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Abstract. Here, we introduce a new recurrence sequence using balancing and Lucas-balancing
numbers known as balancing and Lucas-balancing sedenions involving some interesting results.
We find various types of generating functions and Binet formulas with some well-known identi-
ties for both balancing and Lucas-balancing sedenions. Additionally, we give some combinato-
rial properties for balancing and Lucas-balancing sedenions.

1 Introduction

The quaternions were first introduced in 1843 by William Rowan Hamilton. Quaternions form
a 4-dimensional real vector space with a multiplicative operation. The quaternions have many
applications in applied sciences such as physics, computer science, and Clifford algebras in
mathematics. A quaternion with real coefficients is of the form q = a+ be1 + ce2 + de3, where
{1, e1, e2, e3} is the quaternion basis satisfying

e2
1 = e2

2 = e2
3 = −1, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

In abstract algebra, the sedenions form a 16-dimensional non-commutative, non-associative, and
non-alternative but power-associative algebra over the real numbers, obtained by the Cayley-
Dickson construction. The well-known sedenion algebra plays a great role in mathematics, cod-
ing theory, physics, robotics, computer science, etc. In recent years, several authors have studied
the quaternions, octonions, sedenions and their generalizations [1, 2, 3, 4, 5, 6, 8, 15, 20].
A sedenion is defined as follows

S =
15∑
i=0

aiei, (1.1)

where a0, a1, a2, . . . , a15 ∈ R and e0 = 1, e1, e2, . . . , e15, is the sedenion basis satisfying the
multiplication table [2, 3].
Panda and Ray [14] introduced balancing numbers n, r ∈ Z+, as a solution of the equation

1 + 2 + . . .+ (n− 1) = (n+ 1) + (n+ 2) + . . .+ (n+ r), (1.2)

where n is a balancing number with balancer r. For example 6, 35, 204, . . . are balancing num-
bers with balancer 2, 14, 84, . . . , respectively.
The nth balancing number Bn is given by

Bn = 6Bn−1 −Bn−2, for n ⩾ 2, (1.3)

with initial values B0 = 0 and B1 = 1. The recurrence relation for Lucas-balancing number is

Cn = 6Cn−1 − Cn−2, for n ⩾ 2, (1.4)
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with initial values C0 = 1 and C1 = 3. The characteristic equation for balancing number is

x2 − 6x+ 1 = 0, (1.5)

with roots λ1 = 3 +
√

8 and λ2 = 3 −
√

8. Behera et.al[14] established the generating function
for balancing number is

G(x) =
x

1 − 6x+ x2 (1.6)

and the Binet formula for balancing and Lucas-balancing numbers are given by

Bn =
λn

1 − λn
2

λ1 − λ2
(1.7)

and

Cn =
λn

1 + λn
2

2
. (1.8)

In [7]Horadam quaternions are important steps in the development of contemporary the Caley-
Dickson algebra theory. Later, in [6] Halici gives Binet’s formulas, generating functions, and
some properties of Fibonacci and Lucas numbers. Patel and Ray [15] introduced two new classes
of quaternions known as balaning and Lucas-balancing quaternions in 2021, and in [1] Asci
and Aydinyuz present new kinds of sequences of quaternions called as Gaussian balancing and
Gaussian cobalancing quaternions that are based on balancing and Lucas-balancing numbers. In
addition, “Bi-periodic balancing quaternions" were studied by Sevgi and Tasci in [19], and for
some related studies, see [11, 12, 16].
In this article, we introduced the balancing sedenions and Lucas-balancing sedenions with some
interesting properties, generating functions, Binet formula, various identities, etc.

2 Balancing and Lucas-balancing Sedenions

In this section we define balancing and Lucas-balancing sedenions and calculate some properties
of these sedenions.

Definition 2.1. We define the balancing and Lucas-balancing sedenions over the sedenion alge-
bra S. The nth balancing and Lucas- balancing sedenions are defined respectively as

SBn = Bne0 +Bn+1e1 + . . .+Bn+15e15 =
15∑
s=0

Bn+ses, (2.1)

and

SCn = Cne0 + Cn+1e1 + . . .+ Cn+15e15 =
15∑
s=0

Cn+ses, (2.2)

where e0, e1, e2 , . . . , e15 are the standard basis vectors in R16.

