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Abstract This article delves into the analysis of a queueing system that operates within the
framework of a working vacation policy, incorporating variable server capacity. In this system,
the server is capable of serving a batch of customers ranging from one to a maximum of Q
customers, based on the variable server capacity bulk service rule. The study employs the sup-
plementary variables approach (SVT) to derive the steady-state probability generating function
for both system size and orbit size. The discourse extends to various aspects including system
performance metrics, notable special instances, and the examination of system parameter im-
pacts through cost optimization and numerical examples. To facilitate this, a cost function is
developed, and its minimization is tackled using optimization techniques such as particle swarm
optimization (PSO), artificial bee colony (ABC), and genetic algorithm (GA). The convergence
of these optimization methods is explored through illustrative figures. To validate the analytical
findings, the study also compares them with results obtained through neuro-fuzzy analysis utiliz-
ing an adaptive neuro-fuzzy inference system (ANFIS) grounded in soft computing technology.

1 Introduction

Research into vacation queues (VQs) and retrial queues (RQs) has been ongoing in queueing
theory for some time. When a customer arrives and finds the server occupied, they’re directed
to leave the service area and enter a retry line called the “orbit." In an RQ system, this is known
as an RQ with repeated tries. Customers in the orbit can attempt their service request again after
some time has elapsed. Importantly, these orbiting customers can repeatedly request the same
service without impacting others. Artalejo and Gomez Corral have proposed modified models
for RQs [1], while Ke et al. have explored similar modifications for VQs [2]. These queues find
distinct applications in computer and communication systems.

In a VQ system, the server operates at a reduced speed during the working vacation (WV)
period and completely halts service during regular vacation periods. This queueing system finds
various applications including network services, online services, file transfers, and mail services.
Researchers such as Gautam Choudhury [3] investigated bulk arrival queues with vacation pe-
riods employing a single vacation strategy. Shan Gao [4] explored batch arrival queues with
delayed single WV. Chandrasekaran et al. [5] provided a concise overview of WV queueing
systems in recent years. Rajadurai [6] developed a unique RQ model incorporating WV and
breaks. Exponentially distributed multiple WV and bulk arrival RQs with feedback were studied
by Pazhani Bala Murugan and Vijaykrishnaraj [7]. Additionally, Madhu Jain and Anshul Kumar
[8] analyzed the M [X]/G/1 model with WV, balking, and an unreliable server.

Further, feedback plays a crucial role in communication systems, allowing consumers to
retry services if they are dissatisfied. Maragathasundari and Balamurugan [9] investigated the
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M [X]/G/1 feedback queue, considering two stages of repair times and general delay times.
Madhu Jain and Anshul Kumar [10] explored a bulk arrival general service RQ incorporating
balking, feedback, and vacation interruptions under a multiple WV policy. GnanaSekar and
Kandaiyan [11] analyzed the M/G/1 RQ with delayed repair and feedback, considering impa-
tient consumers under a WV policy.

Moreover, bulk queueing systems find wide application across various real-world scenarios
such as elevators, freight handling, industrial processes, communication networks, and tourism.
Bailey [12] introduced batch service queueing techniques, which have been further investigated
by researchers like Sasikala and Indhira [13]. Jaiswal [14] conducted original research on vari-
able server capacity bulk service rules, while Banerjee et al. [15] explored queueing models
incorporating variable server capacity and bulk service rules. Recently, Sasikala et al. [16] in-
vestigated bulk RQ systems with a Bernoulli vacation schedule and variable server capacity. In
the context of working vacation queues for bulk arrival feedback, no previous work has been
done. Therefore, our focus lies on batch arrival scenarios, specifically on batch service feedback
RQ systems with variable server capacity during working vacations.

“Optimization" refers to the process of finding the best solution for a given fitness function.
Cost optimization (CO) is a continuous business-oriented process aimed at reducing expenses
while enhancing the overall value of a company. This involves securing the most cost-effective
prices and terms for all business transactions, as well as streamlining and standardizing plat-
forms, applications, procedures, and services. In practical terms, the operating costs of a system
are directly linked to its profits. Therefore, system developers or administrators strive to mini-
mize the operational expenses per unit of time in order to maximize the financial success of the
system.

Nair and Jose [17] investigated solutions for production inventory systems incorporating or-
bit, buffer, and varying service rates. Jouilik et al. [18] analyzed a numerical optimization
algorithm, employing genetic algorithms, to solve an inverse problem related to reconstructing
the Robin coefficient in a boundary value problem. Upadhyaya et al. [19] examined an unreli-
able multi-server retrial queue system with feedback, where clients may resist joining the queue
and the service provider’s performance is unpredictable. Agarwal et al. [20] delved into the
cost optimality of a discrete-time retrial queue with erratic behavior under a J-vacation scheme,
using nature-inspired algorithms. Additionally, Agarwal et al. [21] discussed the optimization
of a stochastic model featuring an erratic server with immediate or delayed repair. Tajani and
Fakhouri [22] conducted a comparative study of various ant colony optimization variants for
solving the probabilistic traveling salesman problem.

This research aims to determine the distributions of queue length and orbit length, which are
essential for understanding other behavioral metrics of the system. The structure of our article is
outlined as follows: We provide a detailed description of the queueing model in Section 2, after
meeting the necessary prerequisites. In Section 3, we precisely analyze the system’s behavior
under steady-state conditions and derive the probability generating function (PGF) of the queue
size at a random epoch. Section 4 discusses various crucial system behavior indicators. There
are both numerical and pictorial findings in section 5. Results from the neuro-fuzzy analysis
of the system and the results of varying the system’s parameters are graphically analyzed and
discussed in Section 6. Finally, in Section 7, numerical findings and cost analyses are conducted
using PSO, ABC, and GA, while Section 8 summarizes the key ideas of the paper.

2 Description of the model and its implementation in real world

Under the working vacation (WV) policy, we implement a M [X]/GQ/1 feedback retrial queue
(RQ). The detailed rationale for our model is as follows:
The arrival approach: In accordance with the Poisson process, consumers arrive for service at
a rate of λ. Additionally, we denote A as the random variable representing batch size, charac-
terized by its probability mass function P{A = n} = an, n = 1, 2, 3, ... probability generating
function (PGF) A(z) =

