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Abstract In this paper, we investigated the existence of a weak solution to a unilateral obsta-
cle problem for a nonlocal hemivariational inequalities governed by a variable-order fractional
Laplace operator. The basic tools used in our paper are the surjectivity result for pseudomono-
tone mappings, and the Moreau-Yosida approximation.

1 Introduction

Let Q be a bounded, open subset of RY with Lipschitz boundary 0Q. We consider the following
unilateral obstacle problem

(=A)*Ou+ 0K (u) + 0. P(u) > f inQ,
u(x) < (x) inQ, (1.1)
u=0 in Q0 := RM\Q,

where s(.) : RN xRN — (0, 1) is a continuous function with N > 2s(x,y) for all (z,y) € QxQ.
The operator (—A)S(') is the variable-order fractional Laplace operator defined by

AP Ou(e) = _ulw) —uly) N
(—A)Ou(z) 2P.V/RN Sy forall € Y.

along any u € C§°(Q), where P.V denotes the Cauchy principle value. Note that, if s(.) =
constant, then (—A)*") reduces to the usual fractional Laplace operator. 0K (-) stands for the
generalized Clarke subdifferential operator of a locally Lipschitz functional J, 0.®(.) denotes
the convex subdifferential operator of a convex functional ®.

In recent years, great deal of attention has been devoted to the study of nonlocal hemivariational
inequalities governed by a variable-order fractional Laplace operator which is a generalization
of variational inequalities based on the notion of the Clarke subgradient defined for locally
Lipschitz functions.

Nonlocal operators, such as the fractional laplacian (—A)*®, appear in dynamics population,
game theory and continuum mechanics (for more details see [1], [2], [3], [4], [5], [6], [7]).

In [8], the author considered the fractional Laplace operator (—A)® with s € (0,1) and using
the surjectivity for pseudomonotone and coercive operators to show the existence of at least one
solution for the nonlocal elliptic hemivariational inequalities with ® = 0. Unfortunately, the
main results of Liu and Tan [8] cannot be applied directly to problems which are controlled by a
convex subdifferential operator (P is not null- function). To overcome this difficulty, we used the
Moreau-Yosida approximation method. In this paper, we consider a unilateral obstacle problem
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with a nonlocal hemivariational inequalities governed by a variable-order fractional Laplace
operator (—A)*"), and we establish the existence of at least one weak solution for the problem

(1.1).
This paper is organized as follows. In Section 2 we give some notations and preliminaries. In
Section 3 we present the main results of this paper.

2 Notations and Preliminaries

Let Q be a nonempty open subset of RY and let s(-) : RN x RN — (0,1) be a measurable
function satisfying

(H]) 0<s = min(z,y)ewaRw S(JZ, y) < st = max(mﬁy)ewaRw S(I,y) < 1.

(Hy)  s(-) is symmetric, that is, s(z,y) = s(y, ) for all (z,y) € RN x RV,

Remark 2.1. In general, if s(.) : RV x RY — (0, 1) is a measurable function, then the variable-
order fractional Laplacian can be defined as follows

[ oyt = [ [ 0 ol

for any u,v € C§°(Q).

Let us introduce the space X defined by

1/2
2(RN) (W) _
Xo_{ueL (R (/RN/RN x_y|N+281y>da:dy) <oco and u=0 fora.e JIEQC}

In the following, we collect some important properties of the function space X.

Lemma 2.2. ( [9]) Let Q be a nonempty, bounded, open subset of RN with Lipschitz boundary

and let s(-) : RN x RN — (0, 1) be a continuous function satisfying (Hy). There exist two

constants 0 < sy < s1 < 1 such that sy < s(z,y) < sy forall (z,y) € RY x RN, N > 25 and

2 =
S0

2N
N—2
(i) Xo is a Hilbert space with the inner product

< uyv > i= /RN /RN u@®) @) —v®) ;4.

|3j _ |N+25 z,y)

for all u,v € Xy and the associated norm denoted by ||.|| x,-

(ii) If p € [1 2% ] then there exists a positive constant ¢, = C' (N, p,s™,s7) > 0 such that

L 1))

lullzr @) < epllullx, forallu € Xo

(iii) The embedding from X, to L? (R™) is compact for any p € [1,2%).

