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Abstract. This paper introduces and investigates the notions of flatness and FP-injectivity
with respect to the class P; consisting of modules over a ring R of projective dimension at most
one. This allows us to characterize, for bunch of specific rings, when the cotorsion pair (Py, Pi-)
is of finite type. In particular, we prove that a ring R is semi-hereditary and (P, Pj-) is of finite
type if and only if P;- coincides with the class FP-Z(R) of FP-injective modules. Finally, we
prove that, given a ring R and a flat ring extension @ of R, if K = Q/R, then li_rr>1771 = Fi and

ProrQ C F(Q)ifandonly if 71 g Q@ C F(Q) and K € hglPl extending [1, Corollary 6.8],
where F(Q) stands for the class of flat right @-modules.

1 Introduction

Throughout this paper, R denotes an associative ring with unit element and the R-modules are
supposed to be unital. Given an R-module M, M denotes the character R-module of M, that is,
M := Homy, (M , %), pd (M) denotes the projective dimension of M, idr(M) the injective
dimension of M and fdr (M) the flat dimension of M. As for the global dimensions, 1-gl-dim(R)
designates the left global dimension of R and wgl-dim(R) the weak global dimension of R. Also,
FPD(R) denotes the finitistic projective dimension of R and f. dim(R) denotes the little finitistic
dimension of R. Mod(R) stands for the class of all right R-modules, P(R) stands for the class
of all projective right R-modules, Z(R) the class of all injective right R-modules and F(R) the
class of flat right modules. Also, we denote by P; the class of right R-modules M such that
pdp (M) < 1 and by Plfp the subclass of P; consisting of right R-modules which are finitely
presented. Any unreferenced material is standard as in [5, 16, 19, 20].

In [1], one of the main goals of Bazzoni and Herbera is to characterize the rings R for which
the equality F; = liénpl holds. In this context, via [1, Theorem 6.7], they proved the following

key result towards such a characterization for the rings R with classical ring of quotients Q): Let
R be a ring with classical of quotients Q). Then the following assertions are equivalent:

1) f.dim(Q) = 0;

2)Pi(R) @R Q C F(Q);

3)lim Py = Fin T Mod(Q).
They deduced the following result which generalizes a theorem of Hiigel and Trlifaj stating
that if R is a domain, then F; = hglPl [11, Theorem 3.5]: Let R be a ring with classical

ring of quotients Q. Then F; = 1i_n>17)1 and f.dim(Q) = 0 if and only if FFD(Q) = 0 [1,

Corollary 6.8], where FFD(Q) denotes the finitistic flat dimension of (). Furthermore, recall
that the cotorsion pair (P, P;-) is said to be of finite type if P~ = P;(mod(R))* (see [1]),
where mod(R) stands for the class of right modules that admit projective resolutions consisting
of finitely generated projective modules. Bazzoni and Herbera proved in [1] that if the ring is an
order in an Ry-Noetherian ring Q of little finitistic dimension 0, then the cotorsion pair (P, Pi-)
is of finite type if and only if @ has finitistic projective dimension FPD(Q) = 0. This allows
to prove that (P, Pi) is of finite type for orders in semisimple artinian rings [1, Corollary 8.1]
and then, in particular, for commutative domains. Their findings answered in the affirmative an
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open problem posed by L. Fuchs and L. Salce [8, Problem 6, p. 139] on the structure of one
dimensional divisible modules over domains. Moreover, Bazzoni and Herbera were concerned
in [1] by characterizing the commutative Noetherian rings for which (P, Pi%) is of finite type
and proved that these rings are the ones that are orders into artinian rings.

In this paper, we introduce the notions of P;-flat modules and pr—injective modules as the
Tor-orthogonal class of P; and Ext-orthogonal class of PP, respectively. We give numerous
properties of such entities. First, we prove that an R-module M is P;-flat if and only if the
character module M is Plfp -injective. This fact is reminiscent of the flatness of a module M
being equivalent to the (FP-) injectivity of the character module M*. It is to be noted that,
switching the location of the character module, the equivalence of the FP-injectivity of M and
the flatness of M ™ holds for an arbitrary R-module M if and only if R is coherent. As to the
context of P;-flatness and pr—injectivity, we prove that the equivalence M is P{p—injective if
and only if M™* is P;-flat always holds. Also, we typify specific rings R by the notions of
pr—injectivity and P;-flatness of R-modules. First, it is worth recalling that if R is a Priifer
domain, then li_n>1731 = Mod(R). More generally, Hiigel and Trlifaj prove that the equality
lim P; = F is in fact an inherent property to integral domains [11, Theorem 3.5]. In connection
with these two later results, we show that the equality lim P, = Mod(R) totally characterizes
the semi-herditary rings. Effectively, we prove that R is left semi-hereditary if and only if any
pr -injective module is FP-injective if and only if @ P1 = Mod(R). Moreover, we characterize
when the little finististic dimension of a ring R is zero via proving that f.dim(R) = 0 if and
only if any R-module M is pr—injective (Theorem 3.4). In Section 5, we describe totally when
(Py,Pit) is of finite type in terms of P;-injectivity and P;-flatness. This allows us to recover
the result of Bazzoni-Herbera that if R is a domain, then (Pl,Pll) is of finite type. Also, we
investigate, through studying bunch of kinds of rings R, when the cotorsion pair (P, Pi-) is of
finite type. In this context, we focus our attention on the hereditary rings, semi-hereditary rings,
self injective rings and perfect rings. For instance we prove the following: Given a ring R, then
R is left semi-hereditary and (Py, Pi-) is of finite type if and only if (Py, Pi-) = (FP-P(R), FP-
Z(R)), where FP-P(R) stands for the class of FP-projective modules over R. Finally, we aim
through Section 6 to extend the above-cited theorem [1, Theorem 6.7] of Bazzoni and Herbera
to flat ring extensions. Our main theorem in this section reads the following: Let R be a ring

and Q) a flat ring extension of R. Let K = % Assume that K € limP,. Then the following
—

assertions are equivalent:
1) Pi1(R) ®r Q C F(Q);
2) H_T>HP1 = FiN T MOd(Q)

We deduce from this result the next theorem which extends [1, Corollary 6.8]: Let R be a ring

and Q a flat ring extension of R. Let K = 9 Then the following assertions are equivalent.
1)limPy = Fy and Py @k Q € F(Q);
2)FiorQ C F(Q)and K € lim P.

