
(α

2
− b2

)
+ b4 − αb2 +

α2

4
− β2

16b2 = −γ,

2b4 − αb2 + 2b4 − αb2 +
α2

4
− β2

16b2 = −γ,

4b4 − 2αb2 − β2

16b2 = −γ − α2

4
,

4b6 − 2αb4 − β2

16
= −

(
γ +

α2

4

)
b2,

4b6 − 2αb4 +

(
γ +

α2

4

)
b2 − β2

16
= 0,

(3.17)

and

b6 − α

2
b4 +

((α
4

)2
+

γ

4

)
b2 −

(
β

8

)2

= 0. (3.18)

Notice that this equation can he regarded as a cubic polynomial equation in b2. Let us therefore
introduce a new variable for b2, setting b2 = t. Then the equation becomes

Rs(t) = t3 − α

2
t2 +

((α
4

)2
+

γ

4

)
t−

(
β

8

)2

= 0. (3.19)

The cubic Rs(t) called the cubic resolvent of quartic. By equation (3.10), the coefficient α must
be strictly positive, and by equation (3.13) the component b of the circulant matrice must satisfy
the condition

0 < b2 <
α

2
. (3.20)
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Although our cubic equation in t, like all cubic equations, has a real solution, and since 0 <

t = b2 <
α

2
, we must therefore know that the equation (3.19) has both a real and a positive

solution. By the intermediate value theorem of elementary calculus, we show that the cubic
polynomial equation (3.19) has a positive real root. The sufficient condition that 0 < t <

α

2
is

Rs(
α
2 ) > 0.

In order for all roots of f to be real, and hence for all corosponding circulants to be self-
adjoint, it is necessary that all roots of equation (3.18) be real. Since (3.18) is cubic in b2, the
necessary condition reduces to this: the cubic equation (3.19) must have all real, nonnegative
roots. Conversely, if the cubic equation (3.19) has all real, nonnegative roots, then f has all
real roots. Now, what are the conditions on the coefficients of Rs(t) to guarantee this goal? the
derivative of Rs is

R′
s(t) = 3t2 − αt+

(
α2

16
+

γ

4

)
. (3.21)

Then, it is necessary that
α2

12
> γ, (3.22)

otherwise Rs will be increasing on R and thus admits only one real root.
If we can solve Rs(t) = 0. we can then take square roots to get a value of b, and use it to find
the other two components of the circulant matrice associated with our quartic equation.

Solving the Resolvent Polynomial

Lemma 3.6. Let α and β be two real numbers. Then the equation t3−α
2 t

2+
(

α2

16 + γ
4

)
t−
(

β
8

)2
=

0, can be reduced to a depressed equation y3 − ry−s = 0, by a substitution involving a variable
t = y + α

6 , where r and s are given by:

r =
1
4

(
α2

12
− γ

)
and s =

1
8

(
β2

8
− α3

108
− αγ

3

)
,

with s2 − 4r3

27
> 0.

Proof. It suffices to apply Lemma 3.2 and the reality of roots.

Lemma 3.7. The roots of the equation t3 − α
2 t

2 +
(

α2

16 + γ
4

)
t−

(
β
8

)2
= 0, are given by:

t0 = 2ρ+
α

6
,

t1 = ρ−
√
r − 3ρ2 +

α

6
,

and
t2 = ρ+

√
r − 3ρ2 +

α

6
.

where

ρ =
3

√√√√s+
√
s2 − 4r3

27

2
+

3

√√√√s−
√
s2 − 4r3

27

2
.

Here:

r =
1
4

(
α2

12
− γ

)
and s =

1
8

(
β2

8
− α3

108
− αγ

3

)
.

Proof. From Lemma 3.6 and Theorem 3.4.
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Quartic whose Roots are totally real

We gather the conditions so that a polynomial quartic equation has only real roots in the follow-
ing theorem:

Theorem 3.8. For any real numbers α, β and γ , the roots of the quartic polynomial equation
x4 − αx2 − βx− γ = 0 are all real, if and only if , α > 0 , α2

12 > γ and(
β2

8
− α3

108
− αγ

3

)2

−
(
α2

12
− γ

)3

> 0.

Proof. The proof follows immediatley from Lemma 3.6, equations (3.10) and (3.22).

Theorem 3.9. If the roots of the quartic polynomial equation x4 −αx2 −βx− γ = 0 are all real
then they are given by:

x0 = 2p+ b,

x1 = −2p+ b,

x2 = −2q − b,

x3 = 2q − b.

