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Abstract The object of the present paper is to study some properties of (LCS)n-manifolds
whose metric is a conformal Yamabe soliton. We define certain characteristics of (LCS)n-
manifolds at the point where the soliton stabilizes. Further, few specific curvature conditions of
(LCS)n-manifolds that accept conformal Yamabe solitons were examined.

1 Introduction

Shaikh [1] in 2003 presented the concept of Lorentzian concircular structure manifolds (briefly,
(LCS)n-manifolds). Shaikh and Baishya[2, 3] examined the use of (LCS)n-manifolds in cos-
mology and general theory of relativity in 2005 and 2006. Further, M. Ateceken[4], S. K. Hui[5],
D. Narain[6], S.K. Yadav[7, 8, 9], A.A. Shaikh[10, 11], S. Roy[12, 13] worked on (LCS)n-
manifolds.
In differential geometry and mathematical physics particularly in the study of Riemannian man-
ifolds the concept of the Yamabe flow was first presented by Hamilton[14] which is defined as
follows:

∂

∂t
g(t) = −rg(t),

where r is the scalar curvature of the metric g(t). A Yamabe soliton is a Riemannian mani-
fold equipped with a conformal vector field that satisfies certain differential equation. Yamabe
solitons are solutions to the Yamabe flow equation that move by diffeomorphisms and dilations
without changing shape[15]. More formally, a Riemannian manifold (M, g) is called a Yamabe
soliton if there exists a vector field V on M and a constant λ such that the following equation
holds:

£V g + 2(r − λ)g = 0, (1.1)

where £V is the Lie derivative with respect to the vector field V, r is the scalar curvature of
metric g and λ is a constant.

The concept of Conformal Yamabe soliton was introduced by Roy et al.[12] and further stud-
ied by Jhantu Das[16], Haseeb et al.[17, 18]. Conformal Yamabe solitons are interesting objects
in Riemannian geometry because they provide solutions to the Yamabe soliton equation with the
additional geometric structure of conformal invariance.

Definition 1.1. A Riemannian or pseudo- Riemannian manifold (M, g) of dimension n is said to
admit Conformal Yamabe soliton if

£ξg +

[
2λ− 2r − (p+

2
n
)

]
g = 0, (1.2)
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for all vector fields X,Y where £V is the Lie derivative of the metric g along the vector field V ,
r is the scalar curvature, λ is a constant and p is a scalar non-dynamical field (time dependent
scalar field or conformal pressure).
The Conformal Yamabe soliton has been referred to as shrinking if λ < 0, expanding if λ > 0,
and steady for λ = 0.

In a Riemannian manifold (Mn, g) the Riemannian-Christoffel curvature tensor R[19, 20], the
conharmonic curvature tensor H[21, 22], the projective curvature tensor P [23], the concircular
curvature tensor C̃[24, 25] and the W2-curvature tensor W2[24, 26] are defined by:

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, (1.3)

H(X,Y )Z = R(X,Y )Z − 1
(n− 2)

[g(Y,Z)QX − g(X, )QY

+S(Y, Z)X − S(X,Z)Y ], (1.4)

P (X,Y )Z = R(X,Y )Z − 1
(n− 2)

[g(QY,Z)X − g(QX,Z)Y ], (1.5)

C̃(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ], (1.6)

W2(X,Y )Z = R(X,Y )Z +
1

(n− 1)
[g(X,Z)QY − g(Y,Z)QX], (1.7)

where Q represents the Ricci operator and is defined by S(X,Y ) = g(QX,Y ), S is the Ricci
tensor, and the scalar curvature is represented by r = tr(S), where tr(S) represents the trace of
S and X,Y, Z ∈ χ(M), χ(M) is the Lie algebra of vector fields of M .

