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Abstract Let p be a prime and m, e be positive integers such that e ≥ 2. Consider the ring
Re =

Fpm [u]
⟨ue⟩ and a unit λ = λ0 + γu, where λ0 ∈ F∗

pm and γ ∈ R∗
e . This paper provides

a classification of λ-constacyclic codes of length ηps over Re by determining their generator
polynomials, enumeration, and dual codes. Here s, η are positive integers such that gcd(p, η) =
1. In particular, for p ̸= 7, we establish a complete classification of λ-constacyclic codes of
length 7ps over Re by determining the factorization of x7 − ξ over Fpm , where ξp

s

= λ0.

1 Introduction

Constacyclic codes play a crucial role in the field of error-correcting codes due to their efficient
encoding via simple shift registers and their rich algebraic structures, which enable effective
error detection and correction. These properties make them particularly valuable in engineering
applications. In particular, constacyclic codes defined over specific classes of finite rings have
emerged as a compelling research topic in algebraic coding theory [3, 4, 5, 6, 14, 15, 16].

Let R be a finite commutative ring with identity 1 ̸= 0, and let R× denote its group of units.
A code of length n over R is a nonempty subset C ⊆ Rn, where each element c in C is called a
codeword. A code C is said to be linear if it forms an R-submodule of Rn. Given a unit λ ∈ R×,
a linear code C of length n over R is called a λ-constacyclic code if it satisfies the shift property:
for every codeword (c0, c1, . . . , cn−1) ∈ C, the vector (λcn−1, c0, c1, . . . , cn−2) also belongs to
C. Each codeword c = (c0, c1, . . . , cn−1) ∈ C can be naturally associated with the polynomial
c(x) = c0 + c1x+ · · ·+ cn−1x

n−1 ∈ R[x]. It is well known that a linear code C of length n over
R is λ-constacyclic if and only if it is an ideal of the quotient ring R[x]

⟨xn−λ⟩ .

The class of finite rings of the form Fpm [u]
⟨u2⟩ has been extensively utilized as an alphabet for

constacyclic codes. Notably, the ring F2[u]
⟨u2⟩ exhibits intriguing structural properties: it is addi-

tively isomorphic to F4 and multiplicatively analogous to Z4. Due to these characteristics, codes
over Fpm [u]

⟨u2⟩ have attracted significant attention in coding theory (see, for example, [3, 4, 5, 6]).

More generally, the family of rings Fpm [u]
⟨ue⟩ = Fpm +uFpm + · · ·+ue−1Fpm has also been widely

studied in coding theory as an alphabet for error-correcting codes. Several investigations have
focused on constacyclic codes over these structures, highlighting their algebraic properties and
applications (see, for example, [7, 8, 9, 2]).

Throughout this paper, we use the notation Re to denote the finite commutative ring

Re =
Fpm [u]

⟨ue⟩
=

{
e−1∑
i=0

aiu
i | ai ∈ Fpm

}
.

This ring consists of polynomials over Fpm in the indeterminate u, with degree strictly less than
e, where arithmetic operations are performed modulo ue.
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The set of all units in Re consists of elements of the form λ = λ0 + uλ1 + · · · + ue−1λe−1,
where λ0, λ1, . . . , λe−1 ∈ Fpm and λ0 ̸= 0. In this paper, we consider only units of Type-1,
which means that λ1 ̸= 0. Equivalently, we define

γ = λ1 + λ2u+ · · ·+ λe−1u
e−2,

which is also a unit in Re.
Let s be a positive integer. Using the division algorithm, we write s = qsm + rs, with

0 ≤ rs < m. Since λp
m

0 = λ0, we define ξ = λp
m−rs

0 = λp
(qs+1)m−s

0 . It follows that ξp
s

= λ0.
Throughout this paper, η denotes a positive integer with gcd(η, p) = 1. We define the quotient

ring as

Rλ =
Re[x]

⟨xηps − λ⟩
.