Here
b =

√
tm0 ,

p =

√
α

8
− b2

4
+

β

16b
,

and

q =

√
α

8
− b2

4
− β

16b
,

where tm0 is a root of Rs, the cubic resolvent of quartic such that tm0 <
α

2
.

Proof. From Lemma 3.7 and equations (3.14), (3.15) and (3.20).

Corollary 3.10. Let α be a root of polynomial f(x) = x4 − 6x2 − 8x − 2
3

. Then Q(α)/Q is a
totally real algebraic extension of degre 4.

Proof. We apply Eisenstein’s Criteria with p = 2, the polynomial f(x) is irreducible over Q.
Then by the Theorem 3.8, the roots of polynomial f(x) are all real.

3.4 Quintic equation:

This part is intended to study certain particular forms of equations of degree 5 with real coeffi-
cients whose roots are totally real and we give these roots explicitly.
The quintic equation has been written in the following forms [1], [3] :

x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0, General quintic form

x5 + b3x
3 + b2x

2 + b1x+ b0 = 0, Reduced quintic form
x5 − 5c3x

3 + 5c2
3x− c0 = 0, DeMoivre’s quintic form

x5 + d2x
2 + d1x+ d0 = 0, Principal quintic form

x5 + e1x+ e0 = 0. Bring-Jerrard quintic form

Remark 3.11. The roots of Principal quintic and Bring-Jerrard quintic are not all real.

Theorem 3.12. For two non-zero complex number a and β , the roots of DeMoivre’s quintic
equation:

x5 − 5 | a |2 x3 + 5 | a |4 x− β = 0,
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are all real, if and only if β = 2Re(a5), and are given by:

x0 = a+ a = 2Re(a),

x1 =

√
5 − 1
2

Re(a) +

√
10 + 2

√
5

2
Im(a),

x2 = −
√

5 + 1
2

Re(a) +

√
10 − 2

√
5

2
Im(a),

x3 = −
√

5 + 1
2

Re(a)−
√

10 − 2
√

5
2

Im(a),

and

x4 =

√
5 − 1
2

Re(a)−
√

10 + 2
√

5
2

Im(a).

Proof. We consider the polynomial f(x) = x5 − 5αx3 + 5α2x − β with α, β ∈ R. We must

first find the circulant matrix C =


0 a c c a

a 0 a c c

c a 0 a c

c c a 0 a

a c c a 0

, such as his characteristic

polynomial is

PC(x) = x5−5
(
| a |2 + | c |2

)
x3−5

(
a2c+ ac2 + a2c+ ac2)x2+5

(
−a3c+ | a |4 − | a |2| c |2

)
−ac3 − a3c− ac3+ | c |4)x−

(
a5 + a5 − 5

(
| a |2 − | c |2

) (
a2c− ac2 + a2c− ac2)+ c5 + c5) .

Identifying f(x) with PC(x), results in the nonlinear system:

| a |2 + | c |2= α, (3.23)

a2c+ ac2 + a2c+ ac2 = 0, (3.24)

−a3c+ | a |4 − | a |2| c |2 −ac3 − a3c− ac3+ | c |4= α2, (3.25)

a5 + a5 − 5
(
| a |2 − | c |2

) (
a2c− ac2 + a2c− ac2)+ c5 + c5 = β, (3.26)

Using the equation (3.24) , we have

a5 + a5 − 10
(
| a |2 − | c |2

) (
a2c+ a2c

)
+ c5 + c5 = β. (3.27)

It follows that a2c+ a2c = 0.
Since a and c play the same role, we assume that c = 0, and using the equations (3.23), and
(3.25), we get α =| a |2 and β = 2Re(a5). Using Poposition 1, the roots are given by:

xm = a exp
(

2πmi

5

)
+ a exp

(
8πmi

5

)
, 0 ≤ m < 5.

We use the following formulas:
a.eiθ + a.e−iθ = 2Re(a)cos(θ)− 2Im(a)sin(θ) , cos 4π

5 = −
√

5+1
4 ,

sin 4π
5 =

√
10−2

√
5

4 , cos 2π
5 =

√
5−1
4 and sin 2π

5 =
√

10+2
√

5
4 .