2 P,-flat modules and ’pr-injective modules

This section introduces and studies the notions of P;-flat and pr-ﬂat modules as well as the dual
notion of P}P-injective modules.

Let C be a class of right R-modules and D be a class of left R-modules. We put
C" =kerTor{*(C,-) = {left R-modules M : Tor{*(C, M) = 0 for all C' € C}
and
D = ker Tor{*(-, D) = {right R-modules N : Tor{*(N, D) = 0 for all D € D}.

A pair (A, B) of classes of R-modules is called a Tor-torsion theory if A = "Band B = A'.
Let C be a class of right R-modules. Then it is easy to check that (T (CT),C") is a Tor-torsion
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theory. Also, we put C = T(CT). Note that imC C C as C is stable under direct limits. A
—

Tor-torsion theory (A, B) is said to be generated by C if A = C (and thus B = CT). Let (Aj, B;)
and (A, B,;) two Tor-torsion theories generated by C; and C,, respectively. Then the two pairs
(A, By) and (A, B;) coincide if and only if C, =G

On the other hand, given a class F of right R-modules, consider the two associated classes:

L = {X € Mod(R) : Extg(L,X) = 0,YL € F}

and
LF ={X € Mod(R) : Extp(X,L) = 0,YL € F}.

A pair (F,C) of classes of R-modules is called a cotorsion theory [6] provided that *C = F
and F+ = C. A cotorsion theory (F,C) is called complete [19] if every R-module has a special
C-preenvelope and a special F-precover. Note that for every class £, + L is a resolving class, that
is, it is closed under extensions, kernels of epimorphisms and contains the projective modules. In
particular, it is syzygy-closed. Dually, £ is coresolving: it is closed under extensions, cokernels
of monomorphisms and contains the injective modules. In particular, it is cosyzygy-closed. A
pair (F,C) is called a hereditary cotorsion pair if -°°C = F and F1>° = C. It is easy to see that
(F,C) is a hereditary cotorsion pair if and only if (F,C) is a cotorsion pair such that F' is resolv-
ing, if and only if (F, C) is a cotorsion pair such that C' is coresolving. A cotorsion theory (F,C)
is called complete if every R-module has a special C-preenvelope and a special F-precover. A
cotorsion theory (F,C) is called perfect if F is a covering class and C is a an enveloping class.
For a class T of right modules, the pair (7, (+7)~) is a cotorsion (hereditary) pair; it is called
the cotorsion pair cogenerated by 7.

We begin by proving the following results of general interest.

Proposition 2.1. Let R be a ring. Then
limP? = limP;.

Proof. Let Py denote the class of all elements of P; which admit projective resolutions con-

sisting of finitely generated projective modules. It is easy to see that Py = P]fp. Also, it is well

known that P; C limPy* (see [1, page 12]). Hence Py C lim Plfp . By [11, Lemma 1.2], lim Plfp
— — —

is closed under direct limit. Hence lim P; C lim pr. Now, since lim pr C lim P (as pr C P1),
— — — —

it follows that lim Plfp = lim Py, as desired.
— —

Proposition 2.2. Let R be a ring. Let C and D be classes of right R-modules.
1) (lim¢)" = cT=cT.

2)IfCCDCC then C = D.

3)Iflim C = lim D, then CT =D andC = D.

Proof. 1) Note that CT = CT and that CT C (lim¢)T € €T asC C limC C C. Then the result

—_
easily follows.

2) Assume that C C D C C. Then C CDCC. Now, as C= CA, we get C= ﬁ, as desired.
3) It follows easily from (1). O

Next, we introduce the notions of Plfp -flat modules and P;-flat modules.

Definition 2.3. 1) A left R-module M is said to be P;-flat if Tory(H, M) = 0 for each right
module H € Py, thatis, M € P, . The class of all left P;-flat modules is denoted by P, F(R).

2) A left R-module M is said to be Plfp -flat if Tork (H, M) = 0 for each right module H € pr ,
that is, M € P{? . The class of all left PP-flat modules is denoted by P}’ F(R).

The following proposition lists some properties of P;-flat modules and Plfp -flat modules.



54 S. Bouchiba, M. El-Arabi and Y. Najem

Proposition 2.4. Let R be a ring. Then

1) PLF(R) C PPF(R).

2) P1F(R) and pr F(R) are stable under direct sums and direct limits.
3) P1F(R) and pr}"(R) are stable under submodules.

4) Any left ideal of R is P\-flat and Plfp flat.

Proof. 1) and 2) are clear as the functor Tor’(H, —) commutes with direct sums and direct limits
for any right R-module H and each positive integer n.
3) Let N be a submodule of a left P;-flat module M. Let H € P,be a right module and consider

M
the short exact sequence 0 — N — M — N — 0 of left modules. Then applying the
functor H ® p —, we get the exact sequence

M
Tor’ (H, N) — Torl'(H, N) — Torf'(H, M).

M
Now, as Torj"(H, M) = 0 since M is P;-flat and Tor}’ (H, ﬁ) =0as fdgp(H) < 1, we deduce

that Torf”(H ,N) = 0. Therefore N is a P;-flat left R-module, as desired.
4) It follows from 3). O

The next proposition proves that the two notions of P;-flat modules and Plfp—ﬂat modules
collapse.

