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Abstract This paper is devoted to the study of the existence and uniqueness of fixed points
for a class of sum-type vector operators in ordered Banach space, and their applications. In
particular, we show that some fixed point results for such operators in the scalar case can be
extended to the vector case and applied to obtain sufficient conditions for the existence and
uniqueness of a solution for a nonlinear fractional boundary value problem.

1 Introduction

Since their introduction by Guo and Lakshmikantham in [8], the study of mixed monotone op-
erators has been an active area of research in nonlinear functional analysis. For further reading,
the reader is referred to the following sources: [4, 8, 9, 15, 24, 32, 36].

Later, H. Wang et al. [25] studied the existence and uniqueness of fixed points for nonlinear
sum operators of the form Ax + Bx + C(x, x), where A is an increasing α-concave (or sub-
homogeneous) operator,B is a decreasing operator, andC is a mixed monotone operator. In [26],
the authors studied a different sum-type operator equation of the form A(x, x)+B(x, x)+Cx =
x, where A and B are mixed monotone operators, and C is an increasing operator. In [21],
Y. Sang et al. established the existence and uniqueness of a solution for the operator equation
A(x, x) +B(x, x) + Cx+ e = x. The authors generalized the results obtained in [34] from the
cone case to the non-cone case. In all three works mentioned above, the authors applied their
fixed point results to the solvability of some nonlinear fractional differential equations.

In 2021, the authors [20] studied the existence and uniqueness of a fixed point for the vector
operator equation Φ(x, y, x, y) = (A1(x, x, y), A2(x, y, y)) = (x, y), where Φ : Ph × Pk × Ph ×
Pk → Ph × Pk has certain mixed monotone properties. They applied these existence results
to obtain the existence of a positive solution to a nonlinear Neumann boundary value problem.
Building upon [20, 22] and other works, we present in this paper some fixed point theorems for
a class of sum-type vector operators with specific mixed monotone properties. We apply these
theorems to study the existence and uniqueness of solutions to systems of fractional differential
equations.

The paper is organized as follows. In Section 2, we recall definitions and results from the
theory of mixed monotone operators and cones in Banach spaces. Section 3 is devoted to the
theoretical existence results, where we provide two fixed point theorems for specific vector oper-
ators in a partially ordered Banach space. In brief, we first consider the existence and uniqueness
of solutions to the following operator system:

A1(x, x, y) = x,

A2(x, y, y) = y,
(1.1)
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where A1 and A2 are operators with certain mixed monotone properties. Our theoretical theorem
generalizes a result in [20] from cone mappings to the non-cone case. This result is then used to
establish the existence and uniqueness of a solution to a class of sum-type operator systems.

A1(x, x, y) +B1(x, x) + e = x,

A2(x, y, y) +B2(y, y) + f = y,
(1.2)

where A1, A2, B1, and B2 are mixed monotone operators, and e, f ∈ P , where P is a cone in a
Banach space E. In the last section (Section 4), we demonstrate that such more general vector
operators can be applied to establish the existence and uniqueness of solutions to a system of
nonlinear fractional differential equations of the type:

−Dα
0+x(t) = F1(t, x(t), y(t)) +G1(t, x(t))− a, 0 < t < 1,

−Dβ
0+y(t) = F2(t, x(t), y(t)) +G2(t, y(t))− b, 0 < t < 1,

x(i)(0) = 0 = y(i)(0), 0 ≤ i ≤ n− 2,
[Dγ

0+x(t)]t=1 = 0 = [Dδ
0+y(t)]t=1,

(1.3)

where Dα
0+ , D

β
0+ , D

γ
0+ , D

δ
0+ are the Riemann-Liouville fractional derivatives of orders α, β, γ, δ,

respectively. Here, n− 1 ≤ α, β ≤ n, and 1 ≤ γ, δ ≤ n− 2, with n > 3 (n ∈ N). Additionally,
a, b > 0 are constants, and Fi, Gi (i = 1, 2) represent appropriate functions specified later.

