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Abstract The object of the present paper is to study some properties of (LC'S),,-manifolds
whose metric is a conformal Yamabe soliton. We define certain characteristics of (LCS),-
manifolds at the point where the soliton stabilizes. Further, few specific curvature conditions of
(LC'S),,-manifolds that accept conformal Yamabe solitons were examined.

1 Introduction

Shaikh [1] in 2003 presented the concept of Lorentzian concircular structure manifolds (briefly,
(LCS),,-manifolds). Shaikh and Baishya[2, 3] examined the use of (LC'S),-manifolds in cos-
mology and general theory of relativity in 2005 and 2006. Further, M. Ateceken[4], S. K. Hui[5],
D. Narain[6], S.K. Yadav[7, 8, 9], A.A. Shaikh[10, 11], S. Roy[12, 13] worked on (LCS),-
manifolds.

In differential geometry and mathematical physics particularly in the study of Riemannian man-
ifolds the concept of the Yamabe flow was first presented by Hamilton[ 14] which is defined as
follows:

o glt) = —rg(t)

where r is the scalar curvature of the metric g(¢). A Yamabe soliton is a Riemannian mani-
fold equipped with a conformal vector field that satisfies certain differential equation. Yamabe
solitons are solutions to the Yamabe flow equation that move by diffeomorphisms and dilations
without changing shape[15]. More formally, a Riemannian manifold (M, g) is called a Yamabe
soliton if there exists a vector field V' on M and a constant A\ such that the following equation
holds:

£yvg+2(r—Ng=0, (1.1)

where £y is the Lie derivative with respect to the vector field V, r is the scalar curvature of
metric g and A is a constant.

The concept of Conformal Yamabe soliton was introduced by Roy et al.[12] and further stud-
ied by Jhantu Das[16], Haseeb et al.[17, 18]. Conformal Yamabe solitons are interesting objects
in Riemannian geometry because they provide solutions to the Yamabe soliton equation with the
additional geometric structure of conformal invariance.

Definition 1.1. A Riemannian or pseudo- Riemannian manifold (M, g) of dimension n is said to
admit Conformal Yamabe soliton if

2
Leg + 2>\—2r—(p+g) g=0, (1.2)



Conformal Yamabe Solitons on (LC'S),,-Manifolds 643

for all vector fields X, Y where £ is the Lie derivative of the metric ¢ along the vector field V,
r is the scalar curvature, A is a constant and p is a scalar non-dynamical field (time dependent
scalar field or conformal pressure).

The Conformal Yamabe soliton has been referred to as shrinking if A < 0, expanding if A > 0,
and steady for A = 0.

In a Riemannian manifold (M™", g) the Riemannian-Christoffel curvature tensor R[19, 20], the
conharmonic curvature tensor HI[21, 22], the projective curvature tensor P[23], the concircular
curvature tensor C[24, 25] and the W)-curvature tensor W>[24, 26] are defined by:

R(X,Y)Z = VxVyZ - VyVxZ - Vix 7, (1.3)
HXY)Z = RX.Y)Z = 55 la(Y. Z)QX (X.)Q¥

+S(Y, 2)X — S(X, 2)Y)], (1.4)

P(X.Y)Z =R(X,Y)Z — H[Q(QY’ Z)X - 9(QX, 2)Y], (1.5)

C(X,Y)Z = R(X,Y)Z — m[g(lﬂ 2)X — g(X, 2)Y], (1.6)

Wa(X,Y)Z = R(X,Y)Z + (nil)[g(X, 2)QY — g(Y, Z)QX], (1.7)

where () represents the Ricci operator and is defined by S(X,Y) = g(QX,Y), S is the Ricci
tensor, and the scalar curvature is represented by r = tr(S), where tr(S) represents the trace of
Sand XY, Z € x(M), x(M) is the Lie algebra of vector fields of M.