Proposition 2.5. Let R be a ring. Then
1) The pair (Py, P1F(R)) is a Tor-torsion theory.
2) (73]&’7 P]fp]-'(R)) is a Tor-torsion theory with
limP, = PP =P
—
3) (P1, PiF(R)) = (PP, PPF(R)) and thus P1F(R) = PP F(R).
Proof. 1) It is direct.
2) Note that

PP C P ClimP; =1limPP C PP C P,
— —

Then, by Proposition 2.1 and Proposition 2.2, Plfp = ﬁ Moreover, by [11, Theorem 2.3],
1i_r>n P]fp = pr. Then we are done.
3) It is direct using (2). O

Dually, we next introduce the concept of Plfp -injective modules.

Definition 2.6. 1) A left R-module M is said to be Plfp -injective if Ext{*(H, M) = 0 for each
left module H € pr, that is, M € Pf'u. The class of all ’pr—injective modules is denoted by
PPI(R).

2) The ring R is said to be a self pr-injective ring if it is a pr—injective left R-module.

We next recall the following lemmas which will be useful in the sequel.

Lemma 2.7. [17, Proposition 2.2] Let A be a finitely presented left R-module and (M;);cr a
direct system of submodules of some module. Then

lim Exty, (A, M;) & Extp(A, lim M;).

Lemma 2.8. [3, Lemma 2.10(2)] Let A be a 2-presented left R-module and (M,;);cr a family of
right R-modules. Then

HTorf%(Mi, A) = Torl (HMi7A).
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Lemma 2.9. (3, Lemma 2.9(2)] Let A be a 2-presented left R-module and (M;);c1 a direct
system of left R-modules. Then

lim Exty, (A, M;) & Extp(A, lim M;).

Next, we list some properties of Plfp -injective modules. We denote by Z(R) the class of
injective left R-modules and by FP-Z(R) the class of FP-injective left R-modules.

Proposition 2.10. Let R be a ring. Then

1) I(R) C FP-I(R) C PIPI(R).

2) Plfp}' (R) is closed under extensions, direct products and direct summands.

3) prI (R) is closed under pure submodules.

4) Any quotient of a Plfp-injective module is pr—injective.

Proof. 1) and 2) are clear as the functor Ext; (H, —) commutes with direct products for any left
R-module H and each positive integer n.

3) Let A be a pure submodule of a pr—injective left R-module B. For any H € pr, we have the
exact sequence

B
Homp(H, B) — Homp (H, Z) — Exth(H,A) — 0

B . . e
But the sequence Homp(H, B) — Homp (H , Z) — 0 is exact since H is finitly presented

and A is a pure submodule of B, so Extj(H, A) = 0. Therefore, A is pr—injective.
4) Let M be a Plfp -injective left R-module and let NV be a submodule of M. Consider the

M
short exact sequence 0 — N — M — N —> 0. Let K € Plfp. Applying the functor

Hompg (K, —) to the considered sequence, we get the following exact sequence

M
Exth (K, N) — Exth (K, M) = 0 —> Exth, (K, ﬁ) — Ext (K, N).

M M
As K € Py, Ext}(K, N) = 0. Hence Extl, (K, W) = 0. It follows that ~ is P[P-injective, as

desired.
O

It is known the direct limit of injective modules over a ring R is not injective, in general. The
following proposition shows that the pr—injective modules well behave with respect to direct
limits, in other words, any direct limit of injective modules is pr—injective.

Proposition 2.11. Let R be a ring. Then any direct limit of Pf‘p-injective modules is Plfp -injective.

Proof. It suffices to observe that any element M € Plfp is 2-presented and then to apply Lemma
2.9. O

Corollary 2.12. Let R be a ring. Then any direct limit of injective modules is Plfp-injective.

Proof. 1t follows from Proposition 2.10. O

It is well known that a right R-module M is flat if and only if M ™ is a left injective module.
The next proposition provides the analog version of this result for the Plfp—ﬂatness and pr—
injectivity.

Proposition 2.13. Let R be a ring and M a right R-module. Then the following assertions are
equivalent:

1) M is Py-flat;

2) M is PP-flat;

3) M™ is Py-injective;

4) M* is PP-injective.

If R is a ring with classical ring of quotients Q satisfying f.dim(Q) = O, then the above asser-
tions are equivalent to the following one:

5) M is torsion-free.
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Proof. 1) < 2) It suffices to apply Proposition 2.5(3).
1) < 3) and 2) < 4) It follow easily from the standard isomorphism

Exty, (N, M*) = Torf{(M, N)*

for any left R-module V.
|

Recall that the direct product of flat right R-modules needs not be flat unless the base ring R
is left coherent. Moreover, if M is an injective left R-module, the character module M ™ need
not be flat unless R is left coherent. Next, we prove that the P;-flat modules behave well with
respect to direct products and that the Plfp—injectivity of a module M is well characterized by the
‘P;-flatness of the character module M.

Theorem 2.14. Let R be a ring. Then
1) Any direct product of P:-flat right R-modules is P, -flat.
2) Let M be an R-module. Then the following assertions are equivalent:
. fp . . .
a) M is P, -injective;
b) M is P-flat;
c) Mt is ’pr-injective.
3) A right R-module M is Py-flat if and only if M is Py-flat.

Proof. 1) Note that, by Lemma 2.8, [] Tor*(M;, A) = Torf (] M;, A) for any A € pr and
any family (M;);cs of right R-modules. Then any direct product of pr-ﬂat right R-modules is
Plfp -flat. It follows, by Proposition 2.5(3), that any direct product of P;-flat right R-modules is
P, -flat

2) Observe that Torl (M*, N) 2% Extk (N, M)* for any left R-module M and any N' € P}® by
[3, Lemma 2.7(2)]. Hence M is pr—injective if and only if M is Plfp -flat if and only if M is
‘P-flat establishing the equivalence a) < b). Now, Proposition 2.13 guarantees the equivalence
b) < c¢).

3) It follows from a combination of (2) and Proposition 2.13. O

3 ’Plf P.injectivity and specific rings

In this section, we characterize several kind of rings by homological properties of Plfp-injective
modules.