» <50

Note that Xy C L*(Q) C X§ and 2 < 2%, = o 25 where X is the dual space of X and

using Lemma (2.2) , we can see that the embedding from X to LZ(Q) is compact.

Proposition 2.3. (See [10], Proposition 3.8) Let X and Y be topological spaces and A : X —
2Y be a set-valued mapping. Then A is upper semicontinuous, if and only if. for each closed set
D CY,theset A=(D) ={x € X|F(x)ND # 0} is closed in X.

Definition 2.4. Let K : X — R be alocally Lipschitz function and let u, v € X. The generalized
directional derivative K°(u;v) of K at the point u in the direction v is defined by

KO(wv) = lim K(w+ “? = K(w),
w—ru,t

The generalized gradient 0K : X — 2X" of K : X — R is defined by
OK (u) :={p € X*|K°(u;v) > (u,v) x~xx forallv e X} forallu € X.
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Proposition 2.5. ( See [10], Proposition 3.23) Let K : X — R be a locally Lipschitz function of
rank L, > 0 at u € X. Then, we have

(a) The function v — K°(u;v) is positively homogeneous, subadditive, and satisfies

|K%(u;v)| < Ly|vl|x forallv e X.

(b) (u,v) — K°(u;v) is upper semicontinuous.

(c) For each u € X, OK(u) is a nonempty, convex and weak* compact subset of X* with
|l x+ < Ly for all pn € OK (u).

(d) K°(u;v) = max {{u, v)x+xx|p € OK(u)} forallv € X.

(e) The multivalued function X > u — 0K (u) C X* is upper semicontinuous from X into
w* — X*.

Definition 2.6. Let X be a real reflexive Banach space. The operator A : X — 2X" is called
pseudomonotone if the following conditions hold

(i) The set A(u) is nonempty, bounded, closed and convex for all u € X.

(i1) A is upper semicontinuous from each finite-dimensional subspace of X to the weak topol-
ogy on X*.

(iii) If {u,} C X with u, — uin X and if u* € A (u,,) is such that

limsup (uy,, un — u) y. o x <0,
n—oo

then, to each element v € X, exists u*(v) € A(u) with

(W (), u = V) yuy x < linrgiolgf@;,un — V) ey x -

Theorem 2.7. ([10]) Let X be a reflexive Banach space and A : X — 2%~ be pseudomonotone
and coercive. Then A is surjective, ie., for every u* € X%, there exists u € X such that
u* € A(u).

Lemma 2.8. ([11]) Let X be a Banach space and ¢ : X — R be a proper, convex, and lower
semicontinuous function. Hence, for € > 0, the Moreau-Yosida approximation ¢. : X — R of ¢
defined by

veX

oot = g (124 o)

forall u € X, satisfies

(i) e is convex, lower semicontinuous, and Gdteaux differentiable.
(ii) The differential operator ¢. : X — X* is bounded, monotone, and demicontinuous.
(iii) If uc — w weakly in X, then,

limsup p:(v) < (v) forallv e X,

e—0

¢(u) < liminfp, (u.)
e—0

ase — 0.
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3 Ecxistence result

We impose the following assumptions for the data of problem (1.1).
(Ay) 1 k: QxR — R is such that

(i) x> k(x,r) is measurable on Q for all r € R where x + k(z,0) belongs to L' (Q).
(ii) r v+ k(x,r) is locally Lipschitzienne function for a.e. x € Q.
(iii) There existc > 0, p > 1, and b € LP/*=1)(Q) such that
lu| < b(x) +c|r|P™"  forall p € Ok(z,r) and a.e. © € Q.
(A7) : ®: Xp — Risa proper, convex, and lower semicontinuous.

(A3): f € L7(Q).
Let us define the function K : LP(Q) — R where

K(u) = /Qk(x,u(x))dxfor all u € I7(Q).