The outline of the article goes as follows:

In section 2, after a brief introduction we are concerned with the rudiments of (LC'S),,-manifolds.
In section 3, we have studied Conformal Yamabe soliton on (LC'S),-manifolds. Here, we ex-
amined that if when (LC'S),-manifold admits conformal Yamabe soliton, then the manifold
becomes K-(LCS),-manifold and Ricci symmetric. In this section, we have also shown that
(LCS),,-manifold admitting Conformal Yamabe soliton is &-Projectively flat, £-Concircularly
flat and ¢-Conharmonically flat if and only if the soliton becomes steady. In the last Section, we
studied curvature properties on (LCS),,-manifold admitting conformal Yamabe soliton. Here,
we have some findings regarding the conformal Yamabe soliton that satisfy the conditions of the
following type:

S, X)-R=0,5(¢X) - W, = 0. Also, we have found that if the manifold admits Conformal
Yamabe soliton then R(&, X ) - S = 0and W>(§,X) - S =0.

2 Preliminaries

Let (M, g) be an n-dimensional Lorentzian manifold that admits a unit timelike concircular vec-
tor field £ called the structure vector field of the manifold. Then we have g(¢&,€) = —1.

Since £ is a unit concircular vector field, g(X, &) = n(X) implies the existence of a nonzero
1-form n. Also ¢ satisfies V€ = a(l + n ® £) with a nowhere zero smooth function « on M,
verifying the equation Vxa = (Xa) = da(X) = pn(X) for p € C°° (M) where V is the Levi-
Civita connection of g and X is a vector field. Moreover, in this case, ¢ is the (1, 1) tensor field
denoted by ¢ := éVf .

The Lorentzian para-Sasakian manifold notion was first proposed by K. Matsumoto [27]. Ac-
cording to A. A. Shaikh, the Lorentzian manifold M, the unit timelike concircular vector field
&, a l-form n, and a (1, 1) tensor field ¢ are collectively referred to as a Lorentzian concircular
structure manifold (M, g, &, n, ¢, «)[28, 29]. In an n-dimensional (LC'S),,-manifold the follow-
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ing relations had denoted by (LC'S),,
@ =I+n®En(E)=-1,06=0,n0¢=0, Q.1
9(¢X,0Y) = g(X,Y) +n(X)n(Y) and ¢(¢X,Y) = g(X,8Y), (2.2)
(Vxo)Y = a[g(X, V)€ + 2n(X)n(Y)E + n(Y)X]. (2.3)
forany X,Y € x(M).

S ~—

X = évxg, (2.4)

n(Vx§) =0,Vel =0, (2.5)

R(X,Y)Z = (” = p)lg(V, 2)X — g(X, 2)Y], (2.6)

R(X,Y)E= (o = p)[n(Y)X - n(X)Y], 2.7

R(&X)Y = (o - p)[g(X, Y)E —n(Y)X], 2.8)

N(R(X,Y)Z) = (o = p)n(X)g(Y, Z) = n(Y)g(X, Z)]. (2.9)
forany X,Y,Z € x(M).

n(R(X,Y)€) =0, (2.10)

S(X,Y) = (a? = p)(n - 1)g(X,Y), (2.11)

r=n(n—1)(a® - p), (2.12)

Vn=alg+n®n),Ven =0, (2.13)

Lep=0,£n=0,£cg=2Vn=2a(g+n3n), (2.14)

where R is the Riemannian curvature tensor, S is the Ricci tensor, r is the scalar curvature, V is
the Levi-Civita connection associated with g and £, denotes the Lie derivative along the vector
field &.

3 Conformal Yamabe soliton on (LC'S)),,-manifold

Let (M,g,¢,1m, ¢, «) be an n-dimensional (LC'S),,-manifold. Consider the conformal Yamabe
soliton on M as:

%fgg: [T—A+(§+Hg. 3.1)
Then from (2.14), we get
apuﬂv+mmmm]=P—A+§+;ﬂmem (3.2)
which implies
a0 - afatnr) - anton) o (3.3)

Taking Y = £ in the above equation and using (2.1), we get,
p 1
r—)\—i-(i—kﬁ)fa n(X)+ an(X) =0, (3.4)
From (3.4), we have

l:?”—>\+(p+l):|77(X) =0. (3-5)



Conformal Yamabe Solitons on (LC'S),,-Manifolds 645

Since n(X) # 0, so we get,
1
r=x—LE+-2) (3.6)
Using the above equation in (3.1), we have,
£eg=0. (3.7
Thus, ¢ is a killing vector field and consequently, M is a K-(LCS),-manifold. Since X is

constant, the scalar curvature r is also constant. This brings us to the following theorem:

Theorem 3.1. : If an (LCS),,-manifold (M, g,&,n, ¢, ) admits a conformal Yamabe soliton
(g,€), & being the Reeb vector field of the Lorentzian concircular structure, then the scalar cur-
vature is constant and the manifold is a K-(LC'S),,-manifold.