Proposition 2.2. The recurrence relations for balancing and Lucas-balancing sedenions are re-
spectively

SBn = 6SBn−1 − SBn−2 and SCn = 6SCn−1 − SCn−2, for n ≥ 2,

where SB0 =
∑15

s=0 Bses, SB1 =
∑15

s=0 B1+ses and SC0 =
∑15

s=0 Cses,
SC1 =

∑15
s=0 C1+ses.
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Proof. Using the recurrence relation of {Bn}n≥2, we have

SBn =
15∑
s=0

Bn+ses

=
15∑
s=0

(6Bn−1+s −Bn−2+s)es

= 6
15∑
s=0

Bn+s−1es −
15∑
s=0

Bn+s−2es

= 6SBn−1 − SBn−2,

which completes the proof. The proof is similar for Lucas-balancing sedenions.

We can observe from the equations (2.1) and (2.2) that addition, subtraction, and multiplica-
tion of these sedenions can be obtained as follows:

SBn ± SCn =
15∑
s=0

(Bs ± Cs)es,

and

SBn × SCn = SSBnSSCn + SSBnVSCn + VSBnSSCn − VSBnVSCn + VSBnVSCn ,

where SSBn
, SSCn

are scalar part and VSBn
, VSCn

are vector part of balancing and Lucas-
balancing sedenions respectively.

Definition 2.3. The conjugates of SBn and SCn are respectively defined as

SBn = Bne0 −Bn+1e1 −Bn+2e2 − . . .−Bn+15e15 = Bn −
15∑
s=1

Bn+ses

and SCn = Cne0 − Cn+1e1 − Cn+2e2 − . . .− Cn+15e15 = Cn −
15∑
s=1

Cn+ses,

and the norms of SBn and SCn are respectively defined as

NSBn
= SBnSBn = B2

n +B2
n+1 +B2

n+2 + . . .+B2
n+15 =

15∑
s=0

B2
n+s

and NSCn = SCnSCn = C2
n + C2

n+1 + C2
n+2 + . . .+ C2

n+15 =
15∑
s=0

C2
n+s.

Proposition 2.4. For all n ≥ 0, we have

(i) SBn + SBn = 2Bn.

(ii) SCn + SCn = 2Cn.

(iii) SB2
n + SBnSBn = 2BnSBn.

(iv) SC2
n + SCnSCn = 2CnSCn.

Lemma 2.5.

SCn +
√

8SBn = uλn
1 and SCn −

√
8SBn = vλn

2 ,

where u =
∑15

s=0 λ
s
1es, v =

∑15
s=0 λ

s
2es.
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Proof. Using Binet formula for Cn, Bn we have Cn +
√

8Bn = λn
1 . Thus we have

SCn +
√

8SBn =
15∑
s=0

Cn+ses +
√

8
15∑
s=0

Bn+ses

=
15∑
s=0

(Cn+s +
√

8Bn+s)es

=
15∑
s=0

λn+s
1 es

= λn
1

15∑
s=0

λs
1es

= uλn
1 .

Using the identity Cn −
√

8Bn = λn
2 , we can easily obtain SCn −

√
8SBn = vλn

2 .

Proposition 2.6. For integers m, n ⩾ 0, then we have

SBm+n = BmSCn + CmSBn

and SCm+n = CmSCn + 8BmSBn.

Proof. Using the result Bm+n = BmCn + CmBn, we have

SBm+n =
15∑
s=0

Bm+n+ses

=
15∑
s=0

(BmCn+s + CmBn+s)es

= Bm

15∑
s=0

Cn+ses + Cm

15∑
s=0

Bn+ses

= BmSCn + CmSBn.

Similarly, using Cm+n = CmCn + 8BmBn, we can easily obtain the second result. This proves
the result.

Proposition 2.7. For n ⩾ 2, we have

1. SBn = 3SBn−1 + SCn−1.

2. SCn = 8SBn−1 + 3SCn−1.

3. 2SCn = SBn+1 − SBn−1.