∑∞
n=0 z

nan and mean batch size E(I).
The retrial approach: We presume there is no waiting space; therefore if a consumer arrives and
finds the server empty, the consumer immediately begins his service. However, if a consumer ar-
rives and the server busy, on vacation, then the consumer has two options: they can either depart
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the service area with probability b̄ = (1−b) and enroll in a group of blocked consumers who have
been blocked, known as a “orbit” or balk the system with probability b. Inter retrial times have a
random distribution, R(x) with corresponding “Laplace-Stieltijes Transform" (LST) R∗(δ).
The regular service approach: Following the variable server capacity bulk service policy, the
server handles consumer transmissions. Under the variable server capacity batch service rule,
the server’s action depends on the situation: it either serves a fixed size, denoted as "Q," or serves
all consumers from the orbit, whichever is fewer. If there are "Q" or more consumers in the orbit
after transmitting a group, the server sends "Q" packets in a batch. Conversely, if fewer than
"Q" packets remain in the orbit after transmission, the server sends all remaining consumers in
a batch. Once service begins, latecomers cannot join the ongoing service, even if the batch size
is less than "Q." The service duration follows a general distribution, represented by the arbitrary
variable H with distribution function H(x) and Laplace-Stieltjes transform H∗(δ).
Feedback rule: Unsatisfied consumers have the option to re-enter the orbit as feedback con-
sumers once their normal service is complete in order to maybe receive another service with
probability, α (0 ≤ α ≤ 1) will exit the system with probability, ᾱ = (1 − α).
The working vacation policy: When the orbit is free, the server periodically takes a WV. The
vacation period takes an exponential distribution with variable ϑ. If a consumer enters during a
vacation time, the server keeps running at a reduced rate. During the WV time, tasks are carried
out at a slower pace. If any consumers are in the orbit at a slower service completion moment
during the vacation period, the server will end the vacation and return to the normal busy time,
interrupting the vacation. If not, the vacation, keeps going. When the vacation gets over, the
server restores normal operations if there are still customers in the orbit. During the WV period,
the service period is assessed by a random variable Hv with distribution function Hv(x) and LST
H∗

v (δ).
The system’s stochastic processes are considered to be independent of one another.

2.1 Practical application of the model

The proposed paradigm is applicable to established airline booking processes. In order to sell
seats on their flights, airlines use systems called airline reservation systems (ARS). It includes a
database of reservations (or passenger name records) and tickets issued, as well as information
on schedules and fares (if applicable). Passenger service systems (PSS) include ARSs, which are
used to facilitate communication with passengers. In time, ARS developed into what is currently
known as the “electronic reservation system" (ERS). One airline’s computer reservation system
interfaces with a global distribution system (GDS) that allows travel agencies and other distri-
bution channels to make reservations with the world’s major airlines through a single system.
Airline reservation systems incorporate airline schedules, fare tariffs, passenger reservations,
and ticket records. Direct distribution allows an airline to distribute information both internally
and externally (via the GDS). Customers who book directly through a website or mobile app
constitute the second type of direct distribution channel.
We consider the ARS system as well as the booking portal (server). The customer tries to book
tickets through the website or mobile apps, but there will be a restriction on the number of
seats for a journey (variable server capacity). If a group of people is trying to book tickets, the
customer who enters the booking portal first will book the tickets and leave the portal. While
booking the tickets, if the server is busy, the customer will wait on the website or homepage and
try again after some time (retrial). If the system is affected by a virus or the internet source is
poor, then the system will give the service at a slower rate (working vacation). If the problem
is rectified, then the server will be back to its normal busy mode. Furthermore, the unsatisfied
customer (person who got the service and wants to book an additional ticket) may re-enter the
orbit when other customers’ bookings are completed. This is done to reduce the booking portal’s
idle time.

3 Overview of steady state probabilities

This division first develops the steady-state (SS) equations for the RQ system by considering
the elapsed retrial period, the elapsed service time and the elapsed lower-speed service times as
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supplementary variable (SV). The PGF of the number of consumers in the orbit and system, as
well as the orbit length generating functions for numerous server states, are computed.

3.1 Probabilities and Notations

It is assumed in SS that R(0) = 0, R(∞) = 1, H(0) = 0, H(∞) = 1 and Hv(0) = 0,
Hv(∞) = 1 are continuous at x = 0. So that the functions η(x), γb(x), γv(x) are the hazard
rates for retrial, service and slower pace service respectively.

Apart from it, let R0(t), H0(t) and H0
v(t) be the elapsed retrial period, the elapsed period of

normal service and the elapsed slower-rate service period respectively at time t. Additionally,
generate the random variable,

Π(t) =


0, if the server is available and in WV time
1, if the server is available and in normal service time
2, if the server is unavailable and in normal service at time t

3, if the server is unavailable and in lower speed rate at time t

Here, we highlight the usage of bivariate Markov process to describe the system’s state at time
{Π(t), Γ(t); t ≥ 0}, where Π(t) signifies the server state (0, 1, 2, 3) depending on whether the
server is free or busy on both normal service and WV periods. Γ(t) denotes the number of
consumers in the orbit. If Π(t) = 1 and Γ(t) > 0, then R0(t) is equivalent to the elapsed retrial
time. If Π(t) = 2 and Γ(t) ≥ 0, then H0(t) is equivalent to the elapsed time of the consumer
served in normal busy period. If Π(t) = 3 and Γ(t) ≥ 0, then H0

v(t) is equivalent to the elapsed
time of the consumer being served in lower rate service period.

3.2 Ergodicity analysis of the model

We examine the embedded Markov chain’s ergodicity during the departure and vacation epochs.
Let {tn;n = 1, 2, ...} be the series of epochs where either a service period completion or a
shorter service period happens. Gn = {Π(tn+),Γ(tn+)} sequence of random vectors. The
Markov chain formed by embedded in the RQ system. It follows from Appendix A that is the
embedded Markov chain {Gn;n ∈ N} is ergodic iff Λ < Q for our system will be stable.
For the method {Γ(t), t ≥ 0}, we specify the probabilities P0(t) = P{Π(t) = 0,Γ(t) = 0} and
the probability densities are
Pn(x, t)dx = P{Π(t) = 1,Γ(t) = n, x ≤ R0(t) < x+ dx},
for t ≥ 0, x ≥ 0 and n ≥ 1.
Sn(x, t)dx = P{Π(t) = 2,Γ(t) = n, x ≤ H0(t) < x+ dx},
for t ≥ 0, x ≥ 0 and n ≥ 0.
Vn(x, t)dx = P{Π(t) = 3,Γ(t) = n, x ≤ H0

v(t) < x+ dx},
for t ≥ 0, x ≥ 0 and n ≥ 0.
We presume that the stability requirement is satisfied in the sequel, so we may assign P0 =
limt→∞P0(t) and limiting densities are
Pn(x) = limt→∞Pn(x, t); Sn(x) = limt→∞Sn(x, t);
Vn(x) = limt→∞Vn(x, t);
Using the supplementary variable method, we build the following system of equations.

λP0 = ᾱ

∫ ∞

0
S0(x)γb(x)dx+ ᾱ

∫ ∞

0
V0(x)γv(x)dx (3.1)

+ λ

∫ ∞

0
Sn(x)dx, n ≥ 0
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d

dx
Pn(x) + (λ+ η(x))Pn(x) = 0, n ≥ 1 (3.2)

d

dx
S0(x) + (λ+ γb(x))S0(x) = λb̄S0fk(x), n = 0 (3.3)

d

dx
Sn(x) + (λ+ γb(x))Sn(x) = λb

n∑
k=1

Sn−kfk(x) + λb̄Snfk(x), n ≥ 1 (3.4)

d

dx
V0(x) + (λ+ ϑ+ γv(x))V0(x) = λb̄V0fk(x), n = 0 (3.5)

d

dx
Vn(x) + (λ+ ϑ+ γv(x))Vn(x) = λb

n∑
k=1

Vn−kfk(x) + λb̄Vnfk(x), n ≥ 0 (3.6)

At x = 0 the SS boundary criteria are as follows:

Pn(0) = α

∫ ∞

0
Sn(x)γb(x)dx+ ᾱ

∫ ∞

0
Sn−1(x)γb(x)dx (3.7)

+ α

∫ ∞

0
Vn(x)γv(x)dx+ ᾱ

∫ ∞

0
Vn−1(x)γv(x)dx, n ≥ 1

Sn(0) =
∫ ∞

0
Pn+Q(x)η(x)dx+ λ

∫ ∞

0

∞∑
k=1

akPn−k+Q(x)dx

+ ϑ

∫ ∞

0
Vn(x)dx, n ≥ 1 (3.8)

S0(0) =
∫ ∞

0

Q∑
n=1

Pn(x)η(x)dx+ λ

Q∑
k=1

akP0 + ϑ

∫ ∞

0
V0(x)dx, n = 0 (3.9)

Vn(0) =

{
λP0, n = 0
0, n ≥ 1

(3.10)

The normalizing criteria is

P0 +
∞∑
n=1

∫ ∞

0
Pn(x)dx+

∞∑
n=0

(∫ ∞

0
Sn(x)dx+

∫ ∞

0
Vn(x)dx

)
= 1 (3.11)

3.3 The steady state solution

The generating functions for | z |< 1 in order to solve the aforementioned equations, are ex-
pressed in the form.

P (x, z) =
∞∑
n=1

Pn(x)z
n;P (0, z) =

∞∑
n=1

Pn(0)zn;

S(x, z) =
∞∑
n=0

Sn(x)z
n;S(0, z) =

∞∑
n=0

Sn(0)zn;

V (x, z) =
∞∑
n=0

Vn(x)z
n;V (0, z) =

∞∑
n=0

Vn(0)zn.

Now multiply the SS equation and SS boundary criteria from (3.2) to (3.10) by zn and summing
over n, (n = 0, 1, 2, ...)

∂

∂x
P (x, z) + (λ+ η(x))P (x, z) = 0 (3.12)

∂

∂x
S(x, z) + (λb(1 −A(z)) + γb(x))S(x, z) = 0 (3.13)

∂

∂x
V (x, z) + (λb(1 −A(z)) + ϑ+ γv(x))V (x, z) = 0 (3.14)
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P (0, z) = (α+ ᾱz)

∫ ∞

0
S(x, z)γb(x)dx+ (α+ ᾱz)

∫ ∞

0
V (x, z)γv(x)dx− λP0 (3.15)

S(0, z) =
1
zQ

∫ ∞

0
P (x, z)η(x)dx+

λA(z)

zQ

∫ ∞

0
P (x, z)dx+ ϑ

∫ ∞

0
V (x, z)dx (3.16)

V (0, z) = λP0 (3.17)

Solving the partial differential eqns. (3.12) to (3.14), we obtain

P (x, z) = P (0, z)[1 −R(x)]e−λx (3.18)

S(x, z) = S(0, z)[1 −H(x)]e−S(z)x (3.19)

V (x, z) = V (0, z)[1 −Hv(x)]e
−Sv(z)x (3.20)

where S(z) = λb(1 −A(z)), and Sv(z) = ϑ+ λb(1 −A(z))
Inserting the eqns. (3.17) to (3.20) in (3.8) after some computation, we eventually arrive to,

S(0, z) =
P (0, z)
zQ

{R∗(λ) +A(z)[1 −R∗(λ)]}+ λP0W (z) (3.21)

where W (z) = ϑ
ϑ+λb(1−A(z)) (1 −H∗

v (Sv(z))),

P (0, z) = (α+ ᾱz)S(0, z)H∗(S(z)) + (α+ ᾱz)V (0, z)H∗
v (Sv(z))− λP0 (3.22)

Combining (3.10) and (3.21) in (3.22), we get

S(0, z){zQ − (α+ ᾱz)[R∗(λ) +A(z)(1 −R∗(λ))]H∗(S(z))} (3.23)

= λP0{zQW (z) + [(α+ ᾱz)H∗
v (Sv(z))− 1][R∗(λ) +A(z)(1 −R∗(λ))]}

In the following theorem, we are willing to exploring the marginal orbit size distributions caused
by the server’s system state.

Theorem 3.1. Under the stability requirement, Λ < Q provides the stationary distribution, of
the number of customers in the orbit when the server is available, busy, reduced rate service,
and the probability, that the server is available given by,

P (z) =
Ne(z)

De(z)
(3.24)

Ne(z) =zQP0(1 −R∗(λ)){(α+ ᾱz)[H∗(S(z))W (z) +H∗
v (Sv(z))]− 1}

De(z) =zQ − (α+ ᾱz){R∗(λ) +A(z)[1 −R∗(λ)]}H∗(S(z))

S(z) =
λP0(1 −H∗(S(z)))

S(z)De(z)
{zQW (z) + [(α+ ᾱz)H∗

v (Sv(z))− 1][R∗(λ) +A(z)[1 −R∗(λ)]]}

(3.25)

V (z) =
λP0

ϑ
W (z) (3.26)

where

P0 =
Q− {ᾱ− λbE(I)E(H) +E(I)(1 −R∗(λ))}

λbE(I)E(H){ 2λ
ϑ (1 −H∗

v (ϑ))− 2H∗
v (ϑ)R

∗(λ) +H∗
v (ϑ) +R∗(λ) + 1}

− E(I)(1 −R∗(λ))[1 + λE(Hv)]− λE(H)[1 +B(1 −H∗
v (ϑ))] +B(1 + λ

ϑ(1 −H∗
v (ϑ)))

(3.27)
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Proof. Taking the eqns. (3.18)-(3.20) and integrate with respect to x and compute the probability
generating function P (z) =

∫∞
0 P (x, z)dx, S(z) =

∫∞
0 S(x, z)dx, V (z) =

∫∞
0 V (x, z)dx.

We calculate the probability that the server is empty using the normalization condition (P0) by
establishing functions as, when there is no consumer in the orbit z = 1 in (3.24)-(3.26) and
whenever the condition of L’Hospital is needed, we get P0 + P (1) + S(1) + V (1) = 1.

Theorem 3.2. Utilizing the PGF function, the number of consumers in the system and the orbit
size distribution at a stationary point of period are calculated under the stability constraint
Λ < Q,

Ks(z) =
Nes(z)

Des(z)
(3.28)

Nes(z) =P0{S(z){zQ − (α+ ᾱz){R∗(λ) +A(z)[1 −R∗(λ)]}H∗(S(z))}

[1 +
λ

ϑ
zW (z)]}+ zQS(z)(1 −R∗(λ)){(α+ ᾱz)[H∗(S(z))W (z) +H∗

v (Sv(z))]− 1}

+ zλ(1 −H∗(λ(1 −A(z)))){zQW (z) + [(α+ ᾱz)H∗
v (Sv(z))− 1]

[R∗(λ) +A(z)[1 −R∗(λ)]]}}

Des(z) =S(z){zQ − (α+ ᾱz){R∗(λ) +A(z)[1 −R∗(λ)]}H∗(S(z))}

Ko(z) =
Neo(z)

Des(z)
(3.29)

Neo(z) =P0{S(z){zQ − (α+ ᾱz){R∗(λ) +A(z)[1 −R∗(λ)]}H∗(S(z))}

[1 +
λ

ϑ
W (z)]}+ zQS(z)(1 −R∗(λ)){(α+ ᾱz)[H∗(S(z))W (z) +H∗

v (Sv(z))]− 1}

+ λ(1 −H∗(λ(1 −A(z)))){zQW (z) + [(α+ ᾱz)H∗
v (Sv(z))− 1]

[R∗(λ) +A(z)[1 −R∗(λ)]]}

where P0 is denoted by eqn. (3.27).

