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Abstract. This paper introduces and investigates the notions of flatness and FP-injectivity
with respect to the class P1 consisting of modules over a ring R of projective dimension at most
one. This allows us to characterize, for bunch of specific rings, when the cotorsion pair (P1,P⊥

1 )
is of finite type. In particular, we prove that a ring R is semi-hereditary and (P1,P⊥

1 ) is of finite
type if and only if P⊥

1 coincides with the class FP-I(R) of FP-injective modules. Finally, we
prove that, given a ring R and a flat ring extension Q of R, if K = Q/R, then lim

−→
P1 = F1 and

P1 ⊗R Q ⊆ F(Q) if and only if F1 ⊗R Q ⊆ F(Q) and K ∈ lim
−→

P1 extending [1, Corollary 6.8],

where F(Q) stands for the class of flat right Q-modules.

1 Introduction

Throughout this paper, R denotes an associative ring with unit element and the R-modules are
supposed to be unital. Given an R-module M , M+ denotes the character R-module of M , that is,

M+ := HomZ

(
M,

Q
Z

)
, pdR(M) denotes the projective dimension of M , idR(M) the injective

dimension of M and fdR(M) the flat dimension of M . As for the global dimensions, l-gl-dim(R)
designates the left global dimension of R and wgl-dim(R) the weak global dimension of R. Also,
FPD(R) denotes the finitistic projective dimension of R and f. dim(R) denotes the little finitistic
dimension of R. Mod(R) stands for the class of all right R-modules, P(R) stands for the class
of all projective right R-modules, I(R) the class of all injective right R-modules and F(R) the
class of flat right modules. Also, we denote by P1 the class of right R-modules M such that
pdR(M) ≤ 1 and by P fp

1 the subclass of P1 consisting of right R-modules which are finitely
presented. Any unreferenced material is standard as in [5, 16, 19, 20].

In [1], one of the main goals of Bazzoni and Herbera is to characterize the rings R for which
the equality F1 = lim

−→
P1 holds. In this context, via [1, Theorem 6.7], they proved the following

key result towards such a characterization for the rings R with classical ring of quotients Q: Let
R be a ring with classical of quotients Q. Then the following assertions are equivalent:

1) f. dim(Q) = 0;
2) P1(R)⊗R Q ⊆ F(Q);
3) lim

−→
P1 = F1∩ ⊤ Mod(Q).

They deduced the following result which generalizes a theorem of Hügel and Trlifaj stating
that if R is a domain, then F1 = lim

−→
P1 [11, Theorem 3.5]: Let R be a ring with classical

ring of quotients Q. Then F1 = lim
−→

P1 and f. dim(Q) = 0 if and only if FFD(Q) = 0 [1,

Corollary 6.8], where FFD(Q) denotes the finitistic flat dimension of Q. Furthermore, recall
that the cotorsion pair (P1,P⊥

1 ) is said to be of finite type if P⊥
1 = P1(mod(R))⊥ (see [1]),

where mod(R) stands for the class of right modules that admit projective resolutions consisting
of finitely generated projective modules. Bazzoni and Herbera proved in [1] that if the ring is an
order in an ℵ0-Noetherian ring Q of little finitistic dimension 0, then the cotorsion pair (P1,P⊥

1 )
is of finite type if and only if Q has finitistic projective dimension FPD(Q) = 0. This allows
to prove that (P1,P⊥

1 ) is of finite type for orders in semisimple artinian rings [1, Corollary 8.1]
and then, in particular, for commutative domains. Their findings answered in the affirmative an
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open problem posed by L. Fuchs and L. Salce [8, Problem 6, p. 139] on the structure of one
dimensional divisible modules over domains. Moreover, Bazzoni and Herbera were concerned
in [1] by characterizing the commutative Noetherian rings for which (P1, P

⊥
1 ) is of finite type

and proved that these rings are the ones that are orders into artinian rings.
In this paper, we introduce the notions of P1-flat modules and P fp

1 -injective modules as the
Tor-orthogonal class of P1 and Ext-orthogonal class of P fp

1 , respectively. We give numerous
properties of such entities. First, we prove that an R-module M is P1-flat if and only if the
character module M+ is P fp

1 -injective. This fact is reminiscent of the flatness of a module M
being equivalent to the (FP-) injectivity of the character module M+. It is to be noted that,
switching the location of the character module, the equivalence of the FP-injectivity of M and
the flatness of M+ holds for an arbitrary R-module M if and only if R is coherent. As to the
context of P1-flatness and P fp

1 -injectivity, we prove that the equivalence M is P fp
1 -injective if

and only if M+ is P1-flat always holds. Also, we typify specific rings R by the notions of
P fp

1 -injectivity and P1-flatness of R-modules. First, it is worth recalling that if R is a Prüfer
domain, then lim−→P1 = Mod(R). More generally, Hügel and Trlifaj prove that the equality
lim−→P1 = F1 is in fact an inherent property to integral domains [11, Theorem 3.5]. In connection
with these two later results, we show that the equality lim−→P1 = Mod(R) totally characterizes
the semi-herditary rings. Effectively, we prove that R is left semi-hereditary if and only if any
P fp

1 -injective module is FP-injective if and only if lim−→P1 = Mod(R). Moreover, we characterize
when the little finististic dimension of a ring R is zero via proving that f. dim(R) = 0 if and
only if any R-module M is P fp

1 -injective (Theorem 3.4). In Section 5, we describe totally when
(P1,P⊥

1 ) is of finite type in terms of P1-injectivity and P1-flatness. This allows us to recover
the result of Bazzoni-Herbera that if R is a domain, then (P1,P⊥

1 ) is of finite type. Also, we
investigate, through studying bunch of kinds of rings R, when the cotorsion pair (P1,P⊥

1 ) is of
finite type. In this context, we focus our attention on the hereditary rings, semi-hereditary rings,
self injective rings and perfect rings. For instance we prove the following: Given a ring R, then
R is left semi-hereditary and (P1,P⊥

1 ) is of finite type if and only if (P1,P⊥
1 ) = (FP-P(R),FP-

I(R)), where FP-P(R) stands for the class of FP-projective modules over R. Finally, we aim
through Section 6 to extend the above-cited theorem [1, Theorem 6.7] of Bazzoni and Herbera
to flat ring extensions. Our main theorem in this section reads the following: Let R be a ring

and Q a flat ring extension of R. Let K :=
Q

R
. Assume that K ∈ lim

−→
P1. Then the following

assertions are equivalent:
1) P1(R)⊗R Q ⊆ F(Q);
2) lim

−→
P1 = F1∩ ⊤ Mod(Q).

We deduce from this result the next theorem which extends [1, Corollary 6.8]: Let R be a ring

and Q a flat ring extension of R. Let K =
Q

R
. Then the following assertions are equivalent.