The outline of the article goes as follows:
In section 2, after a brief introduction we are concerned with the rudiments of (LCS)n-manifolds.
In section 3, we have studied Conformal Yamabe soliton on (LCS)n-manifolds. Here, we ex-
amined that if when (LCS)n-manifold admits conformal Yamabe soliton, then the manifold
becomes K-(LCS)n-manifold and Ricci symmetric. In this section, we have also shown that
(LCS)n-manifold admitting Conformal Yamabe soliton is ξ-Projectively flat, ξ-Concircularly
flat and ξ-Conharmonically flat if and only if the soliton becomes steady. In the last Section, we
studied curvature properties on (LCS)n-manifold admitting conformal Yamabe soliton. Here,
we have some findings regarding the conformal Yamabe soliton that satisfy the conditions of the
following type:
S(ξ,X) ·R = 0, S(ξ,X) ·W2 = 0. Also, we have found that if the manifold admits Conformal
Yamabe soliton then R(ξ,X) · S = 0 and W2(ξ,X) · S = 0.

2 Preliminaries

Let (M, g) be an n-dimensional Lorentzian manifold that admits a unit timelike concircular vec-
tor field ξ called the structure vector field of the manifold. Then we have g(ξ, ξ) = −1.
Since ξ is a unit concircular vector field, g(X, ξ) = η(X) implies the existence of a nonzero
1-form η. Also ξ satisfies ∇ξ = α(I + η ⊗ ξ) with a nowhere zero smooth function α on M ,
verifying the equation ∇Xα = (Xα) = dα(X) = ρη(X) for ρ ∈ C∞(M) where ∇ is the Levi-
Civita connection of g and X is a vector field. Moreover, in this case, ϕ is the (1, 1) tensor field
denoted by ϕ := 1

α∇ξ.
The Lorentzian para-Sasakian manifold notion was first proposed by K. Matsumoto [27]. Ac-
cording to A. A. Shaikh, the Lorentzian manifold M , the unit timelike concircular vector field
ξ, a 1-form η, and a (1, 1) tensor field ϕ are collectively referred to as a Lorentzian concircular
structure manifold (M, g, ξ, η, ϕ, α)[28, 29]. In an n-dimensional (LCS)n-manifold the follow-
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ing relations had denoted by (LCS)n,

ϕ2 = I + η ⊗ ξ, η(ξ) = −1, ϕξ = 0, η ◦ ϕ = 0, (2.1)

g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y ) and g(ϕX, Y ) = g(X,ϕY ), (2.2)

(∇Xϕ)Y = α[g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X]. (2.3)

for any X,Y ∈ χ(M).

ϕX =
1
α
∇Xξ, (2.4)

η(∇Xξ) = 0,∇ξξ = 0, (2.5)

R(X,Y )Z = (α2 − ρ)[g(Y,Z)X − g(X,Z)Y ], (2.6)

R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ], (2.7)

R(ξ,X)Y = (α2 − ρ)[g(X,Y )ξ − η(Y )X], (2.8)

η(R(X,Y )Z) = (α2 − ρ)[η(X)g(Y,Z)− η(Y )g(X,Z)]. (2.9)

for any X,Y, Z ∈ χ(M).

η(R(X,Y )ξ) = 0, (2.10)

S(X,Y ) = (α2 − ρ)(n− 1)g(X,Y ), (2.11)

r = n(n− 1)(α2 − ρ), (2.12)

∇η = α(g + η ⊗ η),∇ξη = 0, (2.13)

£ξϕ = 0,£ξη = 0,£ξg = 2∇η = 2α(g + η ⊗ η), (2.14)

where R is the Riemannian curvature tensor, S is the Ricci tensor, r is the scalar curvature, ∇ is
the Levi-Civita connection associated with g and £ξ denotes the Lie derivative along the vector
field ξ.

3 Conformal Yamabe soliton on (LCS)n-manifold

Let (M, g, ξ, η, ϕ, α) be an n-dimensional (LCS)n-manifold. Consider the conformal Yamabe
soliton on M as:

1
2
£ξg =

[
r − λ+ (

p

2
+

1
n
)

]
g. (3.1)

Then from (2.14), we get

α

[
g(X,Y ) + η(X)η(Y )

]
=

[
r − λ+ (

p

2
+

1
n
)

]
g(X,Y ), (3.2)

which implies [
r − λ+ (

p

2
+

1
n
)− α

]
g(X,Y )− αη(X)η(Y ) = 0. (3.3)

Taking Y = ξ in the above equation and using (2.1), we get,[
r − λ+ (

p

2
+

1
n
)− α

]
η(X) + αη(X) = 0, (3.4)