Thus, the λ-constacyclic codes of length ηps over Re are precisely the ideals of Rλ.
The remainder of this paper is structured as follows. In Section 2, we classify λ-constacyclic

codes of length ηps over Re, where s and η are positive integers such that gcd(p, η) = 1. We
determine their generator polynomials, enumerate the number of distinct codes, and describe
their duals. In Section 3, we focus on the special case where η = 7 and establish a complete
classification of λ-constacyclic codes of length 7ps over Re. We analyze the factorization of
x7 − ξ over Fpm and distinguish two cases: when pm ≡ 1 (mod 7) (Subsection 3.1) and when
pm ̸≡ 1 (mod 7) (Subsection 3.2).

2 λ-constacyclic codes of length ηps over Re

In this section, we study λ-constacyclic codes of length ηps over Re. We recall that a finite
commutative ring is said to be a chain ring if its ideals are totally ordered by inclusion.

The following result is a well-known property of finite commutative chain rings (see [11]).

Proposition 2.1. Let R be a finite commutative ring. The following conditions are equivalent:

(i) R is a local ring whose maximal ideal M is principal, i.e., M = ⟨Γ⟩ for some element
Γ ∈ R.

(ii) R is a local principal ideal ring.

(iii) R is a chain ring whose ideals are ⟨Γi⟩ for 0 ≤ i ≤ r, where r is the nilpotency index of Γ.

Moreover, for each 0 ≤ i ≤ r, the cardinality of the ideal ⟨Γi⟩ is given by

∣∣⟨Γi⟩∣∣ = ∣∣∣∣ RM
∣∣∣∣ r−i .

Clearly, Re is a finite commutative chain ring with maximal ideal ⟨u⟩, nilpotency index e,
and residue field Re

⟨u⟩ = Fpm .
We define the natural projection

Re[x] → Fpm [x], f(x) 7→ f̄(x),

where f̄(x) is obtained by reducing all coefficients of f(x) modulo ⟨u⟩.
Two polynomials f1(x), f2(x) ∈ Re[x] are called coprime if

⟨f1(x)⟩+ ⟨f2(x)⟩ = Re[x],

or equivalently, if there exist polynomials g1(x), g2(x) ∈ Re[x] such that

f1(x)g1(x) + f2(x)g2(x) = 1.

The coprimeness of two polynomials in Fpm [x] is defined similarly.
Now, since η and p are coprime, the polynomial xη − ξ has no repeated factors. Let

xη − ξ = f1(x)f2(x) · · · ft(x)
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be its factorization into pairwise distinct monic irreducible polynomials in Fpm [x]. Raising both
sides to the power ps gives

xηp
s

− λ0 = f1(x)
psf2(x)

ps · · · ft(x)p
s

.

By Hensel’s lemma [10, Theorem XIII.4], there exist pairwise coprime monic polynomials

ψ1(x), ψ2(x), . . . , ψt(x) ∈ Re[x]

such that
xηp

s

− λ = ψ1(x)ψ2(x) · · ·ψt(x), (2.1)

with
ψi(x) = fi(x)

ps , for all i = 1, . . . , t.

For each i, we define:

• Ri =
Re[x]
⟨ψi(x)⟩ ,

• ϕi(x) =
ψ1(x)···ψt(x)

ψi(x)
,

• gi(x) =
f1(x)···ft(x)

fi(x)
.

Since ϕi(x) and ψi(x) are coprime in Re[x], there exist polynomials si(x), ri(x) ∈ Re[x]
such that

si(x)ϕi(x) + ri(x)ψi(x) = 1. (2.2)

Define εi(x) = si(x)ϕi(x).

Lemma 2.2. In the ring Rλ, the polynomials εi(x) satisfy the following:

(i)
t∑

k=1
εk(x) = 1;

(ii) for all 1 ≤ i ̸= j ≤ t, εi(x)εj(x) = 0;

(iii) for all 1 ≤ i ≤ t, εi(x)εi(x) = εi(x).