Now from (2.12) and (3.6), we get,
1
)\I(§+ﬁ)+n(n—l)(a2—p). (3.8)
Then using (2.11) and (3.8), we obtain,

S(X,Y) = ;[/\—(er

)|t (39)
for all vector fields X,Y on M.
This brings us to the following

Proposition 3.2. If an (LCS),-manifold (M, g,&,n, ¢, «) admits a conformal Yamabe soliton
(g,€),¢&, then the manifold becomes n-Einstein manifold.

Now replacing the expression of .S from (3.9) in

(VxS)(Y, Z) = X(S(Y, Z)) — S(VxY,Z) — S(Y,VxZ)

we get,
1 1
(x)v.2) = 1 |2 G+ 0| (Vxa)v.2), (3.10)
which implies that,
vSs=0. (3.11)

This brings us to the following:

Proposition 3.3. If an (LCS),-manifold (M, g,&,n, ¢, «) admits a conformal Yamabe soliton
(g,€),&, then the manifold becomes Ricci symmetric.

Again, let the Ricci tensor S of the (LC'S),,-manifold be n-recurrent i.e.,

VS=n®3J5,
which implies that,
(Vx)(Y. Z) = n(X)S(Y, Z), (3.12)
for all vector fields X,Y and Z on M. Then using (3.11) and (3.9), we get
1 p 1 _
n[A_ (54‘ n)}TI(X)Q(Ya Z) =0, (3.13)

[A—(er)}n(X) =0. (3.14)

Asn(X) # 0, we have A — (% + 1) = 0. Also from (3.6), we get 7 = 0.
This brings us to the following:
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Proposition 3.4. Let (M, g,£,n, ¢, «) be an (LCS),,-manifold, admitting a conformal Yamabe
soliton (g, &), €. If the Ricci tensor S of the manifold is n-recurrent, then the soliton is steady
and the manifold becomes flat.

Let us assume that a symmetric (0, 2) tensor field h = £¢g — 2rg is parallel with respect to the
Levi-Civita connection associated with g.
Then

h(&,€) = £eg(£,€) — 2rg(€, ) = 2, (3.15)

implies that,

1
A= Fh(&6). (3.16)
Now h is parallel with respect to g, then from[30], we get,
MX,Y) = ~h(§€)g(X,Y), (3.17)

for all vector fields X,Y on M. which leads to,
1
Leg(X,Y) =2 r—)\—i-(g—i-ﬁ) g(X,Y). (3.18)

With this, we may assert the following theorem:

Theorem 3.5. Let (M, g,&,n, ¢, «) be an (LCS),-manifold. Assume that a symmetric (0,2)
tensor field h = £¢g—2rg is parallel with respect to the Levi-Civita connection of g. Then (g, §)
yields a conformal Yamabe soliton on M.

‘We know,
(VeQ)X = VeQX — Q(VeX), (3.19)
and
(VeS)(X,Y) =¢S(X,)Y) - S(VeX,)Y) - S(X,VeY), (3.20)
for any vector fields X,Y on M.
Now using (3.9) we obtain,
p 1
—(z+ )X 21
[A (5 + n)] : (3.21)
for any vector fields X on M.
Then in view of (3.9) and (3.21), the equations (3.19) and (3.20) become
(Ve@Q)X =0 and (3.22)
(VeS)(X,Y) =0, (3.23)

respectively, for any vector fields X,Y on M.
This leads us to the following conclusion:

Theorem 3.6. Let (M, g,&,1, ¢, ) be an (LC'S),,-manifold, admitting a conformal Yamabe soli-
ton (g,€), € being the Reeb vector field. Then Q and S are parallel along &, where Q is the Ricci
operator, defined by S(X,Y) = g(QX,Y) and S is the Ricci tensor of M.