Proof. Using the identity Bn = 3Bn−1 + Cn−1, we have

SBn =
15∑
s=0

Bn+ses

=
15∑
s=0

(3Bn−1+s + Cn−1+s)es

= 3
15∑
s=0

Bn−1+ses +
15∑
s=0

Cn−1+ses

= 3SBn−1 + SCn−1.
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Using the result Cn = 8Bn−1 + 3Cn−1, we have

SCn =
15∑
s=0

Cn+ses

=
15∑
s=0

(8Bn−1+s + 3Cn−1+s)es

= 8
15∑
s=0

Bn−1+ses + 3
15∑
s=0

Cn−1+ses

= 8SBn−1 + 3SCn−1.

Again by employing 2Cn = Bn+1 −Bn−1, we have

2SCn = 2
15∑
s=0

Cn+ses

=
15∑
s=0

(Bn+1+s −Bn−1+s)es

= SBn+1 − SBn−1.

Thus the required results.

Theorem 2.8. (Binet formula) For n ⩾ 0, we have

SBn =
uλn

1 − vλn
2

λ1 − λ2

and
SCn =

uλn
1 + vλn

2
2

,

where u =
∑15

s=0 λ
s
1es and v =

∑15
s=0 λ

s
2es.

Theorem 2.9. (Generating function) The generating function of the balancing sedenions is given
by

GSBn(t) =
SB0 + t(SB1 − 6SB0)

1 − 6t+ t2 .

Proof. Let

GSBn
(t) =

∞∑
n=0

SBnt
n

be the generating function for SBn.

GSBn
(t) =

∞∑
n=0

SBnt
n

= SB0 + SB1t+
∞∑
n=2

SBnt
n

= SB0 + SB1t+
∞∑
n=2

[6SBn−1 − SBn−2]t
n

= SB0 + SB1t+ 6
∞∑
n=2

SBn−1t
n −

∞∑
n=2

SBn−2t
n

= SB0 + SB1t+ 6t
∞∑
n=1

SBnt
n − t2

∞∑
n=0

SBnt
n

= SB0 + SB1t+ 6t[GSBn(t)− SB0]− t2GSBn(t),
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by making necessary arrangement, the generating function of balancing sedenions is found as
follows:

GSBn(t) =
SB0 + t(SB1 − 6SB0)

1 − 6t+ t2 .

Theorem 2.10. (Ordinary even and odd indexed generating functions) The ordinary generating
function of even and odd indexed for SBn are given by respectively,

GSB2n(t) =
SB0 + t(6SB1 − 35SB0)

1 + t2 − 34t

and GSB2n+1(t) =
SB1 + t(SB1 − 6SB0)

1 + t2 − 34t
.

Proof. We have

GSB2n(t) =
∞∑
n=0

SB2nt
n

=
GSBn(

√
t) +GSBn(−

√
t)

2

and GSB2n+1(t) =
∞∑
n=0

SB2n+1t
n

=
GSBn(

√
t)−GSBn(−

√
t)

2
√
t

.

Now using Theorem 2.9 and after some mathematical calculation, we have GSBn(t)+GSBn(−t) =
2[SB0+t2(6SB1−35SB0)]

1+t4−34t2 and GSBn
(t)−GSBn

(−t) = 2t[SB1+t2(SB1−6SB0)]
1+t4−34t2 . Thus, we have

GSB2n(t) =
SB0 + t(6SB1 − 35SB0)

1 + t2 − 34t

and GSB2n+1(t) =
SB1 + t(SB1 − 6SB0)

1 + t2 − 34t

are the required results.

Theorem 2.11. ( Exponential Generating function) The exponential generating function of the
balancing sedenions is

ESBn
(t) =

ueλ1t − veλ2t

λ1 − λ2
.

Proof. Let

ESBn(t) =
∞∑
n=0

SBn
tn

n!

be the exponential generating function for SBn.

ESBn
(t) =

∞∑
n=0

SBn
tn

n!

=
∞∑
n=0

(uλn
1 − vλn

2
λ1 − λ2

) tn
n!

=
u

λ1 − λ2

∞∑
n=0

(λ1t)n

n!
− v

λ1 − λ2

∞∑
n=0

(λ2t)n

n!