Next lemma is a consequence of theorem 3.47 of Migorski et al. [10].
Lemma 3.1. If we suppose (A1), then we have
(i) K : LP(Q) — R is locally Lipschitz continuous.
(ii) We have the inequality
K%(u;v) < /Q K (2, u(z); v(z))da
forall u,v € LP(Q).

(iii) There exists cy a positive constant such that
el o @) < e (1 + ||u||’£;(lg)) forall €0 (K\LP(Q)) (u) and u € LP(Q),
where 1/p+1/p' = 1.
We define the following subset C' of X
C={ueXy | ulz)<yx) forae zecQ},

where
: Q — [0,400] is afunction.

Remark 3.2. It is obvious that the set C' is a nonempty, closed and convex subset of X, and
0ecC.

Definition 3.3. We say that u € C' is a weak solution of problem (1.1), if there exist u € 0K (u)
and 7 € 0.®(u) as follows

Jan fan 4 e ‘y‘zv)ﬁzﬁii)y”(”))dydxﬂLfRN z) +n(@))v(z)de = [pn f(z)v(r)de
forallv € C.

Theorem 3.4. We suppose that (A;), (A2) and (As) hold with 1 < p < 2 or p = 2 such that
2¢i(ep)P < 1. Then, the problem (1.1) has at least one weak solution.

Proof. First, we introduce the auxiliary problem
(=A)* Ve + 0K (ue) + PL (ue) 3 f, 3.1)

with u. € C' and e > 0.
Where &, : Xy — R is the Moreau- Yosida approximation of ® defined by

®.(u) := inf (” ZUHXO +®(v ))

ve Xy 13
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for all u € X.

The proof of the existence of a solution to (3.1) is divided into three steps.

Stepl. (—A)*() : X, — X is a continuous, bounded and strongly monotone operator.
We have

< (=A)*Vu,v >XU:/R v(z)(—A)*Yu(z)dx

[ [ @ ),
RN JRN |

xr — y|N+23(T7y)

=< u,v >Xx,

for all u,v € Xj.
Therefore, (—A)*() is linear, bounded and

1(=A)* Y xs < |lullx, forall wue X,
then, (—A)S(') is linear and continuous. On the other hand, we have the following equality
< (A — (=AY Do u— v >x,= |lu— v|%, forall wu,ve Xo,

which indicates that (—A)*() is strongly monotone with constant m = 1.

Step2. Xo > u +— (—A)*“u + dK (u) C X is bounded and pseudomonotone.
Using proposition (2.5), we have that 0K (u) is nonempty, convex, weak-compact subset of X
Then, for each u € X, (—A)S(')u + 0K (u) is nonempty, bounded, closed and convex subset of
Xg.
By Proposition(2.3), it is sufficient to verify that the set ((—A)*) + K) (D) is closed in Xy,
for any weakly closed subset D in X.

Let {u,} C ((—A)*") + 0K) (D) be a sequence such that
U, >u in X9 as n — oo, forsome u € Xj. 3.2)

Therefore, for each n € N there exists y,, € 0K (u,,) satisfying
w, = (=8 Yy + pn € ((~8)"0) () + OK (un)) N D.

The continuity of (—A)*() proves that (—A)*") (u,,) — (=A)*")(u) in X, as n — oco. Further-
more, by Lemma (3.1) (iii) and the convergence (3.2), we get that the sequence {,, } is bounded
in X§, then p,, — p in X for a subsequence, as n — oo, with some y € X§. By Proposition
(2.5), we have that 0K is upper semicontinuous from X, to w — X; and has bounded, convex,
closed values, hence, it has a closed graph in Xy x w — X (see cf. Kamenskii et al.[12], The-
orem 1.1.4 ). But, due to the weak closedness of D, we obtain that (—A)*()(u) + u € D and
p € 9K (u), which implies that u € ((—A)*) + K)~ (D). Therefore, (—A)*\") + OK is upper
semicontinuous from X, to X .
Now, we will prove that (—A)*(") 4+ 9K is pseudomonotone. Let {u,,} and {u*} be sequences
such that