Proof. The PGF of the number of consumer in the system (Ks(z)) and in the orbit (Ko(z)) is
calculated by using Ks(z) = P0 + P (z) + S(z) + V (z). The eqns. (3.28) and (3.29) may be
derived directly when the eqns. (3.24)-(3.27) are substituted in the earlier results.

4 System performance measures

In this section, different system states are used to derive a number of pertinent system probabili-
ties, system efficiency metrics, and the model’s mean busy time and mean busy cycle.

4.1 Probabilities of system states

Utilizing eqns, (3.24)-(3.26) we obtain the findings shown below, giving z → 1 and, if feasible,
using L’Hospital’s rule.
(i) Let P be the SS probability of the server is available during the retrial,

P = P (1) = P0(1 −R∗(λ))

{
ᾱ+ λbE(I)[E(H)H∗

v (ϑ) +
1
ϑ(1 −H∗

v (ϑ))− E(Dv)]

Q− {ᾱ− λbE(I)E(H) +E(I)(1 −R∗(λ))}

}
(4.1)

(ii) Let S be the SS probability that the server is full,

S = S(1) = λE(H)P0

{
E(I)(1 −H∗

v (ϑ))[R
∗(λ) + λ

ϑ ] + (ᾱ−Q)H∗
v (ϑ) +Q− 1

Q− {ᾱ− λbE(I)E(H) +E(I)(1 −R∗(λ))}

}
(4.2)

(iii) Let V be the SS probability that the server is on WV,

V = V (1) =
λP0

ϑ
[1 −H∗

v (ϑ)] (4.3)
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4.2 Mean size of a system and orbit

When the system is in a steady state,
(i) With respect to z, (3.29) and providing z = 1 yields the mean number of consumers in the
orbit (Lq)

Lq = K
′

0(1) = lim
z→1

d

dz
Ko(z) = P0

[
N

′′′

q (1)D
′′

q (1)−D
′′′

q (1)N
′′

q (1)
3(D′′

q (1))2

]
(4.4)

N
′′

q (1) =− 2λbE(I){[1 +
λ

ϑ
(1 −H∗

v (ϑ))][Q− ᾱ+ λbE(I)E(H)− E(I)(1 −R∗(λ))]

+ (1 −R∗(λ)){ᾱ+ λbE(I)[E(H)H∗
v (ϑ) +

1
ϑ
(1 −H∗

v (ϑ))− E(Hv)]}

− λE(H){E(I)(1 −H∗
v (ϑ))[R

∗(λ) +
λ

ϑ
] + (ᾱ−Q)H∗

v (ϑ) +Q− 1}}

D
′′

q (1) =− 2λbE(I){Q+ ᾱ− E(I)(1 −R∗(λ)) + λbE(I)E(H)}

N
′′′

q (1) =− 6λbE(I)[Q− ᾱ+ λbE(I)E(H)− E(I)(1 −R∗(λ))]{λ
ϑ
E(I)(1 + ϑE(H)

−H∗
v (ϑ))}+D

′′′

q (1)[1 +
λ

ϑ
(1 −H∗

v (ϑ))]− 3λbE(I)(1 −R∗(λ))

{ᾱ+ λbE(I)(1 +Q)[
1
ϑ
(1 −H∗

v (ϑ)) +E(H)H∗
v (ϑ)− E(Hv)]

+ 2ᾱ{[λ
ϑ
E(I)(1 + ϑE(Hv)−H∗

v (ϑ))]− λbE(I)E(H)(1 −H∗
v (ϑ))

− λbE(I)E(Hv)} − 2λbE(I)E(H)[
λ

ϑ
E(I)(1 + ϑE(H)−H∗

v (ϑ))] + (1 −H∗
v (ϑ))

[λ2E(I)E2(H)− λE(I(I − 1))E(H)]− λE(I(I − 1))E(Hv)− λ2E(I)E2(Dv)

+W
′′
(1) + 3λ{λbE(I)E(H){Q(Q− 1)(1 −H∗

v (ϑ)) + (Q+ 1)[
λ

ϑ
E(I)

(1 + ϑE(H)−H∗
v (ϑ))] + 2λbE(I)(1 −R∗(λ))[ᾱ− λbE(I)E(Hv)]

− 2ᾱλbE(I)E(Hv) + λ2E(I)E2(Hv)− λE(I(I − 1))E(Hv) +W
′′
(1)}

+ λ[E(I(I − 1))E(H)− λbE(I)E2(H)]{ᾱ+ λbE(I)[E(H)H∗
v (ϑ)

+
1
ϑ
(1 −H∗

v (ϑ))− E(Hv)]}}}

D
′′′

q (1) =− 3λbE(I){Q(Q− 1)− E(I(I − 1))(1 −R∗(λ)) + 2{λᾱE(I)E(H)

+ λE(I(I − 1))E(H) +E(I)(1 −R∗(λ))[λbE(I)E(H) + ᾱ]}}

where W
′′
(1) = λ

ϑE(I(I − 1))[1 + ϑE(Hv)−H∗
v (ϑ)] +

E(I)
ϑ3 {ϑ2E2(Hv)− 2λϑE(I)E(Hv) +

λbE(I)E(Hv)}+ λbE(I)(1 −H∗
v (ϑ))

(ii) With regard to z, (3.28) and providing z = 1 yields the mean number of consumers in the
system (Ls)

Ls = K
′

s(1) = lim
z→1

d

dz
Ks(z) = P0

[
N

′′′

s (1)D
′′

q (1)−D
′′′

q (1)N
′′

q (1)
3(D′′

q (1))2

]
(4.5)

N
′′′

s (1) =N
′′′

q (1) + 6λbE(I){E(H){E(I)(1 −H∗
v (ϑ))[R

∗(λ) +
λ

ϑ
] + (ᾱ−Q)H∗

v (ϑ)

+Q− 1} − λ

ϑ
[1 −H∗

v (ϑ)]{Q− ᾱ+ λbE(I)E(H)− (1 −R∗(λ))}}
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(iii) The mean period of the consumers in the system (Ws) and the mean period of the consumers
in the queue (Wq) are estimated utilizing Little’s method. Ws = Ls

λbE(I) and Wq = Lq

λbE(I) ,

respectively.

4.3 Special cases

In this section, we examine a few real-world examples of our strategy that are consistent with
recent literature.
Case (i):
Let Pr[A = 1] = 1, Q = 1, ϑ, ᾱ = 0, b = 0 and R∗(λ) → 1. Our model can be simplified to a
M/G/1 queue. The results agree with Takagi [26].

Ks(z) = P0

{
Nes(z)

Des(z)

}
(4.6)

Nes(z) =(1 − z){z −H∗(λ(1 − z))}+ z(1 −H∗(λ(1 − z))){H∗
v (λ(1 − z))}

Des(z) =(1 − z){z −H∗(λ(1 − z))}

where, P0 =
1 + λE(I)E(H)

λbE(I)E(H)− λE(H)

Case (ii):
Let Pr[A = 1] = 1, Q = 1, b = 0 and ϑ, ᾱ = 0. Our model simplified to an M/G/1 RQ. Here
are the results agree with Gao and Wang [23].