2 Preliminaries

For the reader’s convenience, we begin with definitions and lemmas that will be used in the
proof of our main results. For more details, we refer to [1, 5, 8, 10, 20, 28, 36] and the references
therein. Throughout this paper, (E, ∥.∥) is a real Banach space ordered by a cone P ⊂ E, i.e.,
x ⪯ y if and only if y − x ∈ P . Recall that a nonempty closed and convex set P ⊂ E is a cone
if it satisfies (i)x ∈ P, λ ≥ 0 ⇒ λx ∈ P , (ii)x ∈ P,−x ∈ P ⇒ x = θ, here θ is the zero element
in E. A cone P is called normal if there exists a constant N > 0 such that θ ⪯ x ⪯ y implies
∥x∥ ≤ N∥y∥; in this case N is called the normality constant of P . Given h ≻ θ (i.e. h ⪰ θ and
h ̸= θ), Ph is the set Ph := {x ∈ E : there exist λ > 0, µ > 0 such that λh ⪯ x ⪯ µh}. It is easy

to see that Ph ⊂ P is convex and λPh = Ph for all λ > 0. If
◦
P ̸= ∅ and h ∈

◦
P , then Ph =

◦
P .

For an element h ∈ P with h ̸= θ and e ∈ P with θ ⪯ e ⪯ h, we denote

Ph,e = {x ∈ E : x+ e ∈ Ph}.

Remark 2.1. (i) It is clear that Ph,θ = Ph for each h ≻ θ.

(ii) Ph and Ph,e are of different nature. In fact, one can observe that Ph ⊂ P \ {θ} for any
h ≻ θ, while Ph,e need not be a subset of the cone P for some h ≻ θ, e ⪰ θ with e ⪯ h.

Lemma 2.2 ([33]). If x ∈ Ph,e, then λx+ (λ− 1)e ∈ Ph,e for λ > 0.

Lemma 2.3 ([33]). If x, u ∈ Ph,e, then there exist reals µ and γ, with 0 < µ < 1 and γ > 1, such
that

µu+ (µ− 1)e ⪯ x ⪯ γu+ (γ − 1)e.

Furthermore, we can choose a small real number r ∈ (0, 1), such that

ru+ (r − 1)e ⪯ x ⪯ r−1u+ (r−1 − 1)e.

Definition 2.4 ([3]). Let (X,⪯) be a partially ordered set and B : X ×X −→ X be an operator.
We say that B has the mixed monotone property if B(x, y) is monotone non-decreasing in x and
is monotone non-increasing in y, that is, for any x, y ∈ X ,

x1, x2 ∈ X, x1 ⪯ x2 ⇒ B(x1, y) ⪯ B(x2, y),

y1, y2 ∈ X, y1 ⪯ y2 ⇒ B(x, y2) ⪯ B(x, y1).
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An element (x, y) ∈ X×X is called a coupled fixed point of B if B(x, y) = x and B(y, x) =
y. In this case, if x = y then x is called a fixed point of B, that is, B(x, x) = x.

Definition 2.5 ([2]). Let (X,⪯) be a partially ordered set and A : X ×X ×X −→ X . Then the
trivariate operator A is said to have the mixed monotone property if A(., u, y) and A(x, u, .) are
monotone non-decreasing, and A(x, ., y) is monotone non-increasing, i.e., for any x, u, y ∈ X

x1, x2 ∈ X, x1 ⪯ x2 =⇒ A(x1, u, y) ⪯ A(x2, u, y),

u1, u2 ∈ X, u1 ⪯ u2 =⇒ A(x, u1, y) ⪰ A(x, u2, y),

y1, y2 ∈ X, y1 ⪯ y2 =⇒ A(x, u, y1) ⪯ A(x, u, y2).

In the sequel, if (X,⪯) is a partially ordered set and, if A1, A2 : X × X × X −→ X are
two operators, then we define the vector operator Φ : X × X × X × X −→ X × X , noted
Φ = (A1, A2), by

Φ(x, y, u, v) = (A1(x, u, y), A2(x, v, y)), ∀x, y, u, v ∈ X. (2.1)

Definition 2.6 ([20]). Let (X,⪯) be a partially ordered set. Let A1, A2 : X ×X ×X −→ X be
two operators and Φ = (A1, A2) be given as in (2.1).