From (3.4), we have [
r − λ+ (

p

2
+

1
n
)

]
η(X) = 0. (3.5)
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Since η(X) ̸= 0, so we get,

r = λ− (
p

2
+

1
n
). (3.6)

Using the above equation in (3.1), we have,

£ξg = 0. (3.7)

Thus, ξ is a killing vector field and consequently, M is a K-(LCS)n-manifold. Since λ is
constant, the scalar curvature r is also constant. This brings us to the following theorem:

Theorem 3.1. : If an (LCS)n-manifold (M, g, ξ, η, ϕ, α) admits a conformal Yamabe soliton
(g, ξ), ξ being the Reeb vector field of the Lorentzian concircular structure, then the scalar cur-
vature is constant and the manifold is a K-(LCS)n-manifold.

Now from (2.12) and (3.6), we get,

λ = (
p

2
+

1
n
) + n(n− 1)(α2 − ρ). (3.8)

Then using (2.11) and (3.8), we obtain,

S(X,Y ) =
1
n

[
λ− (

p

2
+

1
n
)

]
g(X,Y ), (3.9)

for all vector fields X,Y on M .
This brings us to the following

Proposition 3.2. If an (LCS)n-manifold (M, g, ξ, η, ϕ, α) admits a conformal Yamabe soliton
(g, ξ), ξ, then the manifold becomes η-Einstein manifold.

Now replacing the expression of S from (3.9) in

(∇XS)(Y, Z) = X(S(Y,Z))− S(∇XY, Z)− S(Y,∇XZ)

we get,

(∇XS)(Y,Z) =
1
n

[
λ− (

p

2
+

1
n
)

]
(∇Xg)(Y,Z), (3.10)

which implies that,

∇S = 0. (3.11)

This brings us to the following:

Proposition 3.3. If an (LCS)n-manifold (M, g, ξ, η, ϕ, α) admits a conformal Yamabe soliton
(g, ξ), ξ, then the manifold becomes Ricci symmetric.

Again, let the Ricci tensor S of the (LCS)n-manifold be η-recurrent i.e.,

∇S = η ⊗ S,

which implies that,

(∇X)(Y, Z) = η(X)S(Y,Z), (3.12)

for all vector fields X,Y and Z on M . Then using (3.11) and (3.9), we get

1
n

[
λ− (

p

2
+

1
n
)

]
η(X)g(Y, Z) = 0, (3.13)

Taking Y = ξ, Z = ξ in the above equation we obtain,[
λ− (

p

2
+

1
n
)

]
η(X) = 0. (3.14)

As η(X) ̸= 0, we have λ− (p2 + 1
n) = 0. Also from (3.6), we get r = 0.

This brings us to the following:
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Proposition 3.4. Let (M, g, ξ, η, ϕ, α) be an (LCS)n-manifold, admitting a conformal Yamabe
soliton (g, ξ), ξ. If the Ricci tensor S of the manifold is η-recurrent, then the soliton is steady
and the manifold becomes flat.

Let us assume that a symmetric (0, 2) tensor field h = £ξg − 2rg is parallel with respect to the
Levi-Civita connection associated with g.
Then

h(ξ, ξ) = £ξg(ξ, ξ)− 2rg(ξ, ξ) = 2λ, (3.15)

implies that,

λ =
1
2
h(ξ, ξ). (3.16)

Now h is parallel with respect to g, then from[30], we get,

h(X,Y ) = −h(ξ, ξ)g(X,Y ), (3.17)

for all vector fields X,Y on M . which leads to,

£ξg(X,Y ) = 2
[
r − λ+ (

p

2
+

1
n
)

]
g(X,Y ). (3.18)

With this, we may assert the following theorem:

Theorem 3.5. Let (M, g, ξ, η, ϕ, α) be an (LCS)n-manifold. Assume that a symmetric (0, 2)
tensor field h = £ξg−2rg is parallel with respect to the Levi-Civita connection of g. Then (g, ξ)
yields a conformal Yamabe soliton on M .