Our first theorem characterizes rings in which the class of pr—injective R-modules coincides
with the class of FP-injective ones. Moreover, recall that if R is a Priifer domain, then h_n}l P =
Mod(R). More generally, Hiigel and Trlifaj prove that the equality limP; = Fy is n fact
an inherent property to integral domains [11, Theorem 3.5]. The next theorem shows that the
equality lim Py = Mod(R) characterizes the semi-herditary rings. We denote by Mod'?(R) the
class of finitely presented R-modules.

Theorem 3.1. Let R be a ring. Then the following assertions are equivalent.
1) Any Plfp-injective left R-module is FP-injective;
2) Any Pi-flat right R-module is flat;
3) R is left semi-hereditary;
4) Mod®(R) = P’
5) li_n;Pl = Mod(R).

Proof. 1) = 2) Let M be a P;-flat right module. Then, by Proposition 2.13, M is a Plfp—
injective left module. Hence, by (1), M ™" is FP-injective right R-module and thus M is flat, as
desired.

2) = 3) Assume that (2) holds. Then any right ideal of R is flat. Hence wgl-dim(R) < 1. Also,
as any flat right module is P;-flat, we get, by Theorem 2.14(1), any direct product of flat right
R-modules is flat and thus R is left coherent. It follows that R is semi-hereditary, as desired.
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3) = 4) Note first that pr C Mod™(R). Assume that R is left semi-hereditary. Let M be a
finitely presented module. Then there exists an exact sequence 0 — K — L — M — 0 such
that L is a finitely generated free R-module and K is a finitely generated module. As R is left
semi-hereditary, we get that K is a finitely projective module and thus M € pr . This ensures
that Mod™(R) = pr, as desired.

4) = 5) Assume that Mod™ (R) = Plfp. It is known that any R-module is a direct limit of finitely
presented modules. Then any R-module is a direct limit of elements of PP that is, li_n>173fp =
Mod(R). Now, since by Proposition 2.1, li_n}P] = hﬂpfp, it follows that 1i_n>1771 = Mod(R), as
contended.

5) = 2) Assume that lim P, = Mod(R). Then, by Proposition 2.1, li_n)lpfp = Mod(R). Let M
be a P;-flat module. Let N € Mod(R). Then there exists a direct system (NN;); of elements of
Plfp such that N = ligNi. Therefore, as M is P;-flat,

Torf'(M,N) = Tor{"(M,lim N;)
= lim Tor"(M, N;)
0.

It follows that M is flat, as desired.
4) = 1) It is direct completing the proof of the theorem.
|

It is well known that R is a left Noetherian ring if and only if any FP-injective R-module is
injective [15, Theorem 3]. The following corollary characterizes rings in which any Plfp -injective
module is injective.

Corollary 3.2. Let R be a ring. The following are equivalent:
1) R is a left Noetherian hereditary ring;
2) Any Plfp-injective left R-module is injective.

Proof. 1) = 2) Assume that R is a left Noetherian hereditary ring. Let M be a P{p-injective left
R-module. Since R is left hereditary, by Theorem 3.1, M is FP-injective. Now, since R is left
Noetherian, we get M is injective, as desired.

2) = 1) Assume that any Plfp -injective R-module is injective. First, by Theorem 3.1, R is left
semi-hereditary. Also, as any FP-injective module is Plfp—injective, we get that any FP-injective
left R-module is injective. Hence, by [15, Theorem 3], R is left Noetherian. This completes the
proof. O

Corollary 3.3. Let R be an integral domain. The following are equivalent:
1) R is a Dedekind ring;
2) Any ’Plfp—injective R-module is injective.

Proof. 1t is clear as any integral domain R is a Dedekind ring if R is hereditary. Also, by [16,
Corollary 4.26], any Dedekind ring is Noetherian.
|

Recall that the (left) little finitistic dimension, denoted by f.dim(R), is the supremum of the
projective dimension of the left R-modules of finite projective dimension in mod(R). The next

theorem characterizes rings in which any R-module is P,’-injective.

Theorem 3.4. Let R be a ring. Then the following assertions are equivalent.
1) rR is self PP-injective;
2) Any free R-module is ’Plfp-injective;
3) Any projective R-module is pr-injective;
4) Any left R-module is Plfp -injective;
5) Every submodule of a ”Plfp-injective is Plfp—injective;
6) Any right R-module is P, -flat;
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7) P1 C F(R).

8) Any quotient of a Pi-flat right R-module is P;-flat;
9) PP C P(R);

10) Py nmod(R) = P(R) N mod(R);

11)f.dim(R) = 0.

Proof. 1) = 2) It holds easily as prI (R) is closed under direct sums.

2) = 3) It suffices to note that P{pI (R) is closed under direct summand.

3) = 4) It follows from the fact any left R-module M is a quotient of a projective module and
that PPZ(R) is stable under quotients.

4) = 1) It is straightforward.

4) = 9) First, note that ;> C* PPZ(R). Then, using (4), we get P> C P(R) = Mod(R).

9) = 4) It is straightforward.

4) < 5) It holds easily as any R-module is a submodule of an injective module which is a Plfp—
injective R-module.

4) < 6) It is straightforward using Proposition 2.13 and Theorem 2.14.

6) < 8) It follows from the fact that any R-module M is a quotient of a projective module which
is P, -flat. . -

6) < 7) It is direct as (P, P1F(R)) is a torsion theory and P; C Py = 11_r>n P1.

9) = 10) Let M be any element of P; N mod(R). Then by [1, Lemma 6.4], there is a finitely
generated projective module P and a short exact sequence 0 — R — R™ — M & P — 0.
Then M & P € pr, and by 8) M is projective.

10) = 11) it is direct.

11) = 9) is clear as Plfp C P Nmod(R), as desired completing the proof. ]

Corollary 3.5. Let R be a ring. If R is self-injective, then any R-module is Plfp -injective and
f.dim(R) = 0.