Also in view of (3.21), we obtain
(VxQ)Y = VxQY — Q(VxY) =0, (3.24)

for any vector fields X,Y on M.
And we have
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Corollary 3.7. Let (M, g,&,n,¢,a) be an (LCS),,-manifold, admitting a conformal Yamabe
soliton (g, ), & then Q is parallel to any arbitrary vector field on M.

Let a conformal Yamabe soliton is defined on an n-dimensional (LC'S),,-manifold M as,
1

1
2£vg= {T—)\+(p+n)]g7 (3.25)

2

where £ g denotes the Lorentzian derivative of the metric g along a vector field V and r, A is as
defined in (1.1).
Let V' be pointwise co-linear with £ i.e., V' = b€ where b is a function on M. Then the equation
(3.25) becomes,

freg(X,¥) =2 = Ak (5 )]oxy), (3.26)

for any vector fields X, Y on M.
Applying the property of Lie derivative and Levi-Civita connection we have,

b9(VxE¥)  (X0)(Y) +bg(T5€, X) + (V0 C0) =27 = A (5 + )] oCx.v),
(3.27)

Using (2.4), the above equation reduces to,
1
bag(6X.Y) + (XD(Y) + bag 6, X) + (YO)(X) = 2| = X+ (§ + )| ax.¥). 628)

Taking Y = £ in the above equation, we obtain,

1
—Xb+ (£b)n(X) —2[r—)\+(g+n)]n(X). (3.29)
Again putting X = £ in the above equation, we obtain,
T
Eb=r )\+(2+n), (3.30)
Then using (3.30), (3.29) becomes,
p 1
Xb:—[(r—)\+(2+n)>n(X)}. (331)
Applying exterior differentiation in (3.31), we have,
ot (P Hlan =
[7 A+(2+n)}dn_0. (3.32)

Now in an n-dimensional (LC'S),,-manifold we have,

(dn)(X,Y) = X(n(Y)) - Y(n(X)) —n([X,Y]),
which implies
(dn)(X,Y) = g(Y,Vx§) — g(X, Vy§)
= ag(Y, X) +n(X)n(Y) — ag(¥, X) + n(X)n(Y)
—0. (3.33)

Hence the 1-form 7 is closed.
Then using the above equation, (3.32) implies that, either » # X or = A. Now if r # A then
from (3.25), we have,

,€Vg:2{r—)\+(§+:l)}g (3.34)
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which implies V is a conformal killing vector field. Again if r = A then from (3.31), we get,
Xb=0, (3.35)
implies that b is constant. This brings us to the following theorem:

Theorem 3.8. Let (M, g,£,m, ¢, ) be an (LC'S),,-manifold, admitting a conformal Yamabe soli-
ton (g,V),V being a vector field on M. If V is pointwise co-linear with £ then either V is a
conformal killing vector field, provided r # )\, or V is a constant multiple of &, where £ being
the Reeb vector field of the Lorentzian concircular structure, v is the scalar curvature and ) is a
constant.

Also if r = )\ then from (3.25), we obtain,
£vg =0, (3.36)
implies that V' is a killing vector field. Then we have,

Corollary 3.9. Let (M, g,&,1,0,0) be an (LCS),,-manifold, admitting a conformal Yamabe
soliton (g,V'),V being a vector field on M. If V is pointwise co-linear with £ and r = X then
V' becomes killing vector field, where £ being the Reeb vector field of the Lorentzian concircular
structure, r is the scalar curvature and )\ is a constant.