(i) We say that the operator Φ = (A1, A2) is a cooperative mixed monotone vector operator if
A1, A2 are mixed monotone as in Definition 2.5.

(ii) We say that Φ = (A1, A2) is a competitive mixed monotone vector operator if A1(., u, y),
A2(x, u, .) are monotone non-decreasing, and A1(x, ., y), A1(x, u, .), A2(x, ., y), A2(., u, y)
are monotone non-increasing.

3 Fixed point theorems

First, we present a fixed point theorem which generalizes Theorem 2.3 in [20] on the cone map-
pings to non-cone case. let h, k ∈ P be such that h ̸= θ, k ̸= θ and choose e, f ∈ P with
θ ⪯ e ⪯ h, θ ⪯ f ⪯ k.

Theorem 3.1. Let P be a normal cone in a real Banach spaceE. LetA1 : Ph,e×Ph,e×Pk,f → E
and A2 : Ph,e×Pk,f ×Pk,f → E be two operators such that the vector operator Φ = (A1, A2) :
Ph,e × Pk,f × Ph,e × Pk,f → E × E satisfies the following assumptions.
(H1) Φ = (A1, A2) is cooperative mixed monotone. Moreover,

A1(h, h, k) ∈ Ph,e and A2(h, k, k) ∈ Pk,f ; (3.1)

(H2) There exist positive-valued functions τ1, τ2 defined on the interval (a, b), and φ defined on
the square (a, b)× (a, b) such that

(i) τ1, τ2 : (a, b) → (0, 1) are surjections.

(ii) 1 > φ(t, s) > min{τ1(t), τ2(s)}, for all t, s ∈ (a, b).

(iii) For any x, u ∈ Ph,e, for any y, v ∈ Pk,f and any t, s ∈ (a, b)

A1

(
τ1(t)x+ (τ1(t)− 1)e,

1
τ1(t)

u+ (
1

τ1(t)
− 1)e, τ2(s)y + (τ2(s)− 1)f

)
⪰ φ(t, s)A1(x, u, y) + (φ(t, s)− 1)e,

A2

(
τ1(t)x+ (τ1(t)− 1)e,

1
τ2(t)

v + (
1

τ2(s)
− 1)f, τ2(s)y + (τ2(s)− 1)f

)
⪰ φ(t, s)A2(x, v, y) + (φ(t, s)− 1)f.

Then,

(i) A1 : Ph,e × Ph,e × Pk,f −→ Ph,e, A2 : Ph,e × Pk,f × Pk,f −→ Pk,f .
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(ii) There exist x0, u0 ∈ Ph,e, y0, v0 ∈ Pk,f and r ∈ (0, 1) such that{
ru0 ⪯ x0 ≺ u0,

rv0 ⪯ y0 ≺ v0
and

{
x0 ⪯ A1(x0, u0, y0) ⪯ A1(u0, x0, v0) ⪯ u0,

y0 ⪯ A2(x0, v0, y0) ⪯ A2(u0, y0, v0) ⪯ v0.
(3.2)

(iii) Φ has a unique fixed point (x∗, y∗) ∈ Ph,e × Pk,f .

(iv) For any initial values x′0, u
′
0 ∈ Ph,e and y′0, v

′
0 ∈ Pk,f , constructing successively the se-

quences

x′n = A1(x
′
n−1, u

′
n−1, y

′
n−1), y′n = A2(x

′
n−1, v

′
n−1, y

′
n−1),

u′n = A1(u
′
n−1, x

′
n−1, v

′
n−1), v′n = A2(u

′
n−1, y

′
n−1, v

′
n−1),

n = 1, 2, ..., (3.3)

we have ∥x′n−x∗∥ → 0, ∥u′n−x∗∥ → 0 and ∥y′n−y∗∥ → 0, ∥v′n−y∗∥ → 0 (as n −→ ∞).

Proof. 1) It is easy to see that for any x, u ∈ Ph,e and any y, v ∈ Pk,f , there exists σ∗ ∈ (0, 1)
such that

σ∗h+ (σ∗ − 1)e ⪯ x, u ⪯ 1
σ∗
h+ (

1
σ∗

− 1)e,

σ∗k + (σ∗ − 1)f ⪯ y, v ⪯ 1
σ∗
k + (

1
σ∗

− 1)f.