Corollary 3.6. Let R be a ring. Then the following assertions are equivalent.
1) R is von Neumann regular;
2) R is left semi-hereditary and R is a (left) selfPlfp—injective ring.

Proof. Combine Theorem 3.4 and Theorem 3.1. O
Corollary 3.7. Let R be an Artinian ring. Then f.dim(R) = 0.

Proof. Let M € Plfp. Let m be a maximal ideal of R. Note that depth(R,,) = 0. Then,

M,, € Plfp (Rm) and thus, by Auslander-Buchsbaum formula, we get pd;, (M,,) = 0. Hence
M, is a projective R,,-module for each maximal ideal m of R. Therefore M is a projective
R-module. It follows that Plfp C P(R) and thus, by Theorem 3.4, we get f.dim(R) = 0, as
desired. O

Corollary 3.8. Let R be a Noetherian commutative ring with classical ring of quotients Q. Then,
Q is a self pr—injective ring.

Proof. 1t follows from Theorem 3.4 and [1, Lemma 8.3]. m|

4 pr-injectivity and homological dimensions

The aim of this section is to characterize the homological dimension of modules over a ring R
via the vanishing of the functors Ext and Tor by the class of ”pr—injective modules.

Proposition 4.1. Let R be a ring. Let M be a left R-module and n a positive integer. Then the
following statements are equivalent.

1)idg(M) < n;

2) Extly (N, M) = 0 for each P -injective left R-module N.

The proof requires the following lemma.
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Lemma 4.2. Let R be a ring. Then (PPZ(R))* = Z(R).

Proof. We only need to prove that if M € (P°Z(R))*, then M is injective. In fact, let M
(prI (R))+. There exists a short exact sequence of left R-modules0 — M — [ — G — 0
with I injective. Then G is P}’-injective, by Proposition 2.10(4). Hence, Ext,(G, M) = 0, and
thus the sequence 0 — M — I — G — O splits. It follows that M is injective, as
desired. O

Proof of Proposition 4.1. 1) = 2) is straightforward.

d d
2)=1)Let O M — Ey : E : By --- be an injective resolution

of M. Let Ly = Im(e) and L; = Im(d;) for each integer ¢« > 1. Then, for any pr—injective mod-
ule N, by [16, Corollary 6.16], Extl (N, L,,) = Ext;*' (N, M) = 0. Hence L,, € (P°Z(R))*,
so that, by Lemma 4.2, L,, is injective. It follows that idg (M) < n. O

Proposition 4.3. Let R be a ring. Then

I-gl-dim(R) = sup{pd,(M) : M € P{PZ(R)}.

Proof. First, note that 1-gl-dim(R) > sup{pdp(M) : M is aPlfp—injective left R-module}. If
sup{pd,(M) : Misa Plfp -injective left R-module} = +o0, then we are done. Now, assume
that there exists an integer n > 0 such that pdg(M) < n for any pr-injective R-module M.
Then Ext;™! (M, N) = 0 for any P;-injective R-module M and any R-module N. Hence, by
Proposition 4.1, idg(N) < n for any R-module N. It follows that 1-gl-dim(R) < n and thus the
desired equality follows. O

We deduce the following characterization of semisimple rings.

Corollary 4.4. Let R be a ring. Then the following assertions are equivalent.
1) R is semisimple;
2) Any Plfp-injective module is projective.

Proposition 4.5. Let R be a ring. Let M be a right R-module and n a positive integer. Then the
following assertions are equivalent:

1) fdp(M) < n;

2) Torff;rl (M, N) =0 for any Plfp—injective left R-module N.

First, we establish the following lemma.

Lemma 4.6. Let R be a ring and M a right R-module. Then the following assertions are equiv-
alent:

1) M is a flat right R-module;

2) Torfz(M7 N) = 0 for any pr-injective left R-module N.

Proof. We only need to prove that 2) = 1) Assume that Torf* (M, N) = 0 for every Plfp—injective
left R-module N. Consider a short exact sequence of left R-modules 0 — M+t — F —
G — 0 with E an injective left module. Then F is pr—injective and thus G is P{p—injective by
Proposition 2.10. Hence, Ext}, (G, M) = Tor{'(M,G)* = 0. Therefore, the considered exact
sequence 0 — M* — E — G — 0 splits, and thus M is injective left R-module. Hence,
M is a flat right R-module completing the proof. O

Proof of Proposition 4.5. 1t suffices to prove that 2) = 1) Assume that 2) holds. Let F},_; be the
(n — 1)th yoke of a flat resolution of M and let N be any pr-injective left R-module. By [16,

Corollary 6.13], TorZ, (M, N) = Tor{!(F,—, N). Then, using (2), we get Tor{*(F,,_;, N) =0,

and thus by Lemma 4.6, F,,_; is flat. Hence fdg(M) < n, as desired. m|

Proposition 4.7. Let R be a ring. Then

wgl-dim(R) = sup{fdg(M) : M € PPZ(R)}.
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Proof. If sup{fdr(M): Misa pr—injective left R-module } = 400, then we are done. Assume

that there exists a positive integer n such that fdg (M) < n for any pr—injective left module M.
Then Tor? | (A, M) = 0 for any right R-module A. Then, by Proposition 4.3, fdz(A) < n for
each right R-module A. Therefore wgl-dim(R) < n. This establishes the desired equality. O

Our last result of this section provides a characterization of von Neumann regular rings via
the flatness of pr-injective modules.

Corollary 4.8. Let R be a ring. Then the following statements are equivalent:
1) R is von Neumann regular;
2) Any pr-injective left R-module is flat.