Ks(z) = P0

{
Nes(z)

Des(z)

}
(4.7)

Nes(z) =(1 − z){z − [R∗(λ) + z(1 −R∗(λ))]H∗(λ(1 − z))}+ zλ(1 − z)[1 −R∗(λ)]

(H∗
v (λ(1 − z)− 1)) + λz[1 −H∗(λ(1 − z))]{H∗

v (λ(1 − z)− 1)

[R∗(λ) + z(1 −R∗(λ))]}
Des(z) =λ(1 − z){z − [R∗(λ) + z(1 −R∗(λ))]H∗(λ(1 − z))}

where, P0 =
1 + λbE(I)E(H) +E(I)(1 −R∗(λ))

λbE(I)E(H){1 −R∗(λ)} − λE(H)− E(I)(1 −R∗(λ))[1 + λE(Hv)] +Q

Case (iii):
Let Pr[A = 1] = 1, Q = 1, b = 0 and ᾱ = 0. our model simplified to an M/G/1 queue with
WVs. Here are the results agree with Zhang and Hou [28].

Ks(z) = P0

{
Nes(z)

Des(z)

}
(4.8)

Nes(z) =(1 − z){z − [R∗(λ) + z(1 −R∗(λ))]H∗(λ(1 − z))}+ zλ(1 − z)[1 −R∗(λ)]

(H∗
v (λ(1 − z)− 1)) + λz[1 −H∗(λ(1 − z))]{H∗

v (λ(1 − z)− 1)

[R∗(λ) + z(1 −R∗(λ))]}
Des(z) =λ(1 − z){z − [R∗(λ) + z(1 −R∗(λ))]H∗(λ(1 − z))}

5 Numerical results

The various effects on system performance measurements are demonstrated using MATLAB in
this section. We examine exponentially distributed retrial times, service times, and slower service
times. The numerical measurements that satisfy the stability condition are chosen at random.
Table 1 clearly displays that arrival rate (λ) escalates, Lq, Ls, V (1) are increases. Table 2
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Table 1. P0 and Lq for different arrival rate (λ) for the values of Q = 30, α = 0.5, ϑ = 2,
b = 0.2, η(x) = 6, γb(x) = 0.6, γv(x) = 0.7

Arrival rate (λ) P0 Lq Ls V (1) Wq

1.5 0.7495 0.0020 0.0007 0.2274 0.0040
2.5 0.7606 0.0031 0.0018 0.3582 0.0059
3.5 0.7704 0.0042 0.0029 0.4917 0.0061
4.5 0.7789 0.0061 0.0036 0.6273 0.0072
5.5 0.7859 0.0079 0.0047 0.7644 0.0085
6.5 0.7914 0.0091 0.0058 0.9023 0.0090
7.5 0.7954 0.0097 0.0068 0.9782 0.0142

Table 2. P0 and Lq for different feedback rate (λ) for the values of Q = 30, λ = 5, b = 0.2,
ϑ = 4, η(x) = 6, γb(x) = 0.6, γv(x) = 0.5

Feedback rate (α) P0 Lq Ls V (1) Wq

2.1 3.8675 0.0305 0.0182 4.0421 0.0386
3.1 3.6988 0.0422 0.0289 3.9367 0.0550
4.1 3.5301 0.0531 0.0387 3.8313 0.0703
5.1 3.3614 0.0631 0.0477 3.7259 0.0743
6.1 3.1928 0.0823 0.0507 3.5205 0.0872
7.1 3.0209 0.0906 0.0546 3.4150 0.0989
8.1 2.8554 0.0994 0.0593 3.3096 0.0109

Table 3. P0 and Lq for different lower service rate (γv) for the values of Q = 30, λ = 1, b = 0.2,
η(x) = 4, γb(x) = 0.6, α = 0.7

Lower service rate
(ϑ)

P0 Lq Ls V (1) Wq

0.2 2.0937 0.0330 0.0040 0.2321 0.0898
0.4 2.0457 0.0238 0.0036 0.2191 0.0868
0.6 2.0018 0.0158 0.0031 0.1853 0.0841
0.8 1.9614 0.0149 0.0028 0.1542 0.0816
1.0 1.9242 0.0136 0.0025 0.1055 0.0793
1.2 1.8897 0.0121 0.0022 0.0789 0.0771
1.4 1.8577 0.0114 0.0019 0.0443 0.0751

displays that feedback rate α escalates, Lq, Ls, are increases and P0 decreases. Table 3 displays
that lower service rate γv escalates, Lq, Ls, V (1) and P0 decreases.

With the impact of the parameters Q, λ, b, α, ϑ, η(x), γb(x), γv(x), Fig. 1(a) shows that
(Lq) and (Wq) increases while increasing the arrival rate λ. Fig. 1(b), we found that (Wq)
diminishes while increasing the feedback rate (α), (Ls). In Fig. 1(c), we found that (P0) and
(V (1)) diminishes while increasing the lower service rate γv.
The numerical findings above may be used to determine the impact of attributes on the system’s
assessment criteria, and we can be sure that the results are representative of actual conditions.
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(a) Lq , Wq verses arrival rate λ (b) P0, Ls verses feedback rate α

(c) P0, V (1) verses lower service rate γv

Figure 1. 3D visualization of λ, α, and ϑ

6 Computing of ANFIS

Adaptive neuro-fuzzy inference systems (ANFIS) are a type of artificial neural network that bor-
rows heavily from the evolutionary channel fuzzy inference system. The method was developed
by Jang [29] in the early 1990s. As a result of its incorporation of both neural networks and
fuzzy logic principles, it is able to leverage the advantages of both in a unified framework. It is
generally agreed that the ANFIS is a reliable estimator of anything. For practical, everyday con-
gestion, the ANFIS soft computing approach is a powerful instrument for achieving meaningful
results.
In addition, the nodes and arrow links make up the adaptive network’s structure. The parame-
ters associated with the nodes determine both the nodes’ outputs and the means by which their
parameters can be adjusted to reduce a specified error measure. To achieve the desired mapping
between input and output, the parameters are updated with the aid of the trained data and the
gradient-based methodology. ANFIS can be used to generate an input-output mapping based on
humans’ understanding of if-then rules and the convention of storing input-output data in pairs.
The direct search method is inconvenient to employ because of the time constraints caused by
the iterative repetition of the process to find the best achievable solution. There is potential for
ANFIS to perform flexible data processing. Fig. 2 shows the overall layout of the ANFIS. When
exact answers are hard to come by for certain performance indices, ANFIS can be used to find
good approximations. In this section, we examine the differences in neuro-fuzzy results between
SVT or PGF analysis using ANFIS technology.
Some factors are noticed as linguistic terms and are considered as inputs to associate a fuzzy

approach with ANFIS networks. Each of these input variables is assumed to have a membership
function that is a Gaussian. Membership functions are shown in Fig. 3 in their corresponding
forms. Table 4 provides the membership count function along with its corresponding parameter
values and their respective languages.
For analytically determining ANFIS values, we employ the MATLAB software. We calculate

the ranges of LS , Lq, and V (1) from 0 to 0.26 in relation to the values of λ, α, and ϑ, respec-
tively. Fig. 4 demonstrates that the exponential function is depicted by the continuous lines
and the ANFIS result by the discrete lines. ANFIS is used to display the λ, α, and ϑ in three
dimensions, as shown in Fig. 5. In the end, we discovered that the results of the ANFIS and the
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Figure 2. Pictorial representation of ANFIS