1) lim
−→

P1 = F1 and P1 ⊗R Q ⊆ F(Q);

2) F1 ⊗R Q ⊆ F(Q) and K ∈ lim
−→

P1.

2 P1-flat modules and P fp
1 -injective modules

This section introduces and studies the notions of P1-flat and P fp
1 -flat modules as well as the dual

notion of P fp
1 -injective modules.

Let C be a class of right R-modules and D be a class of left R-modules. We put

C⊤ = ker TorR1 (C, -) = {left R-modules M : TorR1 (C,M) = 0 for all C ∈ C}

and

⊤D = ker TorR1 (-,D) = {right R-modules N : TorR1 (N,D) = 0 for all D ∈ D}.

A pair (A,B) of classes of R-modules is called a Tor-torsion theory if A = ⊤B and B = A⊤.
Let C be a class of right R-modules. Then it is easy to check that (⊤(C⊤), C⊤) is a Tor-torsion
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theory. Also, we put Ĉ := ⊤(C⊤). Note that lim
−→

C ⊆ Ĉ as Ĉ is stable under direct limits. A

Tor-torsion theory (A,B) is said to be generated by C if A = Ĉ (and thus B = C⊤). Let (A1,B1)
and (A2,B2) two Tor-torsion theories generated by C1 and C2, respectively. Then the two pairs
(A1,B1) and (A2,B2) coincide if and only if Ĉ1 = Ĉ2.

On the other hand, given a class F of right R-modules, consider the two associated classes:

F⊥ = {X ∈ Mod(R) : Ext1R(L,X) = 0,∀L ∈ F}

and
⊥F = {X ∈ Mod(R) : Ext1R(X,L) = 0,∀L ∈ F}.

A pair (F , C) of classes of R-modules is called a cotorsion theory [6] provided that ⊥C = F
and F⊥ = C. A cotorsion theory (F , C) is called complete [19] if every R-module has a special
C-preenvelope and a special F-precover. Note that for every class L, ⊥L is a resolving class, that
is, it is closed under extensions, kernels of epimorphisms and contains the projective modules. In
particular, it is syzygy-closed. Dually, L⊥ is coresolving: it is closed under extensions, cokernels
of monomorphisms and contains the injective modules. In particular, it is cosyzygy-closed. A
pair (F , C) is called a hereditary cotorsion pair if ⊥∞C = F and F⊥∞ = C. It is easy to see that
(F , C) is a hereditary cotorsion pair if and only if (F , C) is a cotorsion pair such that F is resolv-
ing, if and only if (F , C) is a cotorsion pair such that C is coresolving. A cotorsion theory (F , C)
is called complete if every R-module has a special C-preenvelope and a special F-precover. A
cotorsion theory (F , C) is called perfect if F is a covering class and C is a an enveloping class.
For a class T of right modules, the pair (⊥T , (⊥T )⊥) is a cotorsion (hereditary) pair; it is called
the cotorsion pair cogenerated by T .

We begin by proving the following results of general interest.

Proposition 2.1. Let R be a ring. Then

lim
−→

P fp
1 = lim

−→
P1.

Proof. Let P∞
1 denote the class of all elements of P1 which admit projective resolutions con-

sisting of finitely generated projective modules. It is easy to see that P∞
1 = P fp

1 . Also, it is well
known that P1 ⊆ lim

−→
P∞

1 (see [1, page 12]). Hence P1 ⊆ lim
−→

P fp
1 . By [11, Lemma 1.2], lim

−→
P fp

1

is closed under direct limit. Hence lim
−→

P1 ⊆ lim
−→

P fp
1 . Now, since lim

−→
P fp

1 ⊆ lim
−→

P1 (as P fp
1 ⊆ P1),

it follows that lim
−→

P fp
1 = lim

−→
P1, as desired.

Proposition 2.2. Let R be a ring. Let C and D be classes of right R-modules.
1) (lim

−→
C)⊤ = Ĉ⊤ = C⊤.

2) If C ⊆ D ⊆ Ĉ, then Ĉ = D̂.
3) If lim

−→
C = lim

−→
D, then C⊤ = D⊤ and Ĉ = D̂.

Proof. 1) Note that Ĉ⊤ = C⊤ and that Ĉ⊤ ⊆ (lim
−→

C)⊤ ⊆ C⊤ as C ⊆ lim
−→

C ⊆ Ĉ. Then the result
easily follows.

2) Assume that C ⊆ D ⊆ Ĉ. Then Ĉ ⊆ D̂ ⊆ ̂̂C. Now, as ̂̂C = Ĉ, we get Ĉ = D̂, as desired.
3) It follows easily from (1).

Next, we introduce the notions of P fp
1 -flat modules and P1-flat modules.

Definition 2.3. 1) A left R-module M is said to be P1-flat if Tor1
R(H,M) = 0 for each right

module H ∈ P1, that is, M ∈ P⊤
1 . The class of all left P1-flat modules is denoted by P1F(R).

2) A left R-module M is said to be P fp
1 -flat if Tor1

R(H,M) = 0 for each right module H ∈ P fp
1 ,

that is, M ∈ P fp ⊤
1 . The class of all left P fp

1 -flat modules is denoted by P fp
1 F(R).

The following proposition lists some properties of P1-flat modules and P fp
1 -flat modules.
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Proposition 2.4. Let R be a ring. Then
1) P1F(R) ⊆ P fp

1 F(R).
2) P1F(R) and P fp

1 F(R) are stable under direct sums and direct limits.
3) P1F(R) and P fp

1 F(R) are stable under submodules.
4) Any left ideal of R is P1-flat and P fp

1 -flat.

Proof. 1) and 2) are clear as the functor TorRn (H,−) commutes with direct sums and direct limits
for any right R-module H and each positive integer n.
3) Let N be a submodule of a left P1-flat module M . Let H ∈ P1be a right module and consider

the short exact sequence 0 −→ N −→ M −→ M

N
−→ 0 of left modules. Then applying the

functor H ⊗R −, we get the exact sequence

TorR2
(
H,

M

N

)
−→ TorR1 (H,N) −→ TorR1 (H,M).

Now, as TorR1 (H,M) = 0 since M is P1-flat and TorR2
(
H,

M

N

)
= 0 as fdR(H) ≤ 1, we deduce

that TorR1 (H,N) = 0. Therefore N is a P1-flat left R-module, as desired.
4) It follows from 3).

The next proposition proves that the two notions of P1-flat modules and P fp
1 -flat modules

collapse.

Proposition 2.5. Let R be a ring. Then
1) The pair (P̂1,P1F(R)) is a Tor-torsion theory.