We know,

(∇ξQ)X = ∇ξQX −Q(∇ξX), (3.19)

and

(∇ξS)(X,Y ) = ξS(X,Y )− S(∇ξX,Y )− S(X,∇ξY ), (3.20)

for any vector fields X,Y on M .
Now using (3.9) we obtain,

QX =
1
n

[
λ− (

p

2
+

1
n
)

]
X, (3.21)

for any vector fields X on M .
Then in view of (3.9) and (3.21), the equations (3.19) and (3.20) become

(∇ξQ)X = 0 and (3.22)

(∇ξS)(X,Y ) = 0, (3.23)

respectively, for any vector fields X,Y on M .
This leads us to the following conclusion:

Theorem 3.6. Let (M, g, ξ, η, ϕ, α) be an (LCS)n-manifold, admitting a conformal Yamabe soli-
ton (g, ξ), ξ being the Reeb vector field. Then Q and S are parallel along ξ, where Q is the Ricci
operator, defined by S(X,Y ) = g(QX,Y ) and S is the Ricci tensor of M .

Also in view of (3.21), we obtain

(∇XQ)Y = ∇XQY −Q(∇XY ) = 0, (3.24)

for any vector fields X,Y on M .
And we have
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Corollary 3.7. Let (M, g, ξ, η, ϕ, α) be an (LCS)n-manifold, admitting a conformal Yamabe
soliton (g, ξ), ξ then Q is parallel to any arbitrary vector field on M .

Let a conformal Yamabe soliton is defined on an n-dimensional (LCS)n-manifold M as,

1
2
£V g =

[
r − λ+ (

p

2
+

1
n
)

]
g, (3.25)

where £V g denotes the Lorentzian derivative of the metric g along a vector field V and r, λ is as
defined in (1.1).
Let V be pointwise co-linear with ξ i.e., V = bξ where b is a function on M . Then the equation
(3.25) becomes,

£bξg(X,Y ) = 2
[
r − λ+ (

p

2
+

1
n
)

]
g(X,Y ), (3.26)

for any vector fields X,Y on M .
Applying the property of Lie derivative and Levi-Civita connection we have,

bg(∇Xξ, Y ) + (Xb)η(Y ) + bg(∇Y ξ,X) + (Y b)η(X) = 2
[
r − λ+ (

p

2
+

1
n
)

]
g(X,Y ).

(3.27)

Using (2.4), the above equation reduces to,

bαg(ϕX, Y ) + (Xb)η(Y ) + bαg(ϕY,X) + (Y b)η(X) = 2
[
r − λ+ (

p

2
+

1
n
)

]
g(X,Y ). (3.28)

Taking Y = ξ in the above equation, we obtain,

−Xb+ (ξb)η(X) = 2
[
r − λ+ (

p

2
+

1
n
)

]
η(X). (3.29)

Again putting X = ξ in the above equation, we obtain,

ξb = r − λ+ (
p

2
+

1
n
), (3.30)

Then using (3.30), (3.29) becomes,

Xb = −
[(

r − λ+ (
p

2
+

1
n
)

)
η(X)

]
. (3.31)

Applying exterior differentiation in (3.31), we have,[
r − λ+ (

p

2
+

1
n
)

]
dη = 0. (3.32)

Now in an n-dimensional (LCS)n-manifold we have,

(dη)(X,Y ) = X(η(Y ))− Y (η(X))− η([X,Y ]),

which implies

(dη)(X,Y ) = g(Y,∇Xξ)− g(X,∇Y ξ)

= αg(Y,X) + η(X)η(Y )− αg(Y,X) + η(X)η(Y )

= 0. (3.33)

Hence the 1-form η is closed.
Then using the above equation, (3.32) implies that, either r ̸= λ or r = λ. Now if r ̸= λ then
from (3.25), we have,

£V g = 2
[
r − λ+ (

p

2
+

1
n
)

]
g (3.34)
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which implies V is a conformal killing vector field. Again if r = λ then from (3.31), we get,

Xb = 0, (3.35)

implies that b is constant. This brings us to the following theorem:

Theorem 3.8. Let (M, g, ξ, η, ϕ, α) be an (LCS)n-manifold, admitting a conformal Yamabe soli-
ton (g, V ), V being a vector field on M . If V is pointwise co-linear with ξ then either V is a
conformal killing vector field, provided r ̸= λ, or V is a constant multiple of ξ, where ξ being
the Reeb vector field of the Lorentzian concircular structure, r is the scalar curvature and λ is a
constant.