=
1

λ1 − λ2
(ueλ1t − veλ2t),

which is the required result.
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Theorem 2.12. [Exponential odd and even indexed Generating function] The exponential gen-
erating function of even and odd indexed for SBn are given by respectively

ESB2n(t) =
ucosh(λ1

√
t)− vcosh(λ2

√
t)

λ1 − λ2

and ESB2n+1(t) =
usinh(λ1

√
t)− vsinh(λ2

√
t)√

t(λ1 − λ2)
.

Proof. Using the values of ESBn
(t) ± ESBn

(−t) obtain from Theorem 2.11 and the result
2sinh(kt) = ekt − e−kt and 2cosh(kt) = ekt + e−kt, we have the required results.

Theorem 2.13. The generating function of the Lucas-balancing sedenions is

GSCn(t) =
SC0 + t(SC1 − 6SC0)

1 − 6t+ t2 .

Proof. The proof is analogous to Theorem 2.9.

Theorem 2.14. (Ordinary even and odd indexed Generating functions) The ordinary generating
function of even and odd indexed for SBn are given by respectively

GSC2n(t) =
SC0 + t(6SC1 − 35SC0)

1 + t2 − 34t

and GSC2n+1(t) =
SC1 + t(SC1 − 6SC0)

1 + t2 − 34t
.

Proof. The result is similar to Theorem 2.10.

Theorem 2.15. ( Exponential Generating function) The exponential generating function of the
Luas-balancing sedenions is

ESC(t) =
ueλ1t + veλ2t

2
.

Proof. The proof is similar to Theorem 2.11.

Theorem 2.16. [Exponential odd and even indexed Generating function] The exponential gen-
erating function of even and odd indexed for SCn are given by respectively

ESC2n(t) =
ucosh(λ1

√
t) + vcosh(λ2

√
t)

2

and ESC2n+1(t) =
usinh(λ1

√
t) + vsinh(λ2

√
t)

2
√
t

.

Proof. It can be proved by similar argument to Theorem 2.12.

Theorem 2.17. (Catalan’s identity) For n ≥ 0, let s ∈ N be such that n ≥ s, then we have

SB2
n − SBn+sSBn−s =

1
(λ1 − λ2)2 [uv(λ

2s
1 − 1) + vu(λ2s

2 − 1)]

and
SC2

n − SCn+sSCn−s =
1
4
[uv(1 − λ2s

1 ) + vu(1 − λ2s
2 )].

Proof. We have

SB2
n − SBn+sSBn−s =

(uλn
1 − vλn

2
λ1 − λ2

)2
−
(uλn+s

1 − vλn+s
2

λ1 − λ2

)(uλn−s
1 − vλn−s

2
λ1 − λ2

)
=

1
(λ1 − λ2)2 [−uvλn

1 λ
n
2 − vuλn

2 λ
n
1 + uvλn+s

1 λn−s
2 + vuλn+s

2 λn−s
1 ],

after some mathematical calculations, we have

SB2
n − SBn+sSBn−s =

1
(λ1 − λ2)2 [uv(λ

2s
1 − 1) + vu(λ2s

2 − 1)].

Analogously, the second identity follows, which completes the proof.
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Cassini’s identity is a special case of Catalan’s identity, where s = 1. So Cassini’s identities
for balancing sedenion and Lucas-balancing sedenion are following

Corollary 2.18. (Cassini’s identity) For n ≥ 1, we have

SB2
n − SBn+1SBn−1 =

1
(λ1 − λ2)2 [uv(λ

2
1 − 1) + vu(λ2

2 − 1)]

and SC2
n − SCn+1SCn−1 =

1
4
[uv(1 − λ2

1) + vu(1 − λ2
2)].

Theorem 2.19. (d’Ocagne’s identity) If m, n ∈ N with n ⩾ m, then we have

SBm+1SBn − SBmSBn+1 =
vuλm

2 λn
1 − uvλm

1 λn
2

2
√

8

and
SCm+1SCn − SCmSCn+1 =

√
2(uvλm

1 λn
2 − vuλm

2 λn
1 ).