From the definition of Projective curvature tensor (1.5), defined on an n-dimensional (LC'S),,-
manifold, we have,

P(X,Y)Z =R(X,Y)Z — (nil)[S(Y, Z)X — S(X,2)Y], (3.37)
for any vector fields X,Y and Z on M.
Putting Z = £, we get
1
P(X,Y)E = ROX V)6 = (5 S0 X = 5(X, 97 (3.38)
Using (2.7) and (3.9), we obtain,
1 p 1

P(X,Y)E= |(a® = p) — 5 ()X —n(X)Y]. (339

-0 a2t
Again using (3.8), we get,

P(X,Y)¢=0. (3.40)
This brings us to the following:

Proposition 3.10. An (LCS),,-manifold (M, g,&,n, ¢, o) admitting a conformal Yamabe soliton
(9,€),¢ is &-Projectively flat.

From the definition of concircular curvature tensor (1.6), defined on an n-dimensional (LC'S),,-
manifold, we have,

CXY)Z = RIXY)Z = s lo(V 2)X = g(X 2)Y ], (3.41)
for any vector fields X, Y and Z on M.
Putting Z = £ we get,
C(X,Y)E = R(X,Y)¢ ~ ﬁ[g(x X — g(X, )Y, (3.42)

Using (2.7) and (3.9), we obtain,

~ 1 1
CXYE= (@ =p) = R =G+
Again using (3.8), we get,

C(X,Y)¢=0. (3.44)

This brings us to the following:
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Proposition 3.11. An (LCS),,-manifold (M, g,&,n, ¢, &) admitting a conformal Yamabe soliton
(g,€), € being the Reeb vector field of the Lorentzian Concircular structure, is &-concircularly

flat.

From the definition of conharmonic curvature tensor (1), defined on an n-dimensional (LC'S),,-
manifold, we have,

H(X.Y)Z = RX.Y)Z = = [alY. Z)QX ~9(X. 2)QY
+S5(Y,2)X — S(X,2)Y], (3.45)
for any vector fields X, Y and Z on M.
Putting Z = £ we get,
1

+5(Y,6)X — S(X,)Y]. (3.46)

Using (2.7), (3.9) and (3.21), we obtain,

A= (0= - g G Dl )X —nxvl, G4
Again using (3.8), we get,
A = | gy - G+ Dl nx —nevl cay

This implies that H(X,Y )& = 0 if and only if A = 0.
This brings us to the following:

Proposition 3.12. An (LCS),,-manifold (M, g,&,m, ¢, &) admitting a conformal Yamabe soliton
(g,¢), & is £-conharmonically flat if and only if the soliton is steady.

4 Curvature properties on (LC'S),,-manifold admitting Conformal Yamabe
soliton

We know,
R(§,X) - S =S8(R(&X)Y, Z) + S(Y, R({, X)Z), (4.1)

for any vector fields X, Y and Z on M.
Using (2.8), we obtain,

R(,X)-S=8((c?-p)(9(X,V){—n(YV)X, Z)
+5(Y, (0 = p)g(X, Z)¢ — n(Z2)X)). 4.2)

Then using (3.9), we get,

Rie.x)-5 = 00 4 Lgevinz) - o znr)
+9(X. Z(¥) - 9(X.¥)n(2)]. @3)

which implies that
R(,X)-S=0.

With this, we may assert the following theorem:
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Theorem 4.1. [fan (LCS),,-manifold (M, g,&, n, ¢, o) admits a conformal Yamabe soliton (g, &), &
being the Reeb vector field of the Lorentzian concircular structure, then R(£,X)-S =0, i.e., the
manifold is £-Semi Symmetric.

Again the condition S(£, X) - R = 0 implies that,

+ S(X, Z)R(Y, W — S(¢, Z)R(Y, X)W + S(X,W)R(Y, Z)¢ — S(&, W)R(Y, Z) X
=0. (4.4)

for any vector fields X, Y, Z and W on M.
Taking the inner product with £, the above equation becomes,

= S(X, R(Y, Z)W) = S(&, R(Y, Z)W)n(X) + S(X, Y)n(R(¢, 2)W)
= S Y)n(R(X, 2)W) 4+ S(X, Z)n(R(Y, )W) — S(&, Z)n(R(Y, X)W)
+ S(X, Wn(R(Y, Z)§) = S(EW)n(R(Y, Z)X) = 0. (4.5)