Table 4. Values of the membership functions based on the language of the input parameters

Input parameters Number of membership
functions

Linguistic Values

λ, P0 3 Low, Medium, High
α, P0 3 Low, Medium, High
ϑ, P0 3 Low, Medium, High

(a) Membership Function of λ (b) Membership Function of α

(c) Membership Function of ϑ

Figure 3. Membership Function

exponential function were similar.
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(a) Lq verses λ (b) LS verses α

(c) V (1) versus γv

Figure 4. Relation between exponential function and ANFIS

(a) Ls and TEC verses R∗(λ) (b) Ls and TEC verses γb(x)

(c) Ls and TEC versus ϑ

Figure 5. ANFIS-based 3D visualization of the TEC

7 Cost Optimization

The process of selecting the set of inputs to an objective function that delivers the maximum
or minimum output is known as “optimization." The practise of continually focusing on a com-
pany’s operations in order to minimize expenses and costs while simultaneously increasing the
value of the firm is known as cost optimization. It means acquiring the most competitive prices
and conditions on all company transactions, and it also involves reaching a point where plat-
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(a) Lq and P0 verses λ (b) Ls and P0 verses α

(c) V (1) and P0 versus ϑ

Figure 6. ANFIS-based 3D visualization of λ, α and ϑ

forms, applications, procedures, and services will be standardized, streamlined, and rationalized.
In a situation that more closely resembles actual life, the relationship between the profit and the
operational expenses of the system is quite close. As a consequence of this, the primary respon-
sibility of system developers or administrators is to cut down on the amount of money spent
on operations for each unit of time in order to increase the system’s profitability. Finding the
parameters that allow us to compute the best average cost per unit of time (TEC) is our primary
objective here. In order to achieve this goal, we will implement cost functionality in this part of
the model that we have developed in order to make it more cost-effective.
We take a cost optimization strategy in order to get the ideal values for the parameters, which
include the service rates (γb, γv). It is presumed that there is a linear relationship between the
different system activities and the various cost components associated with those activities in the
projected cost function.
The following is a definition of each of the cost element variables that are included in the ex-
pected total cost function TEC (γb, γv) for per unit time:

Sh =⇒ Cost of holding each consumer in the system for a given period of time.

Sb =⇒ Cost per unit time (CPUT) when the server is normally active

Sv =⇒ CPUT when the server is vacation mode

S1 =⇒ First-stage service cost per consumer during busy times

S2 =⇒ Server’s cost per consumer serviced while in Working Vacation mode

Predictions of the cost function expressed as

TEC(γb, γv) = ShLq + Sb S(1) + Sv V (1) + S1γb + S2γv (7.1)

The cost function that is provided in 7.1 is not simple to optimize in an analytical method because
of the substantial non-linearity that it possesses. So, in order to optimize the overall cost, which
is supposed to be a function of the service rates γb and γv, we make use of the heuristic technique.
Our primary goal is to discover the ideal service rate (γ∗

b ) on busy mode and the optimal service
rate (γ∗

v) on vacation mode while reducing the total cost function.
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In mathematical terms, the problem of minimizing costs is stated as follows:

TEC(γ∗
b , γ

∗
v) = min

γ∗
b ,γ

∗
v

TEC(γb, γv)

In order to produce a graphical representation of the sensitivity analysis of the cost function, we
arranged the cost components according to Table 5.
Since the beginning of the 1960s, a great deal of research and development has gone into the
creation of various optimization strategies. These algorithms have each demonstrated that they
are capable of addressing a broad variety of optimization problems. When we don’t know much
about the structure of the objective function (like a response surface), or when we know the
function has local optima, we should utilize a global optimization procedure. On the other hand,
when we know we are near the global optima or our objective function has a single optima, such
as unimodal, then we should apply a local optimization approach. The application of a local
search algorithm to a problem that calls for a global search algorithm would lead to unsatisfactory
results since the local search will be fooled by local optima. Particle swarm optimization (PSO),
artificial bee colony (ABC), and genetic algorithms (GA) are the global search optimization
algorithms that we used to carry out this study. Each of these three algorithms is independently
described in one of the five separate subsections that are a part of this section. Keeping in
mind the necessity and significance of cost optimization, we used these algorithms. Local search
approaches typically decrease the computational complexity involved with identifying the global
optimal solution, provided that the assumptions set by the algorithm continue to be valid.

Table 5. Several cost sets for the purpose of cost analysis
Cost set Sh Sb Sv S1 S2

Set 1 10 40 15 20 15
Set 2 5 35 10 15 10
Set 3 20 30 15 9 5

7.1 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a stochastic optimization technique that was first developed
by Kennedy and Eberhart [30]. It was developed with the goal of optimizing a function that was
substantially non-linear in its underlying nature. PSO is an effective method for solving problems
involving highly non-linear optimization. PSO works by taking into account a set of particles
(solutions) and locating the optimal solution to the problem in accordance with the prescribed
formulae [31]. Each particle has a fitness value assigned to it, which contributes to the process of
getting both the personal best and the global best solution. If a user’s best particle yields a better
answer than the current global best, the user’s best value is used instead of the global best’s, and
so on, until some maximum number of iterations has been reached. When dealing with queueing
scenarios, the PSO method is typically employed to optimize the proposed model’s cost function.
We optimized the cost by setting the default parameters to have the following values: λ = 3,
α = 7, Q = 30, η(x) = 6, γb(x) = 0.6, γv(x) = 0.5 and R∗(λ) = 4. The lower bound of γb,
which is taken to be 1, and the upper bound of γv, which is taken to be 5, are taken respectively.
The number of repetitions, population size, inertial weight, and both acceleration factors have
been set to corresponding values of 100, 50, 1, and 2. Table 6 displays the influence of several
cost elements, such as Sh, Sb, Sv, Sf , Q = 30, b = 0.2 and R∗(λ) = 4 on the optimal service
rates and optimal total cost for all three cost sets. Within algorithm 1, the pseudo code for the
PSO algorithm is presented.