5 When is the cotorsion pair (P;, P;") of finite type?

Recall that the cotorsion pair (P, Pi-) is said to be of finite type if Pi- = P;(mod(R))* (see
[1]), where mod(R) stands for the class of modules that admit projective resolutions consisting
of finitely generated projective modules. In [1], Bazzoni and Herbera proved that if the ring is an
order in an Ry-Noetherian ring Q of little finitistic dimension 0, then the cotorsion pair (P, Pi-)
is of finite type if and only if @ has finitistic projective dimension FPD(Q) = 0. They deduced
from this that (P, P;") is of finite type for orders in semisimple artinian rings [1, Corollary
8.1] so, in particular, for commutative domains. Their findings answered in the affirmative an
open problem posed by L. Fuchs and L. Salce [23, Problem 6, p. 139] on the structure of one
dimensional divisible modules over domains. Moreover, Bazzoni and Herbera were concerned
by characterizing the commutative Noetherian rings for which (P;, Pi-) is of finite type. Our
concern in this section is to investigate, through studying bunch of kinds of rings R, when the
cotorsion pair (Py, Pi) is of finite type. In this context, we focus our attention on the hereditary
rings, semi-hereditary rings, self injective rings and perfect rings.

Our first main result of this section characterizes when (P, Pi-) is of finite type in terms of
‘P1-injectivity and P;-flatness. This allows us to recover the result of Bazzoni-Herbera that if R
is a domain, then (P, Pj-) is of finite type.

Theorem 5.1. Let R be a ring. Then the following assertions are equivalent:
1) (P1, Pib) is of finite type;
2) P = (P75
3) Any direct sum of ‘Pi-injective modules is P\-injective;
4) Any direct limit of Pi-injective modules is P -injective;
5) An R-module M is P-injective module if and only if M is Plfp -injective;
6) An R-module M is Py-injective if and only if M is Py-flat;
7) Any pure submodule of a ‘P)-injective module is Py-injective.
Moreover, if R is a ring with classical ring of quotients Q such that f.dim(Q) = O, then the
above assertions are equivalent to the following one:
8) Pt =D.

Proof. First, note that P;(mod(R)) = P}*. Then 1) & 2) & 5) hold. Also, the equivalence 1)
<> 3) holds by [1, Proposition 4.1]. For 3) < 4) use [2, Proposition 2.8].
5) < 6) Itis direct by Theorem 2.14.
5)=7) Let M be a P;-injective module and N a pure submodule of M. Then M is Plfp -injective
and N is a pure submodule of M. Hence, by Proposition 2.10(3), N is ’pr—injective and thus N
is P;-injective, as desired.
7) = 5) Let M be a pr -injective module. Then, by Theorem 2.14(2), M ™+ is Plfp—injective.
Therefore, by Proposition 2.13, M is P;-injective. Now, since M is a pure submodule of
M+t we get, by (7), that M is P;-injective, as contended.
Assume that R is a ring with classical ring of quotients @ such that f. dim(Q) = 0. Then, by [1,
Theorem 6.7], P (mod(R))* = D, that is, PfPJ‘ = D. Hence 2) < 7) holds easily.

|
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Corollary 5.2. Let R be an integral domain. Then (P, Pi-) is of finite type.

Proof. Tt follows easily from Theorem 5.1 as, if K denotes the quotient field of R, f. dim(K) =0
and it is well known that P{- = D in the case of integral domains. ]

The following corollary proves that, if f. dim(R) = 0, then (P, P;-) is of finite type if and
only if (P, P;-) coincides with the cotorsion pair (P(R), Mod(R)).

Corollary 5.3. Let R be a ring. Then the following assertions are equivalent.
1) f.dim(R) = 0 and (P, Pi) is of finite type;
2) FPD(R) = 0.

Proof. 1) = 2) Assume that f. dim(R) = 0 and (P, Pi") is of finite type. Then, as f. dim(R) =
0, we get, by Theorem 3.4, that prL = Mod(R). Also, since (P;, Pf‘) is of finite type, then
Pi- = PP, Hence Pi- = Mod(R). It follows, by [2, Proposition 3.5], that FPD(R) = 0.

2) = 1) Assume that FPD(R) = 0. Then, in particular, f. dim(R) = 0. Also, by [2, Proposition
3.5], we get Pi- = Mod(R). Now, since Pi- C Pi**, it follows that Pi- = P** = Mod(R) and
thus (Py, Pi-) is of finite type completing the proof. |

Corollary 5.4. Let R be a perfect commutative ring. Then (P1, Pi) is of finite type.
Proof. Tt is direct as FPD(R) = 0. i

Our next result characterizes when the cotorsion pair (P, Pi-) is of finite type for self-
injective rings.

Proposition 5.5. Let R be a self-injective ring. Then the following assertions are equivalent:
1) (Py,Pit) is of finite type;
2)FPD(R) = 0.

Moreover, if R is commutative, then the above assertions are equivalent to the following one:
3) R is a perfect ring.

Proof. Since R is self-injective, we get that R is self-P;-injective and thus, by Theorem 3.4,
f.dim(R) = 0. Now, Corollary 5.3 establishes the equivalence 1) < 2). Also, it is well known
that, if R is a commutative ring, then FPD(R) = 0 if and only if R is a perfect ring. This fact
allows to get the desired equivalences completing the proof.

O

The last results of this sections discuss the finite type notion of the pair (P, Pi-) for von
Neumann regular rings, hereditary rings and semi-hereditary rings.

Proposition 5.6. Let R be a von Neumann regular ring. Then the following assertions are equiv-
alent:

1) (Py, Pit) is of finite type;

2)FPD(R) = 0.

Proof. First, since R is von Neumann regular, 7(R) = P;F(R) = Mod(R). By Theorem 3.4,
(Py, Pit) is of finite type <> a module M is P;-injective if and only if M is P;-flat < a module
M is Pi-injective if and only if M is an R-module & Pi- = Mod(R) & P; = P(R) &
FPD(R) = 0, as desired. i

Proposition 5.7. Let R be a hereditary ring. Then (P, Pi) is of finite type if and only if R is
Noetherian.