Proof. (i) For each i = 1, . . . , t, we have

t∑
k=1

εk(x)−1 ≡ εi(x)−1 (mod ψi(x)) ≡ ri(x)ψi(x) (mod ψi(x)) ≡ 0 (mod ψi(x)).

Since ψ1(x), . . . , ψt(x) are pairwise coprime, it follows that

t∑
k=1

εk(x) = 1 in Rλ.

(ii) If i ̸= j, then εi(x)εj(x) is divisible by xηp
s − ξ, implying that in Rλ,

εi(x)εj(x) = 0.

(iii) By (i) and (ii),

εi(x) = εi(x)
t∑

k=1

εk(x) = ε2
i (x).

Theorem 2.3. (i) Rλ = ε1(x)Rλ ⊕ . . .⊕ εt(x)Rλ;

(ii) for all i = 1, . . . , t, the map πi : Ri −→ εi(x)Rλ

c(x) 7−→ εi(x)c(x)

is a ring isomorphism.
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Proof. (i) According to the previous lemma, for any c(x) ∈ Rλ,

c(x) = c(x)
t∑
i=1

εi(x) =
t∑
i=1

εi(x)c(x) ⊆ ε1(x)Rλ + . . .+ εt(x)Rλ.

Then Rλ = ε1(x)Rλ + . . . + εt(x)Rλ. On the other hand, if
t∑
i=1

εi(x)ci(x) = 0, then for

all j = 1, . . . , t, εj(x)
t∑
i=1

εi(x)ci(x) = 0, using previous lemma again εj(x)cj(x) = 0. So

we have Rλ = ε1(x)Rλ ⊕ . . .⊕ εt(x)Rλ.

(ii) Let i = 1, . . . , t, if εi(x)c(x) = 0 in εi(x)Rλ, then there exists b(x) ∈ Re[x] such that
εi(x)c(x) = b(x)

(
xηp

s − ξ
)
, i.e.,

(1 − ri(x)ψi(x)) c(x) = b(x)
(
xηp

s

− ξ
)
, in Re[x].

Then c(x) = 0 in Ri. So we have shown that πi is an injection. The surjection is obvious.

We can therefore conclude the following theorem.

Theorem 2.4. Let C be a subset of Rλ. Then C is an λ-constacyclic code of length ηps over
Re if and only if for each integer i, 1 ≤ i ≤ t, there is a unique ideal Ci of Ri such that

C =
t⊕
i=1

εi(x)Ci.

Lemma 2.5. The polynomial gi(x) is a unit in Ri.

Proof. To prove this, we show that gi(x)p
s

and ψi(x) are coprime in Re[x].
Since gi(x)p

s

and fi(x) are coprime in Fpm [x], there exist polynomials ai(x), bi(x) ∈ Fpm [x]
such that

ai(x)fi(x) + bi(x)gi(x)
ps = 1.

Using ψi(x) = fi(x)p
s

, we express ψi(x) in Re[x] as

ψi(x) = fi(x)
ps + uci(x),

for some ci(x) ∈ Re[x]. Substituting this into the previous equation yields

ai(x)ψi(x) + bi(x)gi(x)
ps = 1 + uai(x)ci(x).

Since u is nilpotent in Re[x], the term 1 + uai(x)ci(x) is a unit in Re[x]. Therefore, ψi(x)
and gi(x)p

s

are coprime in Re[x], proving that gi(x)p
s

is a unit in Ri.

Theorem 2.6. In Ri, the following properties hold:

(i) ⟨fi(x)p
s⟩ = ⟨u⟩, and thus fi(x) is nilpotent with nilpotency index eps.

(ii) The ring Ri is a chain ring with the following ideal chain:

Ri = ⟨1⟩ ⊋ ⟨fi(x)⟩ ⊋ · · · ⊋ ⟨fi(x)kp
s−1⟩ ⊋ ⟨fi(x)ep

s

⟩ = ⟨0⟩. (2.3)

(iii) Each ideal ⟨fi(x)j⟩ contains pdeg fim(eps−j) elements for all 0 ≤ j ≤ eps.