It follows from (H2)(i) that there exist t∗, s∗ ∈ (a, b) such that τ1(t∗) = σ∗ = τ2(s∗), hence

τ1(t∗)h+ (τ1(t∗)− 1)e ⪯ x, u ⪯ 1
τ1(t∗)

h+ (
1

τ1(t∗)
− 1)e,

τ2(s∗)k + (τ2(s∗)− 1)f ⪯ y, v ⪯ 1
τ2(s∗)

k + (
1

τ2(s∗)
− 1)f. (3.4)

Furthermore, by (H2)(ii) we have

A1

( 1
τ1(t)

x+ (
1

τ1(t)
− 1)e, τ1(t)u+ (τ1(t)− 1)e,

1
τ2(s)

y + (
1

τ2(s)
− 1)f

)
⪯ 1
φ(t, s)

A1(x, u, y) + (
1

φ(t, s)
− 1)e,

A2

( 1
τ1(t)

x+ (
1

τ1(t)
− 1)e, τ2(s)v + (τ2(s)− 1)f,

1
τ2(s)

y + (
1

τ2(s)
− 1)f

)
⪯ 1
φ(t, s)

A2(x, u, y) + (
1

φ(t, s)
− 1)f.

Then, by the mixed monotone properties of A1, A2 and (3.4), we have

A1(x, u, y)

⪰ A1

(
τ1(t∗)h+ (τ1(t∗)− 1)e,

1
τ1(t∗)

h+ (
1

τ1(t∗)
− 1)e, τ2(s∗)k + (τ2(s∗)− 1)f

)
⪰ φ(t∗, s∗)A1(h, h, k) + (φ(t∗, s∗)− 1)e

and

A1(x, u, y)

⪯ A1

( 1
τ1(t∗)

h+ (
1

τ1(t∗)
− 1)e, τ1(t∗)h+ (τ1(t∗)− 1)e,

1
τ2(s∗)

k + (
1

τ2(s∗)
− 1)f

)
⪯ 1
φ(t∗, s∗)

A1(h, h, k) + (
1

φ(t∗, s∗)
− 1)e.
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Since A1(h, h, k) ∈ Ph,e, it follows that A1(x, u, y) ∈ Ph,e, and hence A1 : Ph,e × Ph,e ×
Pk,f −→ Ph,e. Similarly, we get A2 : Ph,e × Pk,f × Pk,f −→ Pk,f .

2) Since A1(h, h, k) ∈ Ph,e and A2(h, k, k) ∈ Pk,f , we can choose a small enough number
σ0 ∈ (0, 1) such that

σ0h+ (σ0 − 1)e ⪯ A1(h, h, k) ⪯
1
σ0
h+ (

1
σ0

− 1)e,

σ0k + (σ0 − 1)f ⪯ A2(h, k, k) ⪯
1
σ0
k + (

1
σ0

− 1)f.

Again, by (H2)(i), there exist t0, s0 ∈ (a, b) such that τ1(t0) = σ0 = τ2(s0), and by (H2)(ii), we
can choose a positive integer m such that

(φ(t0, s0)

σ0

)m
≥ 1
σ0
.

Put

xn = σn0 h+ (σn0 − 1)e, un =
1
σn0
h+ (

1
σn0

− 1)e,

yn = σn0 k + (σn0 − 1)f, vn =
1
σ0
k + (

1
σn0

− 1)f, n = 1, 2, ...

Then, we have

xn = σ0xn−1 + (σ0 − 1)e, un =
1
σ0
un−1 + (

1
σ0

− 1)e,

yn = σ0yn−1 + (σ0 − 1)f, vn =
1
σ0
vn−1 + (

1
σ0

− 1)f, n = 1, 2, ...