We get
x0 = a+ a = 2Re(a),

x1 =

√
5 − 1
2

Re(a) +

√
10 + 2

√
5

2
Im(a),

x2 = −
√

5 + 1
2

Re(a) +

√
10 − 2

√
5

2
Im(a),
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x3 = −
√

5 + 1
2

Re(a)−
√

10 − 2
√

5
2

Im(a),

and

x4 =

√
5 − 1
2

Re(a)−
√

10 + 2
√

5
2

Im(a),

Corollary 3.13. The roots of polynomial f(x) = x5 − 20
9
x3 +

80
81

x − 16
243

are all real and are
given by:

x0 =
4
3 , x1 =

√
5−1
3 +

√
10+2

√
5

3 , x2 = −
√

5+1
3 +

√
10−2

√
5

3 , x3 = −
√

5+1
3 −

√
10−2

√
5

3 , and

x4 =
√

5−1
3 −

√
10−2

√
5

3 .

Proof. We apply the previous theorem with a = 1
3 + i 1√

3
= 2

3e
iπ

3 .

Corollary 3.14. For any strictly positive number α, the roots of DeMoivre’s quintic equation:

x5 − 5αx3 + 5α2x− 2α2√α = 0,

are all real and are given by:
x0 = 2

√
α,

x1 = x4 =

√
5 − 1
2

√
α,

and

x2 = x3 = −
√

5 + 1
2

√
α.

Proof. It suffices to use the previous theorem by taking a =
√
α for α strictly positive number.

Corollary 3.15. The general solution of the ordinary differential equation (ODE):

y(5) − 10y′′′ + 20y′ − 8
√

2y = 0 (3.28)

is
y(t) = C1e

2
√

2t + (C2 + C3t) e
(1−

√
5)

2 t + (C4 + C5t) e
− (1+

√
5)

2 t.

where Cj , j=1,2,...,5, are arbitrary real numbers.

Proof. The characteristic polynomial of ODE (3.28) is

f(r) = r5 − 10r3 + 2r − 8
√

2

Hence, by using the corollary 3.14, the roots are r0 = 2
√

2, r1 = r4 = −(1 +
√

5)/
√

2
and r2 = r3 = (1 +

√
5)/

√
2 . We conclude that the general solution is y(t) = C1e

2
√

2t +

(C2 + C3t) e
1−

√
5

2 t + (C4 + C5t) e−
1+

√
5

2 t.

Theorem 3.16. Let α be a real number, the roots of the reduced quintic equation:

x5 − 10α2x3 + 10α3x2 + 5α4x− b = 0,

are all real if and only if b = 2α5, and are given by:

x0 = 2α,

x1 =
α

2

(√
5 − 1 −

√
10 + 2

√
5
)
,

x2 =
α

2

(√
5 + 1 +

√
10 + 2

√
5
)
,

x3 =
α

2

(√
5 + 1 −

√
10 + 2

√
5
)
,

x4 =
α

2

(√
5 − 1 +

√
10 + 2

√
5
)
.
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Proof. We consider the reduced form of quintic:

f(x) = x5 − 10α2x3 + 10βx2 + 5α4x− b, α, b ∈ R. (3.29)

We must first find the circulant matrix

C =


0 p iq −iq p

p 0 p iq −iq

−iq p 0 p iq

iq −iq p 0 p

p iq −iq p 0

 = circ (0, p, iq,−iq, p)

such as his characteristic polynomial is f . We have

PC(x) =− 2p5 + 5p4x+ 10p3q2 − 5p2q2x− 5p2x3 − 10pq4 + 10pq2x2 + 5q4x− 5q2x3 + x5

= x5 − 5
(
p2 + q2)x3 + 10pq2x2 + 5

(
p4 − p2q2 + q4)x− 2p5 + 10p3q2 − 10pq4

Identifying f(x) with pC(x), results in the nonlinear system

p2 + q2 = 2α2, (3.30)

pq2 = β, (3.31)

p4 − p2q2 + q4 = α4, (3.32)

2p5 − 10p3q2 + 10pq4 = b. (3.33)

By equations (3.30) and (3.32), we obtain q2 and p2 are the roots of the quadratic equation

u2 − 2α2u+ α2 = 0, (3.34)

Then p2 = q2 = α2 and by equation (3.31) the sign of p is that of β and p = α, it follows that
β = α3.
By applying the Proposition 1, we have:

x0 = 2α,

x1 = 2α
(
cos
( 2π

5

)
− sin

( 4π
5

))
= α

2

(√
5 − 1 −

√
10 + 2

√
5
)
,

x2 = 2α
(
cos
( 4π

5

)
+ sin

( 2π
5

))
= α

2

(√
5 + 1 +

√
10 + 2

√
5
)
,

x3 = 2α
(

cos
(
− 4π

5

)
− sin

( 2π
5

)
= α

2

(√
5 + 1 −

√
10 + 2

√
5
))

,

x4 = 2α
(
cos
(
− 2π

5

)
− 2 sin

(
− 4π

5

))
= α

2

(√
5 − 1 +

√
10 + 2

√
5
)
.