2) (P̂ fp
1 ,P fp

1 F(R)) is a Tor-torsion theory with

lim
−→

P1 = P̂ fp
1 = P̂1.

3) (P̂1,P1F(R)) = (P̂ fp
1 ,P fp

1 F(R)) and thus P1F(R) = P fp
1 F(R).

Proof. 1) It is direct.
2) Note that

P fp
1 ⊆ P1 ⊆ lim

−→
P1 = lim

−→
P fp

1 ⊆ P̂ fp
1 ⊆ P̂1.

Then, by Proposition 2.1 and Proposition 2.2, P̂ fp
1 = P̂1. Moreover, by [11, Theorem 2.3],

lim
−→

P fp
1 = P̂ fp

1 . Then we are done.
3) It is direct using (2).

Dually, we next introduce the concept of P fp
1 -injective modules.

Definition 2.6. 1) A left R-module M is said to be P fp
1 -injective if ExtR1 (H,M) = 0 for each

left module H ∈ P fp
1 , that is, M ∈ P fp⊥

1 . The class of all P fp
1 -injective modules is denoted by

P fp
1 I(R).

2) The ring R is said to be a self P fp
1 -injective ring if it is a P fp

1 -injective left R-module.

We next recall the following lemmas which will be useful in the sequel.

Lemma 2.7. [17, Proposition 2.2] Let A be a finitely presented left R-module and (Mi)i∈I a
direct system of submodules of some module. Then

lim−→Ext1R(A,Mi) ∼= Ext1R(A, lim−→Mi).

Lemma 2.8. [3, Lemma 2.10(2)] Let A be a 2-presented left R-module and (Mi)i∈I a family of
right R-modules. Then ∏

i

TorR1 (Mi, A) ∼= TorR1
(∏

i

Mi, A
)
.
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Lemma 2.9. [3, Lemma 2.9(2)] Let A be a 2-presented left R-module and (Mi)i∈I a direct
system of left R-modules. Then

lim−→Ext1R(A,Mi) ∼= Ext1R(A, lim−→Mi).

Next, we list some properties of P fp
1 -injective modules. We denote by I(R) the class of

injective left R-modules and by FP-I(R) the class of FP-injective left R-modules.

Proposition 2.10. Let R be a ring. Then
1) I(R) ⊆ FP-I(R) ⊆ P fp

1 I(R).
2) P fp

1 F(R) is closed under extensions, direct products and direct summands.
3) P fp

1 I(R) is closed under pure submodules.
4) Any quotient of a P fp

1 -injective module is P fp
1 -injective.

Proof. 1) and 2) are clear as the functor ExtnR(H,−) commutes with direct products for any left
R-module H and each positive integer n.
3) Let A be a pure submodule of a P fp

1 -injective left R-module B. For any H ∈ P fp
1 , we have the

exact sequence

HomR(H,B) −→ HomR

(
H,

B

A

)
−→ Ext1R(H,A) −→ 0

But the sequence HomR(H,B)−→HomR

(
H,

B

A

)
−→ 0 is exact since H is finitly presented

and A is a pure submodule of B, so Ext1R(H,A) = 0. Therefore, A is P fp
1 -injective.

4) Let M be a P fp
1 -injective left R-module and let N be a submodule of M . Consider the

short exact sequence 0 −→ N −→ M −→ M

N
−→ 0. Let K ∈ P fp

1 . Applying the functor
HomR(K,−) to the considered sequence, we get the following exact sequence

Ext1R(K,N) −→ Ext1R(K,M) = 0 −→ Ext1R
(
K,

M

N

)
−→ Ext2R(K,N).

As K ∈ P1, Ext2R(K,N) = 0. Hence Ext1R
(
K,

M

N

)
= 0. It follows that

M

N
is P fp

1 -injective, as
desired.

It is known the direct limit of injective modules over a ring R is not injective, in general. The
following proposition shows that the P fp

1 -injective modules well behave with respect to direct
limits, in other words, any direct limit of injective modules is P fp

1 -injective.

Proposition 2.11. Let R be a ring. Then any direct limit of P fp
1 -injective modules is P fp

1 -injective.

Proof. It suffices to observe that any element M ∈ P fp
1 is 2-presented and then to apply Lemma

2.9.

Corollary 2.12. Let R be a ring. Then any direct limit of injective modules is P fp
1 -injective.

Proof. It follows from Proposition 2.10.

It is well known that a right R-module M is flat if and only if M+ is a left injective module.
The next proposition provides the analog version of this result for the P fp

1 -flatness and P fp
1 -

injectivity.

Proposition 2.13. Let R be a ring and M a right R-module. Then the following assertions are
equivalent:

1) M is P1-flat;
2) M is P fp

1 -flat;
3) M+ is P1-injective;
4) M+ is P fp

1 -injective.
If R is a ring with classical ring of quotients Q satisfying f. dim(Q) = 0, then the above asser-
tions are equivalent to the following one:

5) M is torsion-free.
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Proof. 1) ⇔ 2) It suffices to apply Proposition 2.5(3).
1) ⇔ 3) and 2) ⇔ 4) It follow easily from the standard isomorphism

Ext1R(N,M+) ∼= TorR1 (M,N)+

for any left R-module N .

Recall that the direct product of flat right R-modules needs not be flat unless the base ring R
is left coherent. Moreover, if M is an injective left R-module, the character module M+ need
not be flat unless R is left coherent. Next, we prove that the P1-flat modules behave well with
respect to direct products and that the P fp

1 -injectivity of a module M is well characterized by the
P1-flatness of the character module M+.

Theorem 2.14. Let R be a ring. Then
1) Any direct product of P1-flat right R-modules is P1-flat.
2) Let M be an R-module. Then the following assertions are equivalent:

a) M is P fp
1 -injective;

b) M+ is P1-flat;
c) M++ is P fp

1 -injective.
3) A right R-module M is P1-flat if and only if M++ is P1-flat.

Proof. 1) Note that, by Lemma 2.8,
∏

TorR1 (Mi, A) ∼= TorR1 (
∏

Mi, A) for any A ∈ P fp
1 and

any family (Mi)i∈I of right R-modules. Then any direct product of P fp
1 -flat right R-modules is

P fp
1 -flat. It follows, by Proposition 2.5(3), that any direct product of P1-flat right R-modules is

P1-flat
2) Observe that TorR1 (M+, N) ∼= Ext1R(N,M)+ for any left R-module M and any N ∈ P fp

1 by
[3, Lemma 2.7(2)]. Hence M is P fp

1 -injective if and only if M+ is P fp
1 -flat if and only if M+ is

P1-flat establishing the equivalence a) ⇔ b). Now, Proposition 2.13 guarantees the equivalence
b) ⇔ c).
3) It follows from a combination of (2) and Proposition 2.13.