Proof. As R is hereditary, P} = Mod(R). Then (P, Pib) is of finite type < Pt = Z(R) is
stable under direct sum < R is Noetherian completing the proof. O

Recall that a (left) module M over a ring R is said to be FP-projective if Ext}g(M ,N)=0
for any FP-injective (left) R-module N. In this context, note that any finitely presented module
is FP-projective and, more precisely, (FP-P(R),FP-Z(R)) is a cotorsion pair cogenerated by
the class of all finitely presented modules. Also, it is known the class FP-Z(R) of FP-injective
modules is stable under direct sum.
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Proposition 5.8. Let R be a ring. Then the following assertions are equivalent:
1) R is left semi-hereditary and (P, Pi-) is of finite type;
2) (P1,Pi-) = (FP-P(R),FP-I(R)).

Proof. 1) = 2) Assume that R is left semi-hereditary and that (P;, P;-) is of finite type. As R is
semi-hereditary, then, by Theorem 3.1, P{? = Mod(R)®. Hence Pj- = Mod(R)™* = FP-Z(R)
and thus P, = FP-P(R). It follows that the two cotorsion pairs (P;, P;i-) and (FP-P(R), FP-
Z(R)) coincide.

2) = 1) Assume that (P;, Pi-) = (FP-P(R),FP-Z(R)). Then Pj- = FP-Z(R) and thus as the
class FP-Z(R) is stable under direct sum, we get that P;- is stable under direct sum. Hence,
by Theorem 5.1, (Py,Pi-) is of finite type. Moreover, Let I be a finitely generated ideal of

R. Then, considering the exact sequence 0 — I — R — ? — 0, we get that ? is finitely

presented and thus an FP-projective module. Hence, by our assumptions, pd (?) < 1 so that

1 is projective. It follows that R is semi-hereditary completing the proof.
|

6 Finitistic dimensions of flat ring extensions

Let S denote the multiplicative set of all regular elements of a ring R and assume that S satisfies
the left and right Ore condition. Denote by the localization Q) := S~'R the classical ring of
quotients of R. Note that the classical ring of quotients of a ring R does not always exist (see
[12]). It is worth recalling that if the classical ring of quotients @) of a ring R exists, then Q)

is a flat ring extension of I and that K := 7= lim — which is means, in particular, that
rR
€8s

K e 1%731 .
In [1, Theorem 6.7], Bazzoni and Herbera aims particularly at characterizing rings R for
which F; = limP; holds. In this context, they proved the following result which also charac-

g
terizes the rings R with classical ring of quotients () of little finististic dimension 0: Let R be a
ring with classical of quotients Q. Then the following assertions are equivalent:

1) f.dim(Q) =0;

2)Pi(R)®r Q C F(Q);

3) @Pl = FiN TN[Od(@).
They deduced from this theorem the following result which generalizes a theorem of Hiigel and
Trlifaj stating that if R is a domain, then F; = li_n>1731 [11, Theorem 3.5]: Let R be a ring with
classical ring of quotient Q. Then F; = lim P; and f.dim(Q) = 0 if and only if FFD(Q) = 0

—

[1, Corollary 6.8], where FFD(Q) stands for the finitistic flat dimension of Q.

The aim of this section is to extend the above-cited theorem of Bazzoni and Herbera to flat ring
extensions. Thereby, we get a general version of the above corollary [1, Corollary 6.8] for flat
ring extensions.

Next, we announce the main theorem of this section. It extends Bazzoni-Herbera theorem [1,
Theorem 6.7]. In fact, we show that Bazzoni-Herbera theorem holds for any flat ring extension

Q of R such that K = % S li_n}P] and we recall, as mentioned above, that any classical ring of

quotients, when it exists, satisfies this property. For easiness, put P} g Q := {M Qr Q : M €
'Pl} and 71 Qr Q = {M RrRQ: M € ]:1}.

Theorem 6.1. Let R be a ring and Q) a (left) flat ring extension of R. Let K := % Assume that

K € lim Py. Then the following assertions are equivalent.
—

1) P1®r Q C F(Q);
2)1i41’)n7)1 = FiN TN[OCl(Q).

The proof of Theorem 6.1 follows from the combination of Proposition 6.2 and Proposition
6.4.
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Proposition 6.2. Let R be a ring and Q a (left) flat ring extension of R. Then the following
assertions are equivalent:

1) P1®r Q C F(Q);
2)1i41’)n7)1 C FinN TMOd(Q).

The proof of Proposition 6.2 requires the following lemma.

Lemma 6.3. Let R be a ring and Q a (left) flat ring extension of R. Then
1) P1®rQ C Pi(Q).
2) Fi®r Q C F1(Q).

Proof. 1) Let C € Py and let 0 — H — K — C'— 0 be an exact sequence with H and K
are projective R-modules. Then, as @ is (left) flat over R, we get the exact sequence

0—HRrQ—K®rQ—CRrQ—0

such that H ®p Q and K ®p Q are projective Q-modules. Hence C @z Q € P;(Q). Therefore
Pi(R) ®r Q C Pi(Q).
2) It is similar to (1).
O
Proof of Proposition 6.2. 1) = 2) Assume that P ® g Q@ C F(Q). Let C € limP;. Then there
—
exists a direct system {C; : i € I} C P; such that C' = ll_I‘I}l C;. Thus

[l

Torf'(C, H) Torf2 (h_r)n Ci,H)

lim Tor{*(C;, H)

_

lim Tor (C; ®r Q, H)

=0

|4

for any Q-module H. Hence C' € T Mod(Q). It follows that 1i_r>n771 C Fin TMod(Q), as
desired.
2) = 1) Assume that 1i_r>n771 C Fin TMod(Q). Then, as P; C 1i_r>n731, we get P; C FiN

T Mod(Q). Then P; C T Mod(Q) and thus P; @ Q C F(Q) completing the proof.

m}

Proposition 6.4. Let R be a ring and Q a (left) flat ring extension of R such that K =
lim Py. Then
—

€

=IO

Fin" Mod(Q) C limP;.
—

Proof. Let M € Fin " Mod(Q). Let C be a P;-flat module. Tensoring the exact sequence
0— R — @Q — K — 0 with C yields the following exat sequence

0= Tor{(K,0) —C—Q®rC — K®rC—0

since K € limP; and C is P;-flat. Now, tensoring this later exact sequence with M yields the
—
next exact sequence

Torl(M, K ®g C) —s Torf'(M,C) — Torl (M, Q ®r C).