Corollary 3.17. The roots of polynomial f(x) = x5 − 5
2x

3 + 5
4x

2 + 5
16x − 1

16 are all real, and
are given by:
x0 = 1, x1 =

1
4

(√
5 − 1 −

√
10 + 2

√
5
)
, x2 =

1
4

(√
5 + 1 +

√
10 + 2

√
5
)
,

x3 =
1
4

(√
5 + 1 −

√
10 + 2

√
5
)
, and x4 =

1
4

(√
5 − 1 +

√
10 + 2

√
5
)
.

Proof. We apply the previous theorem with α = 1
2 .

Theorem 3.18. Let α, β, be a non-zero real numbers, the roots of the reduced quintic equation:

x5 − 15
2
α2x3 − 10βx2 + 15α4x+ 36α2β = 0,

are all real if and only if β2 = α6

8 , and are given by:

x0 = 2(b+ c),
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x1 = x4 =
b

2

(√
5 − 1

)
− c

2

(√
5 + 1

)
,

x2 = x3 = − b

2

(√
5 + 1

)
+

c

2

(√
5 − 1

)
.

With b =
−β

α2 − α

√
5
8
, c =

−β

α2 + α

√
5
8
.

Proof. We consider the polynomial of the form p(x) = x5 − 15
2 α

2x3 − βx2 + 15α4x− ε, and a
symetric circulant matrix

C =


0 b c c b

b 0 b c c

c b 0 b c

c c b 0 b

b c c b 0

 .

On the other hand, the characteristic polynomial of C is given by:
Pc(x) =x5 − 5

(
b2 + c2)x3 − 10bc(b+ c)x2 + 5

(
b4 − 2b3c− b2c2 − 2bc3 + c4)x− 2b5 + 10b4c− 10b3c2

− 10b2c3 + 10bc4 − 2c5.
Identifying p(x) with PC(x), results in the nonlinear system:

b2 + c2 =
3α2

2
, (3.35)

bc(b+ c) = β, (3.36)

b4 − 2bc
(
b2 + c2)− b2c2 + c4 = 3α4, (3.37)

and
2
(
b5 + c5)− 10bc

(
b3 + c3)+ 10b2c2(b+ c) = ε. (3.38)

We replace b4 + c4 in the equation, by
(
b2 + c2

)2 − 2b2c2, we obtain

9α4

4
− 3b2c2 − 3α2bc = 3α4.

It follows that

b2c2 + α2bc+
α4

4
= 0, (3.39)

then bc =
−α2

2
.

By equation (3.36) we have

b+ c =
−2β
α2 . (3.40)

Then b and c are the roots of quadratic equation: t2 +
2β
α2 t −

α2

2
= 0, whose discriminant is

∆ =
4β2

α4 + 2α2.

Let b =
−β −

√
β2 +

α6

2
α2 and c =

−β +

√
β2 +

α6

2
α2 .

By equation (3.35) we have

β2 =
α6

8
. (3.41)

It follows that

b =
−β

α2 − α

√
5
8
, c =

−β

α2 + α

√
5
8
. (3.42)
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On the other hand
c5 + b5 = (b + c)5 − 10b2c2(b + c) − 5bc

(
b3 + c3

)
, b3 + c3 = (b + c)3 − 3bc (b+ c) and

bc(b+ c) = β, then
ε = −36α2β. (3.43)

By applying the Proposition 2.4, we have:

xm = 2b cos
(

2πm
5

)
+ 2c cos

(
4πm

5

)
, 0 ≤ m < 5,

then

x0 = 2(b+ c),

x1 = x4 = 2b cos
(

2π
5

)
+ 2c cos

(
4π
5

)
=

b

2

(√
5 − 1

)
− c

2

(√
5 + 1

)
,

x2 = x3 = 2b cos
(

4π
5

)
+ 2c cos

(
−2π

5

)
= − b

2

(√
5 + 1

)
+

c

2

(√
5 − 1

)
.
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