Also if r = λ then from (3.25), we obtain,

£V g = 0, (3.36)

implies that V is a killing vector field. Then we have,

Corollary 3.9. Let (M, g, ξ, η, ϕ, α) be an (LCS)n-manifold, admitting a conformal Yamabe
soliton (g, V ), V being a vector field on M . If V is pointwise co-linear with ξ and r = λ then
V becomes killing vector field, where ξ being the Reeb vector field of the Lorentzian concircular
structure, r is the scalar curvature and λ is a constant.

From the definition of Projective curvature tensor (1.5), defined on an n-dimensional (LCS)n-
manifold, we have,

P (X,Y )Z = R(X,Y )Z − 1
(n− 1)

[S(Y,Z)X − S(X,Z)Y ], (3.37)

for any vector fields X,Y and Z on M .
Putting Z = ξ, we get

P (X,Y )ξ = R(X,Y )ξ − 1
(n− 1)

[S(Y, ξ)X − S(X, ξ)Y ]. (3.38)

Using (2.7) and (3.9), we obtain,

P (X,Y )ξ =

[
(α2 − ρ)− 1

n(n− 1)
[λ− (

p

2
+

1
n
)]

]
[η(Y )X − η(X)Y ]. (3.39)

Again using (3.8), we get,

P (X,Y )ξ = 0. (3.40)

This brings us to the following:

Proposition 3.10. An (LCS)n-manifold (M, g, ξ, η, ϕ, α) admitting a conformal Yamabe soliton
(g, ξ), ξ is ξ-Projectively flat.

From the definition of concircular curvature tensor (1.6), defined on an n-dimensional (LCS)n-
manifold, we have,

C̃(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ], (3.41)

for any vector fields X,Y and Z on M .
Putting Z = ξ we get,

C̃(X,Y )ξ = R(X,Y )ξ − r

n(n− 1)
[g(Y, ξ)X − g(X, ξ)Y ], (3.42)

Using (2.7) and (3.9), we obtain,

C̃(X,Y )ξ =

[
(α2 − ρ)− 1

n(n− 1)
[λ− (

p

2
+

1
n
)]

]
[η(Y )X − η(X)Y ]. (3.43)

Again using (3.8), we get,

C̃(X,Y )ξ = 0. (3.44)

This brings us to the following:
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Proposition 3.11. An (LCS)n-manifold (M, g, ξ, η, ϕ, α) admitting a conformal Yamabe soliton
(g, ξ), ξ being the Reeb vector field of the Lorentzian Concircular structure, is ξ-concircularly
flat.

From the definition of conharmonic curvature tensor (1), defined on an n-dimensional (LCS)n-
manifold, we have,

H(X,Y )Z = R(X,Y )Z − 1
(n− 2)

[g(Y,Z)QX − g(X,Z)QY

+ S(Y,Z)X − S(X,Z)Y ], (3.45)

for any vector fields X,Y and Z on M .
Putting Z = ξ we get,

H(X,Y )ξ = R(X,Y )ξ − 1
(n− 2)

[g(Y, ξ)QX − g(X, ξ)QY

+ S(Y, ξ)X − S(X, ξ)Y ]. (3.46)

Using (2.7), (3.9) and (3.21), we obtain,

H(X,Y )ξ =

[
(α2 − ρ)− 2

n(n− 2)
[λ− (

p

2
+

1
n
)]

]
[η(Y )X − η(X)Y ], (3.47)

Again using (3.8), we get,

H(X,Y )ξ = −
[

1
(n− 1)(n− 2)

[λ− (
p

2
+

1
n
)]

]
[η(Y )X − η(X)Y ]. (3.48)

This implies that H(X,Y )ξ = 0 if and only if λ = 0.
This brings us to the following:

Proposition 3.12. An (LCS)n-manifold (M, g, ξ, η, ϕ, α) admitting a conformal Yamabe soliton
(g, ξ), ξ is ξ-conharmonically flat if and only if the soliton is steady.