Proof. Using Binet’s formula, We have

SBm+1SBn − SBmSBn+1 =
(uλm+1

1 − vλm+1
2

λ1 − λ2

)(uλn
1 − vλn

2
λ1 − λ2

)
−

(uλm
1 − vλm

2
λ1 − λ2

)
(uλn+1

1 − vλn+1
2

λ1 − λ2

)
=

1
(λ1 − λ2)2 [u

2λm+n+1
1 − uvλm+1

1 λn
2 − vuλm+1

2 λn
1 + v2λm+1+n

2

−u2λm+n+1
1 + uvλm

1 λn+1
2 + vuλm

2 λn+1
1 − v2λm+1+n

2 ],

after simplification, we find the result

SBm+1SBn − SBmSBn+1 =
vuλm

2 λn
1 − uvλm

1 λn
2

2
√

8
. (2.3)

Again, we have

SCm+1SCn − SCmSCn+1 =
(uλm+1

1 + vλm+1
2

2

)(uλn
1 + vλn

2
2

)
−

(uλm
1 + vλm

2
2

)
(uλn+1

1 + vλn+1
2

2

)
=

1
4
[u2λm+n+1

1 + uvλm+1
1 λn

2 + vuλm+1
2 λn

1 + v2λm+1+n
2

−u2λm+n+1
1 − uvλm

1 λn+1
2 − vuλm

2 λn+1
1 − v2λm+1+n

2 ],

after simplifying, we find the result

SCm+1SCn − SCmSCn+1 =
1
4
[(λ1 − λ2)(uvλ

m
1 λn

2 − vuλm
2 λn

1 )]

=
√

2(uvλm
1 λn

2 − vuλm
2 λn

1 ). (2.4)

This completes the proof.

Theorem 2.20. (Honsberger’s identity) For integers m and n, we have

SBm−1SBn + SBmSBn+1 =
1
16

[3(u2λm+n
1 + v2λm+n

2 )− uvλm−n−1
1 − vuλm−n−1

2 ]

and SCm−1SCn + SCmSCn+1 =
1
2
[3(u2λm+n

1 + v2λm+n
2 ) + uvλm−n−1

1 + vuλm−n−1
2 ].
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Proof. The proof holds using the Binet’s formula for balancing sedenion and Lucas- balancing
sedenion respectively.

In context of partial sums, we require the negative balancing sedenion and negative Lucas-
balancing sedenions SB−1, SB−2, SC−1 and SC−2 which are obtained by the recurrence rela-
tions. So considering SB−1 = 6SB0 − SB1 and SB−2 = 6SB−1 − SB0.

Theorem 2.21 (Partial sum). For the balancing sedenion, we have

1.
n∑

j=0

SBj =
1
4
(SBn+1 − SBn + SB−1 − SB0).

2.
n∑

j=0

SB2j =
1

32
(SB2(n+1) − SB2n + SB−2 − SB0).

3.
n∑

j=0

SB2j−1 =
1

32
(SB(2n−2) − SB2n−4 + SB−2 − SB0).

Proof. We have

n∑
j=0

SBj =
n∑

j=0

(uλj
1 − vλj

2
λ1 − λ2

)

=
1

λ1 − λ2

(
u

n∑
j=0

λj
1 − v

n∑
j=0

λj
2

)

=
1

λ1 − λ2

[
u
(λn+1

1 − 1
λ1 − 1

)
− v

(λn+1
2 − 1
λ2 − 1

)]
.

After some mathematical calculation, we have

n∑
j=0

SBj =
1
4
(SBn+1 − SBn + SB−1 − SB0).

For the second and third identities, a similar argument holds.

Theorem 2.22 (Partial sum). For the Lucas balancing sedenion, we have

1.
n∑

j=0

SCj =
1
4
(SCn+1 − SCn + SC−1 − SC0).

2.
n∑

j=0

SC2j =
1
32

(SC2(n+1) − SC2n + SC−2 − SC0).

3.
n∑

j=0

SC2j−1 =
1
32

(SC2n−2 − SC2n−4 + SC−2 − SC0).

Proof. The proof is analogous to Theorem 2.21.

3 Conclusion

In this study, we introduced the balancing and Lucas-balancing sedenions with their various
types of generating functions and Binet-type formulas. Also, by means of sedenions, we find
different results and some well-known identities like Casini’s, Catalan’s, d’Ocagane’s, and Hons-
berger’s identity with partial sum formulae for both balancing and Lucas-balancing sedenions.
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