Proof. (i) Since ψi(x) divides xηp
s − λ in Re[x], it follows that in Ri, we have xηp

s − λ = 0.
Moreover, using xηp

s − λ = (xη − ξ)p
s − uγ, we obtain

γu = (xη − ξ)p
s

= fi(x)
psgi(x)

ps .

By Lemma 2.5, gi(x)p
s

is a unit in Ri, and since γ is also a unit, it follows that

⟨fi(x)p
s

⟩ = ⟨u⟩.

Consequently, as u has nilpotency index e, we conclude that fi(x) has nilpotency index eps.
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(ii) Let I be a nontrivial ideal of Ri and denote by Iu its reduction modulo u. Since Iu is an
ideal of Fpm [x]

⟨fi(x)ps ⟩ , it takes the form

Iu = ⟨fi(x)j⟩, 1 ≤ j ≤ ps.

Every c(x) ∈ I can be written as

c(x) = g(x)fi(x)
j + uh(x),

for some g(x), h(x) ∈ Ri. By part (1), since u ∈ ⟨fi(x)p
s⟩, we deduce that I ⊆ ⟨fi(x)⟩.

Hence, Ri is a local ring with a principal maximal ideal ⟨fi(x)⟩. By part (1), fi(x) is
nilpotent with nilpotency index eps. By Proposition 2.1, Ri is a chain ring with ideals
given by (2.3).

(iii) By Proposition 2.1, the number of elements in ⟨fi(x)j⟩ is given by

∣∣⟨fi(x)j⟩∣∣ = ∣∣∣∣ Ri

⟨fi(x)⟩

∣∣∣∣eps−j .
Since Ri

⟨fi(x)⟩
∼= Fpm deg fi has pm deg fi elements, it follows that∣∣⟨fi(x)j⟩∣∣ = pdeg fim(eps−j).

According to Theorem 2.4 and Theorem 2.6, we establish the following result:

Theorem 2.7. Every λ-constacyclic code of length ηps over Re has the form

C =
t⊕
i=1

εi(x)⟨fi(x)zi⟩,

where 0 ≤ zi ≤ eps.
The number of codewords in C is given by

p

t∑
i=1

deg fim(eps−zi)
.

Furthermore, the total number of λ-constacyclic codes of length ηps over Re is

(eps + 1)t.

Alternatively, the structure of λ-constacyclic codes can be described in terms of their gener-
ator polynomials.

Theorem 2.8. The λ-constacyclic codes of length ηps over Re are given by

Cz1,...,zt =

〈
t∏
i=1

fi(x)
zi

〉
.

Moreover, the number of codewords in Cz1,...,zt is

|Cz1,...,zt | = p

t∑
i=1

m deg fi(eps−zi)
,

where for all 1 ≤ i ≤ t, we have 0 ≤ zi ≤ eps.

Proof. It suffices to show that
t⊕
i=1

εi(x)⟨fi(x)zi⟩ =
〈

t∏
i=1

fi(x)zi
〉

.
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Let C =
t⊕
i=1

εi(x) ⟨fi(x)zi⟩ and D =

〈
t∏
i=1

fi(x)zi
〉

. By using same proof of Lemma 2.5 for

all i, j = 1, . . . , t and i ̸= j, fj(x) is a unit in Ri, we have:

∀i = 1, . . . , t,

〈
t∏
i=1

fi(x)
zi

〉
= ⟨fi(x)zi⟩ in Ri.

Since
t∑
i=1

εi(x) = 1, we can conclude that

C =
t⊕
i=1

εi(x) ⟨fi(x)zi⟩ =
t⊕
i=1

εi(x)

〈
t∏
i=1

fi(x)
zi

〉
=

〈
t∏
i=1

fi(x)
zi

〉
= D.