3 P fp
1 -injectivity and specific rings

In this section, we characterize several kind of rings by homological properties of P fp
1 -injective

modules.

Our first theorem characterizes rings in which the class of P fp
1 -injective R-modules coincides

with the class of FP-injective ones. Moreover, recall that if R is a Prüfer domain, then lim−→P1 =
Mod(R). More generally, Hügel and Trlifaj prove that the equality lim−→P1 = F1 is in fact
an inherent property to integral domains [11, Theorem 3.5]. The next theorem shows that the
equality lim−→P1 = Mod(R) characterizes the semi-herditary rings. We denote by Modfp(R) the
class of finitely presented R-modules.

Theorem 3.1. Let R be a ring. Then the following assertions are equivalent.
1) Any P fp

1 -injective left R-module is FP-injective;
2) Any P1-flat right R-module is flat;
3) R is left semi-hereditary;
4) Modfp(R) = P fp

1 ;
5) lim−→P1 = Mod(R).

Proof. 1) ⇒ 2) Let M be a P1-flat right module. Then, by Proposition 2.13, M+ is a P fp
1 -

injective left module. Hence, by (1), M+ is FP-injective right R-module and thus M is flat, as
desired.
2) ⇒ 3) Assume that (2) holds. Then any right ideal of R is flat. Hence wgl-dim(R) ≤ 1. Also,
as any flat right module is P1-flat, we get, by Theorem 2.14(1), any direct product of flat right
R-modules is flat and thus R is left coherent. It follows that R is semi-hereditary, as desired.
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3) ⇒ 4) Note first that P fp
1 ⊆ Modfp(R). Assume that R is left semi-hereditary. Let M be a

finitely presented module. Then there exists an exact sequence 0−→K −→L−→M −→ 0 such
that L is a finitely generated free R-module and K is a finitely generated module. As R is left
semi-hereditary, we get that K is a finitely projective module and thus M ∈ P fp

1 . This ensures
that Modfp(R) = P fp

1 , as desired.
4) ⇒ 5) Assume that Modfp(R) = P fp

1 . It is known that any R-module is a direct limit of finitely
presented modules. Then any R-module is a direct limit of elements of P fp

1 , that is, lim−→P fp
1 =

Mod(R). Now, since by Proposition 2.1, lim−→P1 = lim−→P fp
1 , it follows that lim−→P1 = Mod(R), as

contended.
5) ⇒ 2) Assume that lim−→P1 = Mod(R). Then, by Proposition 2.1, lim−→P fp

1 = Mod(R). Let M
be a P1-flat module. Let N ∈ Mod(R). Then there exists a direct system (Ni)i of elements of
P fp

1 such that N = lim−→Ni. Therefore, as M is P1-flat,

TorR1 (M,N) = TorR1 (M, lim−→Ni)
∼= lim−→TorR1 (M,Ni)

= 0.

It follows that M is flat, as desired.
4) ⇒ 1) It is direct completing the proof of the theorem.

It is well known that R is a left Noetherian ring if and only if any FP-injective R-module is
injective [15, Theorem 3]. The following corollary characterizes rings in which any P fp

1 -injective
module is injective.

Corollary 3.2. Let R be a ring. The following are equivalent:
1) R is a left Noetherian hereditary ring;
2) Any P fp

1 -injective left R-module is injective.

Proof. 1) ⇒ 2) Assume that R is a left Noetherian hereditary ring. Let M be a P fp
1 -injective left

R-module. Since R is left hereditary, by Theorem 3.1, M is FP-injective. Now, since R is left
Noetherian, we get M is injective, as desired.
2) ⇒ 1) Assume that any P fp

1 -injective R-module is injective. First, by Theorem 3.1, R is left
semi-hereditary. Also, as any FP-injective module is P fp

1 -injective, we get that any FP-injective
left R-module is injective. Hence, by [15, Theorem 3], R is left Noetherian. This completes the
proof.

Corollary 3.3. Let R be an integral domain. The following are equivalent:
1) R is a Dedekind ring;
2) Any P fp

1 -injective R-module is injective.

Proof. It is clear as any integral domain R is a Dedekind ring if R is hereditary. Also, by [16,
Corollary 4.26], any Dedekind ring is Noetherian.

Recall that the (left) little finitistic dimension, denoted by f. dim(R), is the supremum of the
projective dimension of the left R-modules of finite projective dimension in mod(R). The next
theorem characterizes rings in which any R-module is P fp

1 -injective.

Theorem 3.4. Let R be a ring. Then the following assertions are equivalent.
1) RR is self P fp

1 -injective;
2) Any free R-module is P fp

1 -injective;
3) Any projective R-module is P fp

1 -injective;
4) Any left R-module is P fp

1 -injective;
5) Every submodule of a P fp

1 -injective is P fp
1 -injective;

6) Any right R-module is P1-flat;
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7) P1 ⊆ F(R).
8) Any quotient of a P1-flat right R-module is P1-flat;
9) P fp

1 ⊆ P(R);
10) P1 ∩ mod(R) = P(R) ∩ mod(R);
11) f. dim(R) = 0.

Proof. 1) ⇒ 2) It holds easily as P fp
1 I(R) is closed under direct sums.

2) ⇒ 3) It suffices to note that P fp
1 I(R) is closed under direct summand.

3) ⇒ 4) It follows from the fact any left R-module M is a quotient of a projective module and
that P fp

1 I(R) is stable under quotients.
4) ⇒ 1) It is straightforward.
4) ⇒ 9) First, note that P fp

1 ⊆⊥ P fp
1 I(R). Then, using (4), we get P fp

1 ⊆ P(R) = ⊥ Mod(R).
9) ⇒ 4) It is straightforward.
4) ⇔ 5) It holds easily as any R-module is a submodule of an injective module which is a P fp

1 -
injective R-module.
4) ⇔ 6) It is straightforward using Proposition 2.13 and Theorem 2.14.
6) ⇔ 8) It follows from the fact that any R-module M is a quotient of a projective module which
is P1-flat.
6) ⇔ 7) It is direct as (P̂1,P1F(R)) is a torsion theory and P1 ⊆ P̂1 = lim−→P1.
9) ⇒ 10) Let M be any element of P1 ∩ mod(R). Then by [1, Lemma 6.4], there is a finitely
generated projective module P and a short exact sequence 0−→Rn −→Rm −→M ⊕ P −→ 0.
Then M ⊕ P ∈ P fp

1 , and by 8) M is projective.
10) ⇒ 11) it is direct.
11) ⇒ 9) is clear as P fp

1 ⊂ P ∩ mod(R), as desired completing the proof.