4 Curvature properties on (LCS)n-manifold admitting Conformal Yamabe
soliton

We know,

R(ξ,X) · S = S(R(ξ,X)Y,Z) + S(Y,R(ξ,X)Z), (4.1)

for any vector fields X,Y and Z on M .
Using (2.8), we obtain,

R(ξ,X) · S = S((α2 − ρ)(g(X,Y )ξ − η(Y )X,Z)

+ S(Y, (α2 − ρ)g(X,Z)ξ − η(Z)X)). (4.2)

Then using (3.9), we get,

R(ξ,X) · S =
(α2 − ρ)

n
[λ− (

p

2
+

1
n
)][g(X,Y )η(Z)− g(X,Z)η(Y )

+ g(X,Z)η(Y )− g(X,Y )η(Z)], (4.3)

which implies that

R(ξ,X) · S = 0.

With this, we may assert the following theorem:
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Theorem 4.1. If an (LCS)n-manifold (M, g, ξ, η, ϕ, α) admits a conformal Yamabe soliton (g, ξ), ξ
being the Reeb vector field of the Lorentzian concircular structure, then R(ξ,X) ·S = 0, i.e., the
manifold is ξ-Semi Symmetric.

Again the condition S(ξ,X) ·R = 0 implies that,

S(X,R(Y,Z)W )ξ − S(ξ,R(Y,Z)W )X + S(X,Y )R(ξ, Z)W − S(ξ, Y )R(X,Z)W

+ S(X,Z)R(Y, ξ)W − S(ξ, Z)R(Y,X)W + S(X,W )R(Y,Z)ξ − S(ξ,W )R(Y, Z)X

= 0. (4.4)

for any vector fields X,Y, Z and W on M .
Taking the inner product with ξ, the above equation becomes,

− S(X,R(Y,Z)W )− S(ξ,R(Y, Z)W )η(X) + S(X,Y )η(R(ξ, Z)W )

− S(ξ, Y )η(R(X,Z)W ) + S(X,Z)η(R(Y, ξ)W )− S(ξ, Z)η(R(Y,X)W )

+ S(X,W )η(R(Y, Z)ξ)− S(ξ W )η(R(Y,Z)X) = 0. (4.5)

Replacing the expression of S from (3.9) and taking Z = ξ, W = ξ, we get,

1
n
[λ− (

p

2
+

1
n
)][−g(X,R(Y, ξ)ξ)− η(R(Y, ξ)ξ)η(X) + g(X,Y )η(R(ξ, ξ)ξξ)

− η(Y )η(R(X, ξ)ξ) + η(X)η(R(Y, ξ)ξ)− η(ξ)η(R(Y,X)ξ)

+ η(X)η(R(Y, ξ)ξ)− η(ξ)η(R(Y, ξ)X)] = 0, (4.6)

Now using (2.7), (2.9), (2.10), we get on simplification,

(α2 − ρ)

n
[λ− (

p

2
+

1
n
)][g(X,Y ) + η(X)η(Y )] = 0, (4.7)

Using (2.2), the above equation becomes,

(α2 − ρ)

n
[λ− (

p

2
+

1
n
)][g(ϕX, ϕY )] = 0, (4.8)

for any vector fields X,Y on M .
This implies that,

(α2 − ρ)

n
[λ− (

p

2
+

1
n
)] = 0, (4.9)

Then using (3.8), we get,

[λ− (p2 + 1
n)]

2

n2(n− 1)
= 0.

implying that λ = 0.
Hence using (3.6), we get r = 0.
With this, we have the following theorem:

Theorem 4.2. If an (LCS)n-manifold (M, g, ξ, η, ϕ, α) admits a conformal Yamabe soliton (g, ξ), ξ
satisfies S(ξ,X) ·R = 0 then the manifold becomes flat and the soliton is steady, where R is the
Riemannian curvature tensor and S is the Ricci tensor.