7.2 Artificial Bee Colony optimization (ABC)

Karaboga and Basturk [32] introduced the Artificial Bee Colony (ABC) approach, which is a
swarm-based solution for optimization issues and was inspired by the intelligent behaviour of
honey bees when they were foraging. The foraging and food source components are the two most
important parts of the algorithm. Foraging bees are categorized as either employed, onlookers, or
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Algorithm 1 Pseudo Code of PSO Algorithm
INPUT: Objective function =TEC(γb, γv), acceleration factors, inertia weight and Maximum
number of iterations
OUTPUT: The cost function’s value TEC(γ∗

b , γ
∗
v)

Step 1: Finding initial locations Fi for the n particles in a population.
Step 2: Determine H∗(g-best) using best(min) as the TEC {F1, ..., Fn}
Step 3: While (t < Maximum Generation)
for loop over all n particles and all d dimensions
Step 4: Obtain the new velocity for ith particle Ui(t+ 1)
Step 5: Obtain the new locations for ith particle Ri(t+ 1) = Ri(t) + Ui(t+ 1)
Step 6: Check the objective function at new locations Ri(t+ 1)
Step 7: Discover the current best (p-best) for each particle R∗

i .
end for
Step 8: Upgrade global best H∗.
end while.
Step 9: Deliver the optimal value of the objective function TEC∗

Table 6. Effect of λ, α, ϑ on (TEC∗, γ∗
b , γ

∗
v) using PSO

Parameters (TEC∗, γ∗
b , γ

∗
v )

Cost set 1 Cost set 2 Cost set 3
3.1 (119.5660,2.2490,1.1958) (92.0495,2.3562,1.3100) (55.7764,2.4524,1.4109)

λ 3.2 (122.6688,2.2967,1.2472) (94.4166,2.4336,1.3474) (57.0913,2.4177,1.4801)
3.3 (125.7827,2.3999,1.2621) (96.7775,2.5079,1.3582) (58.4047,2.5137,1.4853)

7.1 (120.1449,2.2580,1.1913) (92.4986,2.4027,1.2926) (56.0363,2.4018,1.4628)
α 7.2 (120.7113,2.2602,1.2485) (92.9499,2.4298,1.2802) (56.2992,2.4245,1.4479)

7.3 (121.2724,2.3043,1.2403) (93.3822,2.4252,1.2896) (56.5654,2.4209,1.4354)

5.1 (120.2041,2.3014,1.2116) (92.5444,2.3597,1.2991) (56.0596,2.4642,1.4300)
ϑ 5.2 (120.2549,2.2633,1.2170) (92.5907,2.3932,1.3126) (56.0770,2.3821,1.4309)

5.3 (120.3189,2.2832,1.2370) (92.6351,2.3917,1.3129) (56.0907,2.4162,1.4621)

scouts according to the roles that they play in the circumstance at hand, depending on the types
of jobs that they perform. Bees that are involved in foraging as well as bees that are not employed
in foraging look for rich food sources. In this method, a colony of artificial forager bees searches
for sources of artificial food that are particularly rich (a good solution). In order to employ this
optimization strategy and get the objective function optimized, you are going to need to have the
ideal parameter vector. After that, artificial bees will search in a random manner for a population
of initial solution vectors. The technique of searching for the nearest neighbour provides the
basis for the iterative processes that are used to refine the response. The algorithmic sequence
of steps known as ABC is described in algorithm 2 along with its corresponding pseudo code.
Table 7 demonstrates the influence of various cost factors, including Sh, Sb, Sv, Sf , Q = 30,
b = 0.2, η(x) = 6, γb(x) = 0.6, γv(x) = 0.5 and R∗(λ) = 4.

7.3 Genetic Algorithm (GA)

In the 1960s and 1970s, Bremermann [33] and his coworkers came up with the idea for what is
now known as the genetic algorithm. This algorithm is a method for solving problems associ-
ated with restricted and uncontrolled optimization that is derived from natural selection. Natural
selection is the mechanism that drives the progression of biological development. They are fre-
quently used for the purpose of providing high-quality solutions to problems involving stochastic
search. The entirety of the algorithm depicts the selection criteria that are used to identify the
individuals who are the healthiest and most suited for procreation in order to generate offspring
for the next generation. Genetic algorithms are a replication of a natural selection criterion that
looks for organisms that are able to live, reproduce, and pass on their genes to subsequent genera-
tions while also being able to adapt to the conditions of their environment. To put it another way,
the process of finding a solution to a problem involves simulating the "sustainability of the most
suitable" among people from successive generations. The method described above is appealing
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Algorithm 2 Pseudo Code of ABC Algorithm
INPUT: Objective function =TEC(γb, γv),
OUTPUT: The cost function’s value TEC(γ∗

b , γ
∗
v)

Step 1: Create the populace of outcome Mi, i = 1
Step 2: Check out the populace, period 1, h = 0
Step 3: Choose the best outcome, Mbest and fix Mbest1 = Mbest
Step 4: Redo
Step 5: Obtain a new way out Mnew = Mi for the worker bees and to get them.
Step 6: Use the greedy selection method for the worker bees.
Step 7: Give each result a grade, and then choose the best one. Step 8: Find the probability Pi

of the solution Mi.
Step 9: With P1 as a starting point, generate a fresh outcome Mi for the onlookers.
Step 10: Use the greedy selection method to the onlookers.
Step 11: If the scout’s result has been cancelled, then proceed with a newly created result Mi.
Step 12: Keep in mind the M new conclusion you’ve reached thus far.
Step 13: Put h = h+ 1 period = period + 1.
Step 14: Until (the end condition has been met, i.e., period = MCN)

Table 7. Effect of λ, α, ϑ on (TEC∗, γ∗
b , γ

∗
v) using ABC

Parameters (TEC∗, γ∗
b , γ

∗
v )

Cost set 1 Cost set 2 Cost set 3
3.1 (119.5598,2.2427,1.2223) (92.0488,2.3593,1.3014) (55.7679,2.4160,1.4387)

λ 3.2 (122.6683,2.3045,1.2499) (94.4192,2.3996,1.3604) (57.0901,2.4828,1.4659)
3.3 (125.8635,2.3858,1.3600) (96.7861,2.4375,1.3481) (58.4615,2.4317,1.6318)

7.1 (120.1313,2.3167,1.2099) (92.4937,2.3913,1.3366) (56.0339,2.4163,1.4378)
α 7.2 (120.7002,2.2739,1.2231) (93.0356,2.4732,1.3801) (56.3505,2.4116,1.3436)

7.3 (121.2659,2.3815,1.2623) (93.3759,2.4001,1.3121) (56.5631,2.4527,1.4477)

5.1 (120.1940,2.2635,1.2215) (92.5422,2.3782,1.3066) (56.0530,2.4173,1.4412)
ϑ 5.2 (120.2545,2.2691,1.4707) (92.5889,2.3722,1.3167) (56.0715,2.4102,1.4529)

5.3 (120.3128,2.0273,1.0807) (92.6340,2.3811,1.3066) (56.0893,2.4221,1.4428)

to a large number of research analysts since it has a wide range of applications, including those
in the fields of code breaking, data centres, and electrical circuit design, amongst others. They
have made use of GA in order to cut down on the costs associated with an interruptive strategy by
introducing the concept of state-based bulk service, in addition to varying vacations and shifting
work hours. In order to attain the optimal values of all of the cost elements described before,
this methodology is implemented in research studies. In algorithm 3, the pseudo code for the
algorithmic sequence of steps that constitutes GA is presented. For performing GA optimiza-
tion, Table 8 show the effect of cost elements as Sh, Sb, Sv, Sf , Q = 30, b = 0.2, η(x) = 6,
γb(x) = 0.6, γv(x) = 0.5 and R∗(λ) = 4.