Corollary 3.5. Let R be a ring. If R is self-injective, then any R-module is P fp
1 -injective and

f. dim(R) = 0.

Corollary 3.6. Let R be a ring. Then the following assertions are equivalent.
1) R is von Neumann regular;
2) R is left semi-hereditary and R is a (left) self P fp

1 -injective ring.

Proof. Combine Theorem 3.4 and Theorem 3.1.

Corollary 3.7. Let R be an Artinian ring. Then f. dim(R) = 0.

Proof. Let M ∈ P fp
1 . Let m be a maximal ideal of R. Note that depth(Rm) = 0. Then,

Mm ∈ P fp
1 (Rm) and thus, by Auslander-Buchsbaum formula, we get pdRm

(Mm) = 0. Hence
Mm is a projective Rm-module for each maximal ideal m of R. Therefore M is a projective
R-module. It follows that P fp

1 ⊆ P(R) and thus, by Theorem 3.4, we get f. dim(R) = 0, as
desired.

Corollary 3.8. Let R be a Noetherian commutative ring with classical ring of quotients Q. Then,
Q is a self P fp

1 -injective ring.

Proof. It follows from Theorem 3.4 and [1, Lemma 8.3].

4 P fp
1 -injectivity and homological dimensions

The aim of this section is to characterize the homological dimension of modules over a ring R

via the vanishing of the functors Ext and Tor by the class of P fp
1 -injective modules.

Proposition 4.1. Let R be a ring. Let M be a left R-module and n a positive integer. Then the
following statements are equivalent.

1) idR(M) ≤ n;
2) Extn+1

R (N,M) = 0 for each P fp
1 -injective left R-module N .

The proof requires the following lemma.
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Lemma 4.2. Let R be a ring. Then (P fp
1 I(R))⊥ = I(R).

Proof. We only need to prove that if M ∈ (P fp
1 I(R))⊥, then M is injective. In fact, let M ∈

(P fp
1 I(R))⊥. There exists a short exact sequence of left R-modules 0 −→ M −→ I −→ G −→ 0

with I injective. Then G is P fp
1 -injective, by Proposition 2.10(4). Hence, Ext1R(G,M) = 0, and

thus the sequence 0 −→ M −→ I −→ G −→ 0 splits. It follows that M is injective, as
desired.

Proof of Proposition 4.1. 1) ⇒ 2) is straightforward.

2) ⇒ 1) Let 0 // M
ε // E0

d1 // E1
d2 // E2 // · · · be an injective resolution

of M . Let L0 = Im(ε) and Li = Im(di) for each integer i ≥ 1. Then, for any P fp
1 -injective mod-

ule N , by [16, Corollary 6.16], Ext1R(N,Ln) ∼= Extn+1
R (N,M) = 0. Hence Ln ∈ (P fp

1 I(R))⊥,
so that, by Lemma 4.2, Ln is injective. It follows that idR(M) ≤ n.

Proposition 4.3. Let R be a ring. Then

l-gl-dim(R) = sup{pdR(M) : M ∈ P fp
1 I(R)}.

Proof. First, note that l-gl-dim(R) ≥ sup{pdR(M) : M is a P fp
1 -injective left R-module}. If

sup{pdR(M) : M is a P fp
1 -injective left R-module} = +∞, then we are done. Now, assume

that there exists an integer n ≥ 0 such that pdR(M) ≤ n for any P fp
1 -injective R-module M .

Then Extn+1
R (M,N) = 0 for any P1-injective R-module M and any R-module N . Hence, by

Proposition 4.1, idR(N) ≤ n for any R-module N . It follows that l-gl-dim(R) ≤ n and thus the
desired equality follows.

We deduce the following characterization of semisimple rings.

Corollary 4.4. Let R be a ring. Then the following assertions are equivalent.
1) R is semisimple;
2) Any P fp

1 -injective module is projective.

Proposition 4.5. Let R be a ring. Let M be a right R-module and n a positive integer. Then the
following assertions are equivalent:
1) fdR(M) ≤ n;
2) TorRn+1(M,N) = 0 for any P fp

1 -injective left R-module N .

First, we establish the following lemma.

Lemma 4.6. Let R be a ring and M a right R-module. Then the following assertions are equiv-
alent:

1) M is a flat right R-module;
2) TorR1 (M,N) = 0 for any P fp

1 -injective left R-module N .

Proof. We only need to prove that 2) ⇒ 1) Assume that TorR1 (M,N) = 0 for every P fp
1 -injective

left R-module N . Consider a short exact sequence of left R-modules 0 −→ M+ −→ E −→
G −→ 0 with E an injective left module. Then E is P fp

1 -injective and thus G is P fp
1 -injective by

Proposition 2.10. Hence, Ext1R(G,M+) = TorR1 (M,G)+ = 0. Therefore, the considered exact
sequence 0 −→ M+ −→ E −→ G −→ 0 splits, and thus M+ is injective left R-module. Hence,
M is a flat right R-module completing the proof.

Proof of Proposition 4.5. It suffices to prove that 2) ⇒ 1) Assume that 2) holds. Let Fn−1 be the
(n − 1)th yoke of a flat resolution of M and let N be any P fp

1 -injective left R-module. By [16,
Corollary 6.13], TorRn+1(M,N) ∼= TorR1 (Fn−1, N). Then, using (2), we get TorR1 (Fn−1, N) = 0,
and thus by Lemma 4.6, Fn−1 is flat. Hence fdR(M) ≤ n, as desired.

Proposition 4.7. Let R be a ring. Then

wgl-dim(R) = sup{fdR(M) : M ∈ P fp
1 I(R)}.
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Proof. If sup{fdR(M) : M is a P fp
1 -injective left R-module } = +∞, then we are done. Assume

that there exists a positive integer n such that fdR(M) ≤ n for any P fp
1 -injective left module M .

Then TorRn+1(A,M) = 0 for any right R-module A. Then, by Proposition 4.3, fdR(A) ≤ n for
each right R-module A. Therefore wgl-dim(R) ≤ n. This establishes the desired equality.

Our last result of this section provides a characterization of von Neumann regular rings via
the flatness of P fp

1 -injective modules.

Corollary 4.8. Let R be a ring. Then the following statements are equivalent:
1) R is von Neumann regular;
2) Any P fp

1 -injective left R-module is flat.