We know,

W2(ξ,X) · S = S(W2(ξ,X)Y, Z) + S(Y,W2(ξ,X)Z), (4.10)
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for any vector fields X,Y and Z on M .
Replacing the expression of S from (3.9) and using the definition of W2-curvature tensor from
(1.7), we get,

W2(ξ,X) · S =

[
1
n
[λ− (

p

2
+

1
n
)]

]
g(R(ξ,X)Y +

1
n− 1

[g(ξ, Y )QX − g(X,Z)Qξ], Z)

+

[
1
n
[λ− (

p

2
+

1
n
)]

]
g(Y,R(ξ,X)Z + [g(ξ, Z)QX − g(X,Z)Qξ]). (4.11)

Now using (2.8) and g(QX,Y ) = S(X,Y ) after simplifying, we get

W2(ξ,X) · S =

[
1

n(n− 1)
[λ− (

p

2
+

1
n
)]

]
[η(Y )S(X,Z)−

S(ξ, Z)g(X,Y ) + η(Z)S(X,Y )− S(ξ, Y )g(X,Z)]. (4.12)

Then using (3.9) the above equation becomes,

W2(ξ,X) · S = 0. (4.13)

With this, we may assert the following theorem:

Theorem 4.3. If an (LCS)n-manifold (M, g, ξ, η, ϕ, α) admits a conformal Yamabe soliton (g, ξ), ξ
then W2(ξ,X) · S = 0.

Again the condition S(ξ,X) ·W2 = 0 implies that,

S(X,W2(Y,Z)V )ξ − S(ξ,W2(Y, Z)V )X + S(X,Y )W2(ξ, Z)V

−S(ξ, Y )W2(X,Z)V + S(X,Z)W2(Y, ξ)V − S(ξ, Z)W2(Y,X)V

+S(X,V )W2(Y,Z)ξ − S(ξ, V )W2(Y,Z)X = 0, (4.14)

for any vector fields X,Y, Z and V on M . Taking the inner product with ξ, the above equation
becomes,

− S(X,W2(Y,Z)V )− S(ξ,W2(Y,Z)V )η(X) + S(X,Y )η(W2(ξ, Z)V )

− S(ξ, Y )η(W2(X,Z)V ) + S(X,Z)η(W2(Y, ξ)V )− S(ξ, Z)η(W2(Y,X)V )

+ S(X,V )η(W2(Y,Z)ξ)− S(ξ, V )η(W2(Y,Z)X) = 0. (4.15)

Replacing the expression of S from (3.9) and taking Z = ξ, V = ξ, we get,

1
n
[λ− (

p

2
+

1
n
)[−g(X,W2(Y, ξ)ξ)− η(W2(Y, ξ)ξ)η(X) + g(X,Y )η(W2(ξ, ξ)ξ)

− η(Y )η(W2(X, ξ)ξ) + η(X)η(W2(Y, ξ)ξ)− η(ξ)η(W2(Y,X)ξ)

+ η(X)η(W2(Y, ξ)ξ)− η(ξ)η(W2(Y, ξ)X)] = 0. (4.16)

Now using (1.7), (2.7), (2.9) and (2.11), we obtain on simplification,

1
n
[λ− (

p

2
+

1
n
)[[g(X,Y ) + η(X)η(Y )− (α2 − ρ)g(X,Y )

− (α2 − ρ)η(X)η(Y )] = 0. (4.17)

implies that

1
n
[λ− (

p

2
+

1
n
)(1 − α2 + ρ)][g(X,Y ) + η(X)η(Y )] = 0. (4.18)

Using (2.2), the above equation becomes,

1
n
[λ− (

p

2
+

1
n
)(1 − α2 + ρ)]g(ϕX, ϕY ) = 0, (4.19)
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for any vector fields X,Y on M .
This implies that,

[λ− (
p

2
+

1
n
)(1 − α2 + ρ)] = 0.

Then either λ = 0, or α2 − ρ = 1.
Now if α2 − ρ = 1, then from (2.12), we have,

r = n(n− 1).

With this, we may assert the following theorem:

Theorem 4.4. If an (LCS)n-manifold (M, g, ξ, η, ϕ, α) admitting a conformal Yamabe soliton
(g, ξ), ξ satisfies S(ξ,X) ·W2 = 0 then either the soliton is steady, or r = n(n− 1).
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