U, — uin X, 3.3)

wh € (=AY (u,) + 0K (un,)  with  limsup (uf, u, — )y, <O. (3.4)

n—oo

It is sufficient to prove that for each v € Xy, we can find u*(v) € (—A)*") (u) + 0K (u) satisfying

l%lgi(}lgf(ufl, Up — V) x, > (W (v),u—v)y - (3.5)

Using (3.4), there exists a sequence {u, } C X such that for eachn € N, u,, € 0K (u,,) and

Uy, = (_A)S(') (un) + fin.
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Combining with the inequality in (3.4) we have

lim sup <(—A)S<‘)un,un - u> + liminf (o, 1wy — 1), < 0. (3.6)

n—00 Xo n—00
By (3.3) and the compactness of the embedding of X into LP(Q) yields that
u, — uin LP(Q) as n — oco.

And using Theorem 2.2 of Chang [13], we have
9 (K|xo) (u)co (K\LP(Q)) (u) for all u € X,

consequently,

<Pdn7 Up — U’>XU = <Pm7 Up — u>Lp(Q) . (3.7
Therefore, by Lemma (3.1)(iii) and the boundedness of the sequence {u,, } in X, we get that the
sequence {, } is contained in L”' (). Hence, passing to the limit in (3.7) as n — oo we have

nlggo <:um Un — U>X0 = nli)n(}o </~an Upn — u>LP(Q) =0.

Then, by (3.6) we have

lim sup <(_A)s<.>um Up — u> — lim sup <(_A)s<.>um U — u> Hliminf (i, — ) x, < 0.

0
n—00 Xo n—00 Xo

The monotonicity of (—A)*(") yields that

0 > limsup <(7A)S<'>un — (fA)Smu + (*A)SOU, Uy, — u>

n—00 Xo

> liminf ((~A)Cu,up —u) -+ limsup ( (~4)*Cu, = (~A)Vu,u, — )

n—00 Xo n—o00 Xo

> limsup ||u,, — u||§< .
n— oo 0
Then, u, — u in X, as n — oo. The reflexivity of X and boundedness of {1, } C X allows
us to summarize that
tn — pin Xg for some p € X

As before, it is easy to see that u € K (u) (see, e.g., Kamenskii et al.[12], Theorem 1.1.4).
Therefore,

tim inf (), u, = v) y, = liTLrggf<(—A)s(') () + fims Uns — U>X0 = ((=A)*O(w) + p1, 1 — v) x,.
and it is clear that (3.5) holds with u* = (—A)*0)(u) + pu € (—=A)*")(u) + K (u). Then, we
conclude that (—A)*¢) + 0K is pseudomonotone.

Step3. Xy > u +— (—A)*Vu + 9K (u) + ®. (u) C X{ is pseudomonotone and coercive.
The operator ®.. : X, — X is bounded, demicontinuous, monotone. And using theorem 3.69
(see [10]), we get that @’ is pseudomonotone. Then, we conclude that X > u — (—A)*Cu +
0K (u) + ®. (u) C X is pseudomonotone.

For any p € 0K (u), we have

(At ot @) ) > i, = Dol o ullr@) + (L) u)x, + (@) — 2L(0), ),

> [lullk, — eillull o) — erllully g = IPLO) ] [lullx,
> [lull, — ercpllullx, — er(ep)llull’, — 192(0)| . [|ullx,

for all u € X. This shows that Xo > u + (—A)*Cu+ 9K (u) + ®L (u) C X{ is coercive where
1 <p<2orp=2with2¢(c,)? < 1. Therefore, we apply Theorem(2.7), there exists u. € Xy
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such that (3.1) holds.

Now, let us prove that the sequence {u.}_ is bounded in Xy, we suppose here that 1 < p < 2 (
the proof of the case when p = 2 is similar).