5 When is the cotorsion pair (P1,P⊥
1 ) of finite type?

Recall that the cotorsion pair (P1,P⊥
1 ) is said to be of finite type if P⊥

1 = P1(mod(R))⊥ (see
[1]), where mod(R) stands for the class of modules that admit projective resolutions consisting
of finitely generated projective modules. In [1], Bazzoni and Herbera proved that if the ring is an
order in an ℵ0-Noetherian ring Q of little finitistic dimension 0, then the cotorsion pair (P1,P⊥

1 )
is of finite type if and only if Q has finitistic projective dimension FPD(Q) = 0. They deduced
from this that (P1,P⊥

1 ) is of finite type for orders in semisimple artinian rings [1, Corollary
8.1] so, in particular, for commutative domains. Their findings answered in the affirmative an
open problem posed by L. Fuchs and L. Salce [23, Problem 6, p. 139] on the structure of one
dimensional divisible modules over domains. Moreover, Bazzoni and Herbera were concerned
by characterizing the commutative Noetherian rings for which (P1, P

⊥
1 ) is of finite type. Our

concern in this section is to investigate, through studying bunch of kinds of rings R, when the
cotorsion pair (P1,P⊥

1 ) is of finite type. In this context, we focus our attention on the hereditary
rings, semi-hereditary rings, self injective rings and perfect rings.

Our first main result of this section characterizes when (P1,P⊥
1 ) is of finite type in terms of

P1-injectivity and P1-flatness. This allows us to recover the result of Bazzoni-Herbera that if R
is a domain, then (P1,P⊥

1 ) is of finite type.

Theorem 5.1. Let R be a ring. Then the following assertions are equivalent:
1) (P1,P⊥

1 ) is of finite type;
2) P⊥

1 = (P fp
1 )⊥;

3) Any direct sum of P1-injective modules is P1-injective;
4) Any direct limit of P1-injective modules is P1-injective;
5) An R-module M is P1-injective module if and only if M is P fp

1 -injective;
6) An R-module M is P1-injective if and only if M+ is P1-flat;
7) Any pure submodule of a P1-injective module is P1-injective.

Moreover, if R is a ring with classical ring of quotients Q such that f. dim(Q) = 0, then the
above assertions are equivalent to the following one:

8) P⊥
1 = D.

Proof. First, note that P1(mod(R)) = P fp
1 . Then 1) ⇔ 2) ⇔ 5) hold. Also, the equivalence 1)

⇔ 3) holds by [1, Proposition 4.1]. For 3) ⇔ 4) use [2, Proposition 2.8].
5) ⇔ 6) It is direct by Theorem 2.14.
5) ⇒ 7) Let M be a P1-injective module and N a pure submodule of M . Then M is P fp

1 -injective
and N is a pure submodule of M . Hence, by Proposition 2.10(3), N is P fp

1 -injective and thus N
is P1-injective, as desired.
7) ⇒ 5) Let M be a P fp

1 -injective module. Then, by Theorem 2.14(2), M++ is P fp
1 -injective.

Therefore, by Proposition 2.13, M++ is P1-injective. Now, since M is a pure submodule of
M++, we get, by (7), that M is P1-injective, as contended.
Assume that R is a ring with classical ring of quotients Q such that f. dim(Q) = 0. Then, by [1,
Theorem 6.7], P1(mod(R))⊥ = D, that is, P fp⊥

1 = D. Hence 2) ⇔ 7) holds easily.
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Corollary 5.2. Let R be an integral domain. Then (P1,P⊥
1 ) is of finite type.

Proof. It follows easily from Theorem 5.1 as, if K denotes the quotient field of R, f. dim(K) = 0
and it is well known that P⊥

1 = D in the case of integral domains.

The following corollary proves that, if f. dim(R) = 0, then (P1,P⊥
1 ) is of finite type if and

only if (P1,P⊥
1 ) coincides with the cotorsion pair (P(R),Mod(R)).

Corollary 5.3. Let R be a ring. Then the following assertions are equivalent.
1) f. dim(R) = 0 and (P1,P⊥

1 ) is of finite type;
2) FPD(R) = 0.

Proof. 1) ⇒ 2) Assume that f. dim(R) = 0 and (P1,P⊥
1 ) is of finite type. Then, as f. dim(R) =

0, we get, by Theorem 3.4, that P fp⊥
1 = Mod(R). Also, since (P1,P⊥

1 ) is of finite type, then
P⊥

1 = P fp⊥
1 . Hence P⊥

1 = Mod(R). It follows, by [2, Proposition 3.5], that FPD(R) = 0.
2) ⇒ 1) Assume that FPD(R) = 0. Then, in particular, f. dim(R) = 0. Also, by [2, Proposition
3.5], we get P⊥

1 = Mod(R). Now, since P⊥
1 ⊆ P fp⊥

1 , it follows that P⊥
1 = P fp⊥

1 = Mod(R) and
thus (P1,P⊥

1 ) is of finite type completing the proof.

Corollary 5.4. Let R be a perfect commutative ring. Then (P1,P⊥
1 ) is of finite type.

Proof. It is direct as FPD(R) = 0.

Our next result characterizes when the cotorsion pair (P1,P⊥
1 ) is of finite type for self-

injective rings.

Proposition 5.5. Let R be a self-injective ring. Then the following assertions are equivalent:
1) (P1,P⊥

1 ) is of finite type;
2) FPD(R) = 0.

Moreover, if R is commutative, then the above assertions are equivalent to the following one:
3) R is a perfect ring.

Proof. Since R is self-injective, we get that R is self-P1-injective and thus, by Theorem 3.4,
f. dim(R) = 0. Now, Corollary 5.3 establishes the equivalence 1) ⇔ 2). Also, it is well known
that, if R is a commutative ring, then FPD(R) = 0 if and only if R is a perfect ring. This fact
allows to get the desired equivalences completing the proof.

The last results of this sections discuss the finite type notion of the pair (P1,P⊥
1 ) for von

Neumann regular rings, hereditary rings and semi-hereditary rings.

Proposition 5.6. Let R be a von Neumann regular ring. Then the following assertions are equiv-
alent:

1) (P1,P⊥
1 ) is of finite type;

2) FPD(R) = 0.

Proof. First, since R is von Neumann regular, F(R) = P1F(R) = Mod(R). By Theorem 3.4,
(P1,P⊥

1 ) is of finite type ⇔ a module M is P1-injective if and only if M+ is P1-flat ⇔ a module
M is P1-injective if and only if M+ is an R-module ⇔ P⊥

1 = Mod(R) ⇔ P1 = P(R) ⇔
FPD(R) = 0, as desired.

Proposition 5.7. Let R be a hereditary ring. Then (P1,P⊥
1 ) is of finite type if and only if R is

Noetherian.

Proof. As R is hereditary, P1 = Mod(R). Then (P1,P⊥
1 ) is of finite type ⇔ P⊥

1 = I(R) is
stable under direct sum ⇔ R is Noetherian completing the proof.