Replacing the expression of S from (3.9) and taking Z = ¢, W = &, we get,

N=9(X, R(Y, §)€) = n(R(Y, )E)n(X) + g(X, Y)n(R(&, §)EE)
+

—n(Y)n(R(X,€)E) + n(X)n(R(Y, §)E) — n(§)n(R(Y, X))
+n(X)n(R(Y,£)E) —n(€)n(R(Y,£)X)] =0, (4.6)

Now using (2.7), (2.9), (2.10), we get on simplification,

D @t g v) + nxmr) =0 @)

Using (2.2), the above equation becomes,

D2y Ljgexev) =0 *8)

for any vector fields X, Y on M.
This implies that,

(a® = p) p 1,
- A — (§+5)] =0, 4.9)
Then using (3.8), we get,
p-G+DP
n2(n—1)

implying that A = 0.
Hence using (3.6), we get r = 0.
With this, we have the following theorem:

Theorem 4.2. Ifan (LCS),,-manifold (M, g,&,n, ¢, &) admits a conformal Yamabe soliton (g, €), &
satisfies S(&, X) - R = 0 then the manifold becomes flat and the soliton is steady, where R is the
Riemannian curvature tensor and S is the Ricci tensor.

We know,
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for any vector fields X,Y and Z on M.
Replacing the expression of S from (3.9) and using the definition of W,-curvature tensor from
(1.7), we get,

Wa(eX) -5 = [ 1= &+ Dl atrie. 0¥ + a6, VX - o(x. 2008 2)
+ Ul[/\ - (g + Tll)]}g(Y,R(&X)Z + 196 2)QX — g(X, 2)Q¢]). (411

Now using (2.8) and g(QX,Y) = S(X,Y) after simplifying, we get

Wa(eX) -5 = |~ Lsh = (5 + )| s, 2)-

S(& 2)9(X,Y) +n(2)S(X,Y) = S(§,Y)g(X, 2)]. (4.12)
Then using (3.9) the above equation becomes,
Wh(£,X)-5=0. (4.13)
With this, we may assert the following theorem:

Theorem 4.3. [fan (LCS),,-manifold (M, g, &, n, ¢, o) admits a conformal Yamabe soliton (g, ), &
then Wr(€,X)-S =0.

Again the condition S(¢, X) - W, = 0 implies that,

for any vector fields X,Y, Z and V on M. Taking the inner product with &, the above equation
becomes,

= S(X, W (Y, 2)V) = S(§, WL (Y, Z)V)n(X) + S(X,Y)n(Wa(&, 2)V)
+ S(X, V)In(Wa(Y, 2)€) — S(&,V)n(Wa(Y, Z)X) = 0. 4.15)

Replacing the expression of S from (3.9) and taking Z = £, V' = ¢, we get,

1
n 2

= n(Y)n(Wa(X,€)¢) + n(X)n(Wa(Y, €)E) — n(§)n(Wa(Y, X)¢)

+ n(X)n(Wa(Y,£)E) — n(E)n(Wa(Y,£)X)] = 0. (4.16)

Now using (1.7), (2.7), (2.9) and (2.11), we obtain on simplification,

P %)[—g()@ Wh (Y, €)E) —n(Wa(Y,)E)n(X) + g(X,Y)n(Wa(£,£)€)
—n(
=0

L= (B DoY) +0(X)n(¥) — (0~ p)g(X,Y)

n 2
— (& = p)n(X)n(Y)] = 0. 4.17)
implies that
1 1
~= (5 + (1= a4+ p)][g(X, Y) +(X)n(Y)] = 0. (4.18)
Using (2.2), the above equation becomes,
1 1
SA= G D= o 4 p)lg(eX.0Y) =0, 4.19)



652

E Jeevana Jyothi and V Venkatesha

for any vector fields X,Y on M.
This implies that,

A=t Do o) =0,

Then either A = 0, ora? — p = 1.
Now if a® — p = 1, then from (2.12), we have,

r=n(n—1).

With this, we may assert the following theorem:

Theorem 4.4. If an (LCS),,-manifold (M, g,&,n, ¢, ) admitting a conformal Yamabe soliton
(g,¢), € satisfies S(&, X) - W, = O then either the soliton is steady, or r = n(n — 1).
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