Take x0 = xm, u0 = um, y0 = ym and v0 = vm. Then, it is clear that x0, u0 ∈ Ph,e and
y0, v0 ∈ Pk,f with x0 = σ2m

0 u0 + (σ2m
0 − 1)e ≺ u0, y0 = σ2m

0 v0 + (σ2m
0 − 1)f ≺ v0 and for any

r ∈ (0, σ2m
0 ) ⊂ (0, 1) we have ru0 ⪯ x0 and rv0 ⪯ y0. Also, by the mixed monotonicity of A1

and A2, A1(x0, u0, y0) ⪯ A1(u0, x0, v0) and A2(x0, v0, y0) ⪯ A2(u0, y0, v0). In addition,

A1(x0, u0, y0) = A1(xm, um, ym)

= A1

(
τ1(t0)xm−1 + (τ1(t0)− 1)e,

1
τ1(t0)

um−1 + (
1

τ1(t0)
− 1)e,

τ2(s0)ym−1 + (τ2(s0)− 1)f
)

⪰ φ(t0, s0)A1(xm−1, um−1, ym−1) + (φ(t0, s0)− 1)e

⪰ φ(t0, s0)
2A1(xm−2, um−2, ym−2) + (φ(t0, s0)

2 − 1)e

⪰ ... ⪰ φ(t0, s0)
mA1(h, h, k) + (φ(t0, s0)

m − 1)e

⪰ σm−1
0 (σ0h+ (σ0 − 1)e) + (σm−1

0 − 1)e

= σm0 h+ (σm0 − 1)e = xm = x0
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and

A1(u0, x0, v0) = A1(um, xm, vm)

= A1

( 1
τ1(t0)

um−1 + (
1

τ1(t0)
− 1)e, τ1(t0)xm−1 + (τ1(t0)− 1)e,

1
τ2(s0)

vm−1 + (
1

τ2(s0)
− 1)f

)
⪯ 1

φ(t0, s0)
A1(um−1, xm−1, vm−1) + (

1
φ(t0, s0)

− 1)e

⪯ 1
φ(t0, s0)2A1(um−2, xm−2, vm−2) + (

1
φ(t0, s0)2 − 1)e

⪯ ... ⪯ 1
φ(t0, s0)m

A1(h, h, k) + (
1

φ(t0, s0)m
− 1)e

⪯ 1
σm−1

0

( 1
σ0
h+ (

1
σ0

− 1)e
)
+ (

1
σm−1

0

− 1)e

=
1
σm0

h+ (
1
σm0

− 1)e = um = u0.

Similarly, we get
y0 ⪯ A2(x0, v0, y0) and A2(u0, y0, v0) ⪯ v0.

3) Constructing successively the sequences

xn = A1(xn−1, un−1, yn−1), yn = A2(xn−1, vn−1, yn−1),

un = A1(un−1, xn−1, vn−1), vn = A2(un−1, yn−1, vn−1),
n = 1, 2, ...,

Then we have, x1 ⪯ u1 and y1 ⪯ v1. Combining with the mixed monotone properties of A1 and
A2, we obtain

x0 ⪯ x1 ⪯ ... ⪯ xn ⪯ ... ⪯ un ⪯ ... ⪯ u1 ⪯ u0,

y0 ⪯ y1 ⪯ ... ⪯ yn ⪯ ... ⪯ vn ⪯ ... ⪯ v1 ⪯ v0.
(3.5)

Furthermore, for all n ≥ 1

xn ⪰ x0 ⪰ ru0 + (r − 1)e ⪰ run + (r − 1)e,

yn ⪰ y0 ⪰ rv0 + (r − 1)f ⪰ rvn + (r − 1)f.

Set
rn = sup{r > 0 : xn ⪰ run + (r − 1)e and yn ⪰ rvn + (r − 1)f}.

It follows that,

xn+1 ⪰ xn ⪰ rnun + (rn − 1)e ⪰ rnun+1 + (rn − 1)e,

yn+1 ⪰ yn ⪰ rnvn + (rn − 1)f ⪰ rnvn+1 + (rn − 1)f,
n = 1, 2, ...,

Therefore, rn+1 ≥ rn, that is {rn} is an increasing sequence with {rn} ⊂ (0, 1], which implies
that {rn} is convergent. Assume that rn → r∗ as n→ ∞, then necessarily r∗ = 1. In fact, if we
suppose to the contrary, that is, 0 < rn ≤ r∗ < 1, then by (H2)(i) there exist t∗, s∗ ∈ (a, b) such
that τ1(t∗) = r∗ = τ2(s∗). We need to distinguish two cases.