Recall that a (left) module M over a ring R is said to be FP-projective if Ext1R(M,N) = 0
for any FP-injective (left) R-module N . In this context, note that any finitely presented module
is FP-projective and, more precisely, (FP-P(R),FP-I(R)) is a cotorsion pair cogenerated by
the class of all finitely presented modules. Also, it is known the class FP-I(R) of FP-injective
modules is stable under direct sum.
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Proposition 5.8. Let R be a ring. Then the following assertions are equivalent:
1) R is left semi-hereditary and (P1,P⊥

1 ) is of finite type;
2) (P1,P⊥

1 ) = (FP-P(R),FP-I(R)).

Proof. 1) ⇒ 2) Assume that R is left semi-hereditary and that (P1,P⊥
1 ) is of finite type. As R is

semi-hereditary, then, by Theorem 3.1, P fp
1 = Mod(R)fp. Hence P⊥

1 = Mod(R)fp⊥ = FP-I(R)
and thus P1 = FP-P(R). It follows that the two cotorsion pairs (P1,P⊥

1 ) and (FP-P(R),FP-
I(R)) coincide.
2) ⇒ 1) Assume that (P1,P⊥

1 ) = (FP-P(R),FP-I(R)). Then P⊥
1 = FP-I(R) and thus as the

class FP-I(R) is stable under direct sum, we get that P⊥
1 is stable under direct sum. Hence,

by Theorem 5.1, (P1,P⊥
1 ) is of finite type. Moreover, Let I be a finitely generated ideal of

R. Then, considering the exact sequence 0−→ I −→R−→ R

I
−→ 0, we get that

R

I
is finitely

presented and thus an FP-projective module. Hence, by our assumptions, pdR

(R
I

)
≤ 1 so that

I is projective. It follows that R is semi-hereditary completing the proof.

6 Finitistic dimensions of flat ring extensions

Let S denote the multiplicative set of all regular elements of a ring R and assume that S satisfies
the left and right Ore condition. Denote by the localization Q := S−1R the classical ring of
quotients of R. Note that the classical ring of quotients of a ring R does not always exist (see
[12]). It is worth recalling that if the classical ring of quotients Q of a ring R exists, then Q

is a flat ring extension of R and that K :=
Q

R
= lim−→

r∈S

R

rR
which is means, in particular, that

K ∈ lim−→P1.
In [1, Theorem 6.7], Bazzoni and Herbera aims particularly at characterizing rings R for

which F1 = lim
−→

P1 holds. In this context, they proved the following result which also charac-
terizes the rings R with classical ring of quotients Q of little finististic dimension 0: Let R be a
ring with classical of quotients Q. Then the following assertions are equivalent:

1) f. dim(Q) = 0;
2) P1(R)⊗R Q ⊆ F(Q);
3) lim

−→
P1 = F1∩ ⊤ Mod(Q).

They deduced from this theorem the following result which generalizes a theorem of Hügel and
Trlifaj stating that if R is a domain, then F1 = lim

−→
P1 [11, Theorem 3.5]: Let R be a ring with

classical ring of quotient Q. Then F1 = lim
−→

P1 and f. dim(Q) = 0 if and only if FFD(Q) = 0

[1, Corollary 6.8], where FFD(Q) stands for the finitistic flat dimension of Q.
The aim of this section is to extend the above-cited theorem of Bazzoni and Herbera to flat ring
extensions. Thereby, we get a general version of the above corollary [1, Corollary 6.8] for flat
ring extensions.

Next, we announce the main theorem of this section. It extends Bazzoni-Herbera theorem [1,
Theorem 6.7]. In fact, we show that Bazzoni-Herbera theorem holds for any flat ring extension

Q of R such that K =
Q

R
∈ lim−→P1 and we recall, as mentioned above, that any classical ring of

quotients, when it exists, satisfies this property. For easiness, put P1 ⊗R Q := {M ⊗R Q : M ∈
P1} and F1 ⊗R Q := {M ⊗R Q : M ∈ F1}.

Theorem 6.1. Let R be a ring and Q a (left) flat ring extension of R. Let K :=
Q

R
. Assume that

K ∈ lim
−→

P1. Then the following assertions are equivalent.

1) P1 ⊗R Q ⊆ F(Q);
2) lim

−→
P1 = F1∩ ⊤ Mod(Q).

The proof of Theorem 6.1 follows from the combination of Proposition 6.2 and Proposition
6.4.
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Proposition 6.2. Let R be a ring and Q a (left) flat ring extension of R. Then the following
assertions are equivalent:

1) P1 ⊗R Q ⊆ F(Q);
2) lim

−→
P1 ⊆ F1∩ ⊤ Mod(Q).

The proof of Proposition 6.2 requires the following lemma.

Lemma 6.3. Let R be a ring and Q a (left) flat ring extension of R. Then
1) P1 ⊗R Q ⊆ P1(Q).
2) F1 ⊗R Q ⊆ F1(Q).

Proof. 1) Let C ∈ P1 and let 0−→H −→K −→C −→ 0 be an exact sequence with H and K
are projective R-modules. Then, as Q is (left) flat over R, we get the exact sequence

0−→H ⊗R Q−→K ⊗R Q−→C ⊗R Q−→ 0

such that H ⊗R Q and K ⊗R Q are projective Q-modules. Hence C ⊗R Q ∈ P1(Q). Therefore
P1(R)⊗R Q ⊆ P1(Q).
2) It is similar to (1).

Proof of Proposition 6.2. 1) ⇒ 2) Assume that P1 ⊗R Q ⊆ F(Q). Let C ∈ lim
−→

P1. Then there
exists a direct system {Ci : i ∈ I} ⊆ P1 such that C = lim

−→
Ci. Thus

TorR1 (C,H) ∼= TorQ1 (lim−→
Ci, H)

= lim
−→

TorR1 (Ci, H)

∼= lim
−→

TorQ1 (Ci ⊗R Q,H)

= 0

for any Q-module H . Hence C ∈ ⊤ Mod(Q). It follows that lim
−→

P1 ⊆ F1∩ ⊤ Mod(Q), as
desired.
2) ⇒ 1) Assume that lim

−→
P1 ⊆ F1∩ ⊤ Mod(Q). Then, as P1 ⊆ lim

−→
P1, we get P1 ⊆ F1∩

⊤ Mod(Q). Then P1 ⊆ ⊤ Mod(Q) and thus P1 ⊗R Q ⊆ F(Q) completing the proof.

Proposition 6.4. Let R be a ring and Q a (left) flat ring extension of R such that K =
Q

R
∈

lim
−→

P1. Then

F1 ∩⊤ Mod(Q) ⊆ lim
−→

P1.