The dual of an ideal C in Re[x]
⟨xηps−λ⟩ , denoted by C⊥, is defined as

C⊥ =

{
a(x) =

ηps−1∑
i=0

aix
i
∣∣∣ ηps−1∑

i=0

ai · bi = 0, for any b(x) =
ηps−1∑
i=0

bix
i ∈ C

}
.

Proposition 2.9. [11] If C is a λ-constacyclic code of length ηps over Re, then

|C| · |C⊥| = |Rλ|.

The reciprocal polynomial of a polynomial a(x) ∈ Re[x] of degree r, denoted by a∗(x), is
defined as

a∗(x) = xra(x−1).

The annihilator of an ideal C in Rλ, denoted by A(C), is given by

A(C) = {a(x) | a(x)b(x) = 0 for any b(x) ∈ C}.

Proposition 2.10. [12] If C is a λ-constacyclic code of length ηps over Re, then its dual is a
λ−1-constacyclic code of length ηps over Re, i.e., an ideal of R[x]

⟨xηps−λ−1⟩ . Moreover,

C⊥ = A∗(C) := {a∗(x) | a(x) ∈ A(C)}.

Theorem 2.11. Let Cz1,...,zt =

〈
t∏
i=1

fi(x)zi
〉

be a λ-constacyclic code of length ηps over Re.

Then

C⊥
z1,...,zt

=

〈
t∏
i=1

f∗i (x)
eps−zi

〉
.

Proof. It is clear that in Rλ,

t∏
i=1

fi(x)
eps−zi ·

t∏
i=1

fi(x)
zi = 0.

Therefore,

D :=

〈
t∏
i=1

fi(x)
eps−zi

〉
⊆ A (Cz1,...,zt) .

By Proposition 2.10,

D∗ =

〈
t∏
i=1

f∗i (x)
eps−zi

〉
⊆ C⊥

z1,...,zt
.
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On the other hand, by Theorem 2.8 and Proposition 2.9,

|Rλ| = |C| · |C⊥
z1,...,zt

|

≥ |C| · |D∗|
= |C| · |D|

= p

t∑
i=1

m deg fi(eps−zi)
· p

t∑
i=1

m deg fi(eps−(eps−zi))

= |Rλ|.

Thus,

C⊥
z1,...,zt

=

〈
t∏
i=1

f∗i (x)
eps−zi

〉
.

3 Type-1 λ-constacyclic codes of length 7ps over Re

In this section, we classify all λ-constacyclic codes of length 7ps over Re in terms of their gener-
ator polynomials and determine their duals. The structure of C is determined by the factorization
of x7 − ξ over Fpm .

Let ξ be a primitive (pm − 1)th root of unity, so that

F∗
pm =

{
1, ξ, ξ2, . . . , ξp

m−2, ξp
m−1

}
.

Consider ξ = ξϖ ∈ F∗
pm . The order of ξ in the multiplicative group F∗

pm is given by

pm − 1
gcd(ϖ, pm − 1)

.

We consider two cases: pm ≡ 1 (mod 7) and pm ̸≡ 1 (mod 7).

3.1 Case when pm ≡ 1 (mod 7)

We begin with the following lemma:

Lemma 3.1. [13, Theorem 3.75] Assume that n ≥ 2. For any a ∈ F∗
q with ord(a) = k, the

binomial xn − a is irreducible over Fq if and only if both of the following two conditions are
satisfied:

• Every prime divisor of n divides k, but does not divide (q − 1)/k;

• If 4 | n, then 4 | (q − 1).

Then in the case pm ≡ 1 (mod 7), the polynomial x7 − ξ is irreducible over the finite field
Fpm if and only if 7 divides pm−1

gcd(ϖ,pm−1) but does not divideϖ, it follows that x7−ξ is irreducible
over Fpm if and only if 7 does not divide ϖ.

In the case where 7 divides ϖ, for any 0 ≤ i ≤ 6, the element ξ
ϖ
7 ξi

pm−1
7 is a root of x7 − ξ,

and these roots are pairwise distinct. Consequently, the polynomial x7 − ξ admits the following
factorization:

x7 − ξ =
6∏
i=0

(
x− ξ

ϖ
7 ξi

pm−1
7

)
.