Case 1 : There exist an integer N such that rN = r∗. In this case, for all n ≥ N we have
rn = r∗ and

xn+1 = A1(xn, un, yn)

⪰ A1

(
rnun + (rn − 1)e,

1
rn
xn + (

1
rn

− 1)e, rnvn + (rn − 1)f
)

⪰ φ(t∗, s∗)A1(un, xn, vn) + (φ(t∗, s∗)− 1)e

= φ(t∗, s∗)un+1 + (φ(t∗, s∗)− 1)e
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and

yn+1 = A2(xn, vn, yn)

⪰ A2

(
rnun + (rn − 1)e,

1
rn
yn + (

1
rn

− 1)f, rnvn + (rn − 1)f
)

⪰ φ(t∗, s∗)A2(un, yn, vn) + (φ(t∗, s∗)− 1)f

= φ(t∗, s∗)vn+1 + (φ(t∗, s∗)− 1)f

Thus, rn+1 = r∗ ≥ φ(t∗, s∗) > r∗, which is a contradiction.
Case 2 : For all integer n, rn < r∗ < 1. By (H2)(i), there exist αn, βn ∈ (a, b) such that

τ1(αn) =
rn
r∗ = τ2(βn). Then we have

xn+1 = A1(xn, un, yn)

⪰ A1

(
rnun + (rn − 1)e,

1
rn
xn + (

1
rn

− 1)e, rnvn + (rn − 1)f
)

= A1

(rn
r∗

(r∗un + (r∗ − 1)e) + (
rn
r∗

− 1)e,

r∗

rn

( 1
r∗
xn + (

1
r∗

− 1)e
)
+

( r∗
rn

− 1
)
e,

rn
r∗

(r∗vn + (r∗ − 1)f) + (
rn
r∗

− 1)f
)

= A1

(
τ1(αn)(r

∗un + (r∗ − 1)e) + (τ1(αn)− 1)e,

1
τ1(αn)

( 1
r∗
xn + (

1
r∗

− 1)e
)
+

( 1
τ1(αn)

− 1
)
e,

τ2(βn)(r
∗vn + (r∗ − 1)f) + (τ2(βn)− 1)f

)
⪰ φ(αn, βn)A1

(
r∗un + (r∗ − 1)e,

1
r∗
xn + (

1
r∗

− 1)e, r∗vn + (r∗ − 1)f
)

+ (φ(αn, βn)− 1)e

⪰ φ(αn, βn)φ(t
∗, s∗)A1(un, xn, vn) + (φ(αn, βn)φ(t

∗, s∗)− 1)e.

Analogously, we get

yn+1 ⪰ φ(αn, βn)φ(t
∗, s∗)A2(un, yn, vn) + (φ(αn, βn)φ(t

∗, s∗)− 1)f.

It follows from the definition of rn that

rn+1 ≥ φ(αn, βn)φ(t
∗, s∗) >

rn
r∗
φ(t∗, s∗).

If we take n → +∞, we get r∗ ⪰ φ(t∗, s∗) > r∗. This is also a contradiction. Consequently,
r∗ = 1.

Now, since P is a normal cone, we have

∥xn+p − xn∥ ≤ N(1 − rn)∥u0 + e∥, ∥un − un+p∥ ≤ N(1 − rn)∥u0 + e∥,
∥yn+p − yn∥ ≤ N(1 − rn)∥v0 + f∥, ∥vn − vn+p∥ ≤ N(1 − rn)∥v0 + f∥,

where N is the normality constant. Taking n → +∞, we obtain that {xn}, {un}, {yn} and
{vn} are Cauchy sequences in the Banach space E. Hence, it converge to x∗, u∗, y∗, v∗ ∈ E,
respectively. It follows by (3.5) that

x0 ⪯ xn ⪯ x∗ ⪯ u∗ ⪯ un ⪯ u0 and y0 ⪯ yn ⪯ y∗ ⪯ v∗ ⪯ vn ⪯ v0,

which implies that x∗, u∗ ∈ Ph,e and y∗, v∗ ∈ Pk,f . Moreover,

θ ≺ u∗ − x∗ ⪯ un − xn ⪯ (1 − rn)(u0 + e),

θ ≺ v∗ − y∗ ⪯ vn − yn ⪯ (1 − rn)(v0 + f).
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again, by the normality of P we get

∥u∗ − x∗∥ ≤ N(1 − rn)∥u0 + e∥ and ∥v∗ − y∗∥ ≤ N(1 − rn)∥v0 + f∥.