Proof. Let M ∈ F1∩ ⊤ Mod(Q). Let C be a P1-flat module. Tensoring the exact sequence
0−→R−→Q−→K −→ 0 with C yields the following exat sequence

0 = TorR1 (K,C)−→C −→Q⊗R C −→K ⊗R C −→ 0

since K ∈ lim
−→

P1 and C is P1-flat. Now, tensoring this later exact sequence with M yields the
next exact sequence

TorR2 (M,K ⊗R C)−→TorR1 (M,C)−→TorR1 (M,Q⊗R C).

Since M ∈ F1, we get TorR2 (M,K ⊗R C) = 0. Also, since M ∈ ⊤ Mod(Q) and Q ⊗R C ∈
Mod(Q), we get TorR1 (M,Q ⊗R C) = 0. Therefore TorR1 (M,C) = 0. It follows that M ∈
⊤P1F(R) = P̂1 and thus, by Proposition 2.5(2), we get M ∈ lim

−→
P1. This completes the

proof.
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Let us recall the above cited theorem, [1, Theorem 6.7], of Bazzoni and Herbera: If R is a
ring with classical of quotients Q, then f. dim(Q) = 0 if and only if lim

−→
P1 = F1∩ ⊤ Mod(Q).

We deduce from Proposition 6.4 that the following inequality always holds.

Corollary 6.5. Let R be a ring with classical ring of quotients Q. Then

F1 ∩ ⊤ Mod(Q) ⊆ lim
−→

P1.

Proof. It follows from Proposition 6.4 since, as mentioned above, K =
Q

R
∈ lim

−→
P1.

Corollary 6.6. Let R be a ring and Q a (left) flat ring extension of R such that f. dim(Q) = 0.

Let K :=
Q

R
. Then the following assertions are equivalent:

1) lim
−→

P1 = F1∩ ⊤ Mod(Q);
2) K ∈ lim−→P1.

Proof. 1) ⇒ 2) It is direct as K ∈ F1.
2) ⇒ 1) Assume that K ∈ lim−→P1. As f. dim(Q) = 0, we get, Theorem 3.4, P1(Q) ⊆ F(Q).
Then, by Lemma 6.3, P1 ⊗R Q ⊆ F(Q). Therefore, by Theorem 6.1, lim−→P1 = F1∩ ⊤ Mod(Q),
as desired.

The next corollary recovers [1, Theorem 6.7] of Bazzoni-Herbera.

Corollary 6.7. Let R be a ring with classical ring of quotients Q. Then the following assertions
are equivalent.

1) f. dim(Q) = 0;
2) P1 ⊗R Q ⊆ F(Q);
3) lim

−→
P1 = F1∩ ⊤ Mod(Q).

Proof. Let K :=
Q

R
. Note that K ∈ lim

−→
P1. Also, by [1, Lemma 6.2], P1 ⊗R Q = P1(Q). Now,

1) ⇔ 2) holds by Theorem 3.4 completing the proof.

Our next theorem extends the result of Bazzoni and Herbera which proves that given a ring R
with classical ring of quotient Q, then F1 = lim

−→
P1 and f. dim(Q) = 0 if and only if FFD(Q) = 0

[1, Corollary 6.8].

Theorem 6.8. Let R be a ring and Q a (left) flat ring extension of R. Let K =
Q

R
. Then the

following assertions are equivalent.
1) lim

−→
P1 = F1 and P1 ⊗R Q ⊆ F(Q);

2) F1 ⊗R Q ⊆ F(Q) and K ∈ lim
−→

P1.

Proof. 1) ⇒ 2) Note that K =
Q

R
∈ F1. Then, by (1), K ∈ lim

−→
P1. Hence, since P1 ⊗R Q ⊆

F(R), we get, by Theorem 6.1, that F1∩ ⊤ Mod(Q) = lim
−→

P1. Hence, by (1), F1∩ ⊤ Mod(Q) =

F1 and thus F1 ⊆ ⊤ Mod(Q). Then F1 ⊗R Q ⊆ F(Q), as desired.
2) ⇒ 1) Assume that F1 ⊗R Q ⊆ F(Q) and K ∈ lim

−→
P1. Then, as Q is (left) flat R-module,

P1 ⊗R Q ⊆ F(Q). Also, we get F1 ⊆ ⊤ Mod(Q). Hence, by Theorem 6.1, lim
−→

P1 = F1∩
⊤ Mod(Q). It follows, as F1 ⊆ ⊤ Mod(Q), that lim

−→
P1 = F1, as desired.

Next, we recover the result of Bazzoni and Herbera [1, Corollary 6.8].

Corollary 6.9. Let R be a ring with classical ring of quotients Q. The the following assertions
are equivalent:

1) lim
−→

P1 = F1 and f. dim(Q) = 0;

2) FFD(Q) = 0.
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To prove Corollary 6.9, we need the following lemma. First, it is worth recalling that if R

is a ring with classical ring of quotients Q, then K :=
Q

R
∈ lim−→P1 and P1 ⊗R Q = P1(Q) [1,

Lemma 6.2]. The next lemma proves that the equality F1 ⊗R Q = F1(Q) holds as well.

Lemma 6.10. Let R be a ring with classical ring of quotients Q. Then
1) F1 ⊗R Q = F1(Q).
2) FFD(Q) = 0 if and only if F1 ⊗R Q ⊆ F (Q).

Proof. 1) Let Σ denote the set of non zero-divisors of R. Then Q = Σ−1R. As Q is flat over R,
then it is easy to see that F1(Q) ⊆ F1. Also, let M be a Q-module. Then

M ⊗R Q = M ⊗R Σ
−1R ∼= Σ

−1M = M.

Hence, since F1(Q) ⊆ F1 and Q is a left flat R-module, we get

F1(Q) ⊆ F1(Q)⊗R Q ⊆ F1 ⊗R Q.

It follows, using Lemma 6.3, that F1(Q) = F1 ⊗R Q.
2) Note that FFD(Q) = 0 if and only if F1(Q) ⊆ F(Q). Then, using (1), we get the desired
equivalence.

Proof of Corollary 6.9. By Lemma 6.9, FFD(Q) = 0 if and only if F1 ⊗R Q ⊆ F(Q). Also, by
Theorem 3.4, f. dim(Q) = 0 if and only if P1(Q) ⊆ F(Q). Since P1(Q) = P1 ⊗R Q, we get
f. dim(Q) = 0 if and only if P1 ⊗R Q ⊆ F(Q). Therefore, via applying Theorem 6.8, we get the
desired equivalence.

Corollary 6.11. Let R be a ring. Then the following assertions are equivalent:
1) lim

−→
P1 = F1 and f. dim(R) = 0;

2) FFD(R) = 0.

Corollary 6.12. Let R be a self-injective ring. Then the following assertions are equivalent:
1) lim

−→
P1 = F1;

2) FFD(R) = 0.
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