Since M € Fy, we get Tors' (M, K ®r C) = 0. Also, since M € " Mod(Q) and Q ® C €

Mod(Q), we get Torl'(M,Q ® C) = 0. Therefore Tor{'(M,C) = 0. It follows that M &

TP F(R) = Py and thus, by Proposition 2.5(2), we get M € limP;. This completes the
—

proof. O
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Let us recall the above cited theorem, [1, Theorem 6.7], of Bazzoni and Herbera: If R is a
ring with classical of quotients @, then f.dim(Q) = 0 if and only if limP; = F;N T Mod(Q).
—

We deduce from Proposition 6.4 that the following inequality always holds.
Corollary 6.5. Let R be a ring with classical ring of quotients Q). Then
Fin TMod(Q) C limP;.
—

O

€ limP;.

Proof. 1t follows from Proposition 6.4 since, as mentioned above, K =
—

O

Corollary 6.6. Let R be a ring and Q a (left) flat ring extension of R such that f.dim(Q) = 0.
Let K = Q Then the following assertions are equivalent:

1) limPy = Fin T Mod(Q);

2)K € liﬂpl.

Proof. 1) = 2) Itis direct as K € Fj.

2) = 1) Assume that K € limPy. As f.dim(Q) = 0, we get, Theorem 3.4, P1(Q) € F(Q).
Then, by Lemma 6.3, P; @z @ C F(Q). Therefore, by Theorem 6.1, 1i_n>1731 = FiN T Mod(Q),
as desired. O

The next corollary recovers [1, Theorem 6.7] of Bazzoni-Herbera.

Corollary 6.7. Let R be a ring with classical ring of quotients Q). Then the following assertions
are equivalent.

1) f.dim(Q) = 0;

2) P 9r Q C F(Q);

3)lim Py = Fin T Mod(Q).

Proof. Let K := % Note that K € lim P;. Also, by [1, Lemma 6.2], P; ®r Q = P1(Q). Now,
—
1) < 2) holds by Theorem 3.4 completing the proof. O

Our next theorem extends the result of Bazzoni and Herbera which proves that given a ring R
with classical ring of quotient ), then 7| = 11_1‘1}1 Py and f. dim(Q) = 0 if and only if FFD(Q) = 0

[1, Corollary 6.8].

Theorem 6.8. Let R be a ring and Q a (left) flat ring extension of R. Let K = % Then the

following assertions are equivalent.
1) limPy = Fyand Py @1 Q € F(Q);

2)Fi®rQ C F(Q)and K € 1i_r>nP1.

Proof. 1) = 2) Note that K = % € Fi. Then, by (1), K € limP;. Hence, since P; ®g @ C
—
F(R), we get, by Theorem 6.1, that 71N " Mod(Q) = lim 7. Hence, by (1), 71N TMod(Q) =

F and thus F; C T Mod(Q). Then F; ®g Q C F(Q), as desired.
2) = 1) Assume that /; ® g Q@ C F(Q) and K € li_n}Pl. Then, as @ is (left) flat R-module,

P ®r Q C F(Q). Also, we get F; C " Mod(Q). Hence, by Theorem 6.1, ligr)nﬂ = FiN
T Mod(Q). It follows, as F; € T Mod(Q), that lim Py = 71, as desired.
]

Next, we recover the result of Bazzoni and Herbera [1, Corollary 6.8].

Corollary 6.9. Let R be a ring with classical ring of quotients Q. The the following assertions
are equivalent:
1) 1i_r>n771 = Fj and f.dim(Q) = 0;

2) FFD(Q) = 0.
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To prove Corollary 6.9, we need the following lemma. First, it is worth recalling that if R
is a ring with classical ring of quotients (), then K := % S li_n>l731 and P, ®p Q@ = P1(Q) [1,
Lemma 6.2]. The next lemma proves that the equality 71 @ g Q = F;(Q) holds as well.

Lemma 6.10. Let R be a ring with classical ring of quotients Q). Then
1) Fi®r Q= F1(Q).
2)FFD(Q) = 0 ifand only if F1 ®r Q C F(Q).

Proof. 1) Let X denote the set of non zero-divisors of R. Then Q = X~ 'R. As Q is flat over R,
then it is easy to see that 71(Q) C Fj. Also, let M be a @Q-module. Then

M®rQ=MorL 'R=X'M =M.
Hence, since F;(Q) C F and Q is a left flat R-module, we get

Fi(Q) C FI(Q)®rQ C F1 ®r Q.

It follows, using Lemma 6.3, that 7 (Q) = F; ®g Q.
2) Note that FFD(Q) = 0 if and only if F(Q) C F(Q). Then, using (1), we get the desired
equivalence.

O

Proof of Corollary 6.9. By Lemma 6.9, FFD(Q) = 0 if and only if 71 ® g Q@ C F(Q). Also, by
Theorem 3.4, f.dim(Q) = 0 if and only if P,(Q) C F(Q). Since P;(Q) = Pi1 ®r Q, we get
f.dim(Q) = 0 if and only if P; ® g Q@ C F(Q). Therefore, via applying Theorem 6.8, we get the
desired equivalence.

o

Corollary 6.11. Let R be a ring. Then the following assertions are equivalent:
1)lim Py = F and f.dim(R) = 0;
—

2) FFD(R) = 0.

Corollary 6.12. Let R be a self-injective ring. Then the following assertions are equivalent:
1) im Py = Fy;
—
2)FFD(R) = 0.
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