Let v € C, multiplying (3.1) by v — u,, then we have

<(—A)S(-)u5 + pe + DL (u:) v — u€> = (f,v—ue)x,

Xo

where p. € OK (uc). By convexity of @, we have
(-8, 4 pe.v - uE>XO + @ () = D, (1) > (frv—u)y . (3.8)
Then,

<(—A)S(.)u5 n ME,UE>X + @, () < (frue —v)y, + Pe(v) + <(_A)s<<>u€ i ue,v>X

0

Since ®. is a proper, convex, and lower semicontinuous functional, it is bounded from below by
an affine function. Therefore, there exist two constants «, 8 € R such that

P (u) = allulx, + 8
for all u € Xy. As a consequence, we obtain
2
||U8HXO ! ||U8HLP(Q) ! ||U5||I£p(g) ta HUEHXO + 8

<l (el + ollx, ) +[|(-2) 0.

vllxo + el o @) I0llLr (@) + Pe(v)-

Xg
Using Young’s inequality, with § > 0 we have

z—p D P 2/(2—p)
(e lulk, < dllullk, + =57 l( ) cl(cpﬂ

1 2
(crep + lal) [Jullx, < 8llullk, + 15 (cep +al)

1
11l Nullxo < Sllully, + 5 1/11;
p—1 2/(3-p)
P p—l 3 _p p - 1 P y4
o)l Tollx, < =5 — ] el s,

and by Lemma (2.2) we conclude

1 2 2/(3—
5 (1=106) uc, < mo (1+loll, + [0]3°7) + @2 (v),

where mg > 0 is independent of €. Choosing § < 11—0 and v € dom® (the effective domain), we
have
[uellx, < mi,

where m; > 0 is independent of . Hence, {u.} is bounded in Xj.
For a subsequence, if necessary, we may assume that u. — u weakly in Xy with u € C. Taking
v = w in (3.8), and passing to the limit, by (iii) in Lemma (2.8) we have

lim sup <(—A)S(‘)u5 + pe, e — u> < limsup @, (u) — li?l)iélfcbe (ue) <0.

e—0 Xo e—0

Using [13], Theorem 2.2, we have 9 (K|X0) (u)Cc O (K|LP(Q)) (u) forall u € X,.
Then, (1, 0)x, < 1l o o ey For all f € DI (1),
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Hence,

li <—As('> - ~ liminf g —ul,,
imsup ((~4)" e, ue —u) -~ liminf el o) Jue = oo
e—0

. N _ . _ S(. _
Sllgélf(ug,ug u>XO+11msup<( A)* O, u, u>

e—0 Xo

<lim sup <(—A)s(')u5 + e, Ug — u> <0.

e—0 Xy

Lemma (2.2) (iii), reveals that u. — w in LP(Q).
Then,

lim sup <(—A)s<')u5,u€ — u> <0.

e—0 Xo
Combining the above inequality with the strong monotonicity of (—A)S<'), we get

0 < liminf ||lu — 2 < limsu — 2
< timinf o — ek, < Himsup u e,

< lim sup <(7A)S(‘)us — (~A)*Yu,u, — u> <0.

e—0 Xo
Therefore, u. — uwin Xy as e — 0.
Similarly, we can show that {y.}_ C X is bounded, and we may assume that jo. — ;o weakly
in Xj. Note that the graph of J (K | Xo) is strongly-weakly upper semicontinuous, hence,

€ K (u).
Recall that (—A)S(') : Xo — X{ is linear, bounded, and strongly monotone. So, it is pseu-
domonotone, which implies that

liminf<(fA)S(')u5,u€ — 1;> > <(—A)S(')u,u — v> ,

e—0 Xo - Xo

for all v € Xj. Passing to the limit of (3.8), we get

<:u7 v = u>X0 + (b(v)—d)(u) - <f> v = u>X0

> limsup (fe, v — ue) . + limsup P, (v) — liminf &, (u.) — liminf (f,v — u.)
e—0 0 e—0 e—0 e—0 0

> lim sup <(7A)5(‘)u5,u5 - v> > liminf ((fA)S(')ue,uE - v>

e—s0 Xo e—0 Xo

> <(*A)S(')u, u— 11>

)
Xo

for all v € X. Then,
((=8)Vut v —u) +®) = D) > (f,v —u)x,
0
with o € 9K (u) for all v € C, which means that there exists € 9.®(u) such that

(~A)Vutp+n>f inXg.

Then, (1.1) has at least one weak solution. O
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