We now list all the λ-constacyclic codes of length 7ps over Re and their duals in the case
where pm ≡ 1 (mod 7) in Table 1, where 0 ≤ z, zi ≤ eps.
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Case λ-constacyclic codes C C⊥

7 does not divide ϖ ⟨(x7 − ξ)z⟩ ⟨(ξx7 − 1)p
me−z⟩

7 divides ϖ
〈

6∏
i=0

(
x− ξ

ϖ
7 ξi

pm−1
7

)zi〉 〈
6∏
i=0

(
ξ

ϖ
7 ξi

pm−1
7 x− 1

)pme−zi〉
Table 1. The λ-constacyclic codes of length 7ps overRe and their duals in case pm ≡ 1 (mod 7).

3.2 Case when pm ̸≡ 1 (mod 7)

In this case, 7 and pm − 1 are coprime. Therefore, there exist two positive integers r and t such
that

7r + (pm − 1)t = 1.

Consequently,
7rϖ + (pm − 1)tϖ = ϖ.

Let us define δ = ξrϖ and set y = 1
δx. Then, we have

δ7 = ξ and x7 − ξ = δ7(y7 − 1).

Let θ be a primitive 7th root of unity in an extension field of Fpm . For each k = 0, 1, . . . , 6,
the minimal polynomial of θk over Fpm is given by

Mk(x) =
∏
i∈Ck

(x− θi),

where Ck denotes the cyclotomic coset of k modulo 7 over Fpm , defined as:

Ck =
{
k · (pm)ℓ mod 7 | ℓ = 0, 1, . . .

}
.

The irreducible decomposition of y7 − 1 in Fpm [x] is given by the following expression ( see
[17, Theorem 4.1.1]):

y7 − 1 =
∏
i∈T

Mi(x),

where T is the set of representatives of the cyclotomic cosets modulo 7.
We obtain the factorization of x7 − ξ into irreducible factors over Fpm as follows:

x7 − ξ =


(x− δ)f1(x)f2(x)f3(x), if pm ≡ 6 mod 7,
(x− δ)f4(x)f5(x), if pm ≡ 2 or 4 mod 7,
(x− δ)f6(x), if pm ≡ 3 or 5 mod 7.

Where

f1(x) = x2 − aδx+ δ2,

f2(x) = x2 − (a2 − 2)δx+ δ2,

f3(x) = x2 − (a3 − 3a)δx+ δ2,

f4(x) = x3 − bδx2 − (1 + b)δ2x− δ3,

f5(x) = x3 + (1 + b)δx2 + bδ2x− δ3,

f6(x) = x6 + δx5 + δ2x4 + δ3x3 + δ4x2 + δ5x+ δ6,

where a = θ + θ6 and b = θ + θ2 + θ4.
We then present all the λ-constacyclic codes of length 7ps over Re and their duals in case

pm ≡ 1 (mod 7) in Table 2, where 0 ≤ zi ≤ eps.
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Case C C⊥

pm ≡ 6 mod 7 ⟨(x− δ)z0f1(x)z1f2(x)z2f3(x)z3⟩ ⟨(δx− 1)p
me−z0f∗1 (x)

pme−z1

f∗2 (x)
pme−z2f∗3 (x)

pme−z3⟩
pm ≡ 2 or 4 mod 7 ⟨(x− δ)z0f4(x)z1f5(x)z2⟩ ⟨(δx− 1)p

me−z0f∗4 (x)
pme−z1f∗5 (x)

pme−z2⟩
pm ≡ 3 or 5 mod 7 ⟨(x− δ)z0f6(x)z1⟩ ⟨(δx− 1)p

me−z0f∗6 (x)
pme−z1⟩

Table 2. The λ-constacyclic codes of length 7ps overRe and their duals in case pm ̸≡ 1 (mod 7).
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