Taking n→ +∞, we obtain u∗ = x∗ and v∗ = y∗. Furthermore,

xn+1 = A1(xn, un, yn) ⪯ A1(x
∗, x∗, y∗) ⪯ A1(un, xn, vn) = un+1,

yn+1 = A2(xn, vn, yn) ⪯ A2(x
∗, y∗, y∗) ⪯ A2(un, yn, vn) = vn+1.

Let n → +∞, we get x∗ = A1(x∗, x∗, y∗) and y∗ = A2(x∗, y∗, y∗). Thus (x∗, y∗) is a fixed
point of Φ in Ph,e × Pk,f .

Let us prove that (x∗, y∗) is the unique fixed point of the operator Φ in Ph,e × Pk,f . Suppose
that (u∗, v∗) is any fixed point of Φ in Ph,e × Pk,f . Then by Lemma 2.3, there exists r > 0 such
that

ru∗ + (r − 1)e ⪯ x∗ ⪯ 1
r
u∗ + (

1
r
− 1)e,

rv∗ + (r − 1)f ⪯ y∗ ⪯ 1
r
v∗ + (

1
r
− 1)f.

(3.6)

Set
r = sup{r > 0 such that (3.6) is satisfied}.

We claim that r ≥ 1. In deed, if 0 < r < 1, then by (H2(i)) there exist α, β ∈ (a, b) such that
τ1(α) = r = τ2(β). Combining (3.6) with the mixed monotonicity of A1 and A2, we get

x∗ = A1(x
∗, x∗, y∗) ⪰ φ(α, β)A1(u

∗, u∗, v∗) + (φ(α, β)− 1)e,

y∗ = A2(x
∗, y∗, y∗) ⪰ φ(α, β)A2(u

∗, v∗, v∗) + (φ(α, β)− 1)f.

From the definition of r, we obtain r ≥ φ(α, β) > r, which is a contradiction. Thus r ≥ 1. It
follows that x∗ ⪰ ru∗ + (r − 1)e ⪰ ru∗ ⪰ u∗ and y∗ ⪰ rv∗ + (r − 1)f ⪰ rv∗ ⪰ v∗. Also, in a
similar way, we get u∗ ⪰ x∗ and v∗ ⪰ y∗. Consequently, x∗ = u∗ and y∗ = v∗.

4) For any initial points x′0, u
′
0 ∈ Ph,e and y′0, v

′
0 ∈ Pk,f , construct successively sequences as

in (3.3) and choose a small number η0 ∈ (0, 1) verifying

η0h+ (η0 − 1)e ⪯ x′0, u
′
0 ⪯ 1

η0
h+ (

1
η0

− 1)e,

η0k + (η0 − 1)f ⪯ y′0, v
′
0 ⪯ 1

η0
k + (

1
η0

− 1)f.

Again, from (H2)(i), there exist µ0, ν0 ∈ (a, b) such that τ1(µ0) = η0 = τ2(ν0). Take a suffi-
ciently large positive integer ℓ satisfying(φ(µ0, ν0)

η0

)ℓ
≥ 1
η0
,

and Put

x′′0 = ηℓ0h+ (ηℓ0 − 1)e, u′′0 =
1
ηℓ0
h+ (

1
ηℓ0

− 1)e,

y′′0 = ηℓ0k + (ηℓ0 − 1)f, v′′0 =
1
ηℓ0
k + (

1
ηℓ0

− 1)f.

It is clear that x′′0 , u
′′
0 ∈ Ph,e and y′′0 , v

′′
0 ∈ Pk,f with x′′0 < x′0, u

′
0 < u′′0 and y′′0 < y′0, v

′
0 < v′′0 .