Algorithm 3 Pseudo Code of GA Algorithm
INPUT: Objective function =TEC(γb, γv),
OUTPUT: The cost function’s value TEC(γ∗

b , γ
∗
v)

Step 1: Establishing a base population
Step 2: for population size do
Step 3: execute phases
Step 4: if elitism then
Step 5: population[0] =fittest
Step 6: end
Step 7: end
Step 8: return fittest
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Table 8. Effect of λ, α, ϑ on (TEC∗, γ∗
b , γ

∗
v) using GA

Parameters (TEC∗, γ∗
b , γ

∗
v )

Cost set 1 Cost set 2 Cost set 3
3.1 (119.5591,2.2480,1.2162) (92.0488,2.3595,1.3020) (55.7672,2.4010,1.4367)

λ 3.2 (122.6683,2.3030,1.2499) (94.4139,2.4197,1.3379) (57.0875,2.4534,1.4749)
3.3 (125.7669,2.3578,1.2836) (96.7708,2.4375,1.3737) (58.4015,2.5054,1.5129)

7.1 (120.1313,2.2616,1.2191) (92.4937,2.3736,1.3052) (56.0339,2.4154,1.4401)
α 7.2 (120.7002,2.2751,1.2221) (92.9360,2.3877,1.3083) (56.2991,2.4296,1.4435)

7.3 (121.2659,2.2885,1.2250) (93.3759,2.4019,1.3117) (56.5628,2.4437,1.4413)

5.1 (120.1940,2.2635,1.2203) (92.5422,2.3755,1.3064) (56.0530,2.4173,1.4413)
ϑ 5.2 (120.2547,2.2603,1.2226) (92.5889,2.3774,1.3077) (56.0715,2.4192,1.4425)

5.3 (120.3128,2.2671,1.2226) (92.6340,2.3792,1.3088) (56.0893,2.4209,1.4436)

(a) TEC vs γb, γv using PSO (b) TEC vs γb, γv using ABC

(c) TEC vs γb, γv using GA

Figure 7. TEC vs γb, γv

7.4 Comparative analysis of PSO, ABC, and GA

Here we evaluate the MATLAB implementations of three different cost-finding algorithms: the
genetic algorithm (GA), the artificial bee colony (ABC), and the particle swarm optimization
(PSO) to see which yields the best results. We consider three distinct cost sets in Table 5 and
three distinct pairs of optimum parameters (λ, α, ϑ). We next iteratively execute the MATLAB
code corresponding to each of the aforementioned algorithms. Therefore, we have continued
this procedure and created Table 6-8. We discovered that, the results from all three programmes
were very similar to one another. As a result, the best solutions and associated costs for these
three techniques are quite close to one another. This proves that the aforementioned heuristics
provide dependable (local) optimal solutions.
As can be seen in Tables 6-8, the maximum number of iterations required by GA is significantly
lower than that required by other methods. We are able to determine the ideal cost using any
approach; however, if we compare these techniques for our model, GA is the strategy that is
most suited to determining the optimal cost. We discovered that the GA technique is the best
approach out of all of these strategies since it offers a lot of benefits to its users. It is simple to
configure, needs only a few parameters, performs well in global searches, and is unaffected by
the scaling of design variables. GA has a propensity to result in a rapid and early convergence
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(a) Convergence vs Iteration using PSO (b) Convergence vs Iteration using ABC

(c) Convergence vs Iteration using GA

Figure 8. Convergence vs Iteration

in mid-optimal spots (having poor local search ability), in addition to a slow convergence in a
region where the search has been improved.

7.5 Convergence analysis of PSO, ABC and GA

When we employ a technique for optimization, whether it be PSO, ABC, or GA, the particles
are not in a stable state at the beginning of the process. It is essential to determine whether or
not the particle returns to its normal state and whether or not it will continue to search for a more
optimal solution. As a result, convergence is an essential component of cost analysis. In Fig.
7 presents the convexity and optimality of the cost function with regard to the three cost sets
that are taken into consideration in the optimization analysis. This figure was generated using
the PSO, ABC, and GA optimization methods. In addition, we make use of an optimization
methodology, and whether we use PSO, ABC, or GA, the particles do not begin the process in a
state of stability. Because of this, it is essential to determine whether or not the particle returns
to its normal state and whether or not it will search for a more optimal solution. As a result,
convergence is an essential component of cost analysis. According to Fig. 8, the elements are
converge to the optimal cost in GA the fastest, with less convergence in PSO and ABC. This
occurs over the course of the same amount of time.
From the convergent nature of these optimization techniques, which was previously described,
we can derive the following inferences:

• The total costs of the parameters that were derived by PSO, ABC, and GA, as well as the
optimal values, are the same.

• According to the findings of the research, the model that we supplied is consistent with the
actual situations. The cost of the analyzers brings this system up to its total cost, which will
help fix some of their economic concerns to some amount.

• The cost benefit analysis that was produced can be relied upon to a significant level under
the current circumstances, which not only demonstrate the logic of our model but also
assist network administrators and specialists in reducing the difficulty of the challenge that
blocking poses to specific telecommunication services.
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8 Conclusion

This article explores a batch arrival feedback retrial queue system with balking and variable
server capacity, operating under a working vacation scenario. Under certain conditions, the sys-
tem can achieve stability. The PGF approach and supplementary variable technique are used to
compute the PGF of the system’s consumer size and its behavior under different service states.
The numerical findings provide insights into how various system parameters impact its perfor-
mance. The model, designed for real-time systems with staged service, is validated using the soft
computing approach ANFIS to evaluate performance and cost functions. Incorporating fuzzy pa-
rameters through ANFIS enhances the realism of the model for queueing systems. Furthermore,
optimization algorithms like PSO, ABC, and GA are employed to compute costs, allowing for
a comparison of their effectiveness. The study’s results can inform the design of various sys-
tems such as computer networks, packet switching networks, manufacturing lines, and postal
systems. Future research could include studying bulk service queueing systems with prioritized
consumers under a working vacation setup, as well as exploring transient solutions for such
systems.
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Appendix A

Theorem 8.1. The embedded Markov chain {Gn;n ∈ N} is ergodic iff Λ < Q for our system
will be stable, where Λ = ᾱ− λbE(I)E(H) +E(I)(1 −R∗(λ)).

Proof. Foster’s [25] criteria, which claim that the chain {Gn;n ∈ N} is an irreducible and
aperiodic chain, may be used to easily confirm the required condition of ergodicity. Assuming
a non-negative measure e(r), r ∈ M and δ > 0, the Markov chain is ergodic, and mean drift
νr = E[e(um+1)− e(um)/vm = r] with a limited exception r′s, r ∈ M and νr ≤ −δ ∀ r ∈ M,.
In this case, we’re focusing on the function e(r) = r. Next, we obtain

νr =

{
ᾱ− λbE(I)E(H)−Q, if r=0
ᾱ− λbE(I)E(H) +E(I)(1 −R∗(λ))−Q, if r=1,2,...

In this case, ᾱ− λbE(I)E(H) +E(I)(1−R∗(λ)) < Q is undoubtedly a prerequisite for ergod-
icity.
As said by Humblett et al. [24], if the Markov chain {Gn;n ∈ N} matches Kaplan’s status,
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specifically νr < ∞ ∀ r ≥ 0 and ∃ r0 ∈ M such that νr ≥ 0 for r ≥ r0, the necessary condition
is satisfied. U = (vqr) is the the unit-step transition matrix of {Gn;n ∈ N} for r < q − j and
q > 0. The Markov chain’s non-ergodicity is suggested by Λ ≥ Q.
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