Define the sequences

x′′n = A1(x
′′
n−1, u

′′
n−1, y

′′
n−1), y′′n = A2(x

′′
n−1, v

′′
n−1, y

′′
n−1),

u′′n = A1(u
′′
n−1, x

′′
n−1, v

′′
n−1), v′′n = A2(u

′′
n−1, y

′′
n−1, v

′′
n−1),

n = 1, 2, ...,

repeating the same reasoning as in 3), we obtain the existence of (x∗∗, y∗∗) ∈ Ph,e × Pk,f such
that Φ(x∗∗, x∗∗, y∗∗, y∗∗) = (x∗∗, y∗∗), limn→∞ x′′n = limn→∞ u′′n = x∗∗ and limn→∞ y′′n =
limn→∞ v′′n = y∗∗.
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By the uniqueness of fixed point of the operator Φ in Ph,e × Pk,f , we have x∗ = x∗∗ and
y∗ = y∗∗. Moreover, by induction we get x′′n ⪯ x′n, u

′
n ⪯ u′′n and y′′n ⪯ y′n, v

′
n ⪯ v′′n, for n =

1, 2, ... Finally, by the normality of the cone P we deduce that limn→∞ x′n = limn→∞ u′n = x∗

and limn→∞ y′n = limn→∞ v′n = y∗.

In the following, we use the above theorem to prove the existence and uniqueness of solution
to the operators system (1.2). Choose h, k ∈ P such that h ̸= θ, k ̸= θ and take e, f ∈ P with
θ ⪯ e ⪯ h, θ ⪯ f ⪯ k.

Theorem 3.2. Let P be a normal cone in a real Banach spaceE. LetA1 : Ph,e×Ph,e×Pk,f → E
and A2 : Ph,e×Pk,f ×Pk,f → E be two operators such that the vector operator Φ = (A1, A2) :
Ph,e × Pk,f × Ph,e × Pk,f → E × E is cooperative mixed monotone. Let B1 : Ph,e × Ph,e → E
and B2 : Pk,f × Pk,f → E be two mixed monotone operators. Suppose that

(S1) A1(h, h, k), B1(h, h) ∈ Ph,e and A2(h, k, k), B2(k, k) ∈ Pk,f ;

(S2) There exist positive-value τ1, τ2 on interval (a, b), ψ on (a, b)× (a, b) such that

(i) τ1, τ2 : (a, b) → (0, 1) are surjections.

(ii) 1 > ψ(µ, ν) > min{τ1(µ), τ2(ν)}, for all µ, ν ∈ (a, b).

(iii) For any x, u ∈ Ph,e, for any y, v ∈ Pk,f and any µ, ν ∈ (a, b)

A1

(
τ1(µ)x+ (τ1(µ)− 1)e,

1
τ1(µ)

u+ (
1

τ1(µ)
− 1)e, τ2(ν)y + (τ2(ν)− 1)f

)
⪰ ψ(µ, ν)A1(x, u, y) + (ψ(µ, ν)− 1)e,

A2

(
τ1(µ)x+ (τ1(µ)− 1)e,

1
τ2(ν)

v + (
1

τ2(ν)
− 1)f, τ2(ν)y + (τ2(ν)− 1)f

)
⪰ ψ(µ, ν)A2(x, v, y) + (ψ(µ, ν)− 1)f.

(S3) For any x, u ∈ Ph,e, for any y, v ∈ Pk,f and any µ ∈ (0, 1)

B1

(
µx+ (µ− 1)e,

1
µ
u+ (

1
µ
− 1)e

)
⪰ µB1(x, u) + (µ− 1)e,

B2

(
µy + (µ− 1)f,

1
µ
v + (

1
µ
− 1)f

)
⪰ µB2(y, v) + (µ− 1)f.

(S4) For all x, u ∈ Ph,e and all y, v ∈ Pk,f , there exist constants R1, R2 > 0 such that

A1(x, u, y) ⪰ R1B1(x, u) + (R1 − 1)e,

A2(x, v, y) ⪰ R2B2(y, v) + (R2 − 1)f.

Then the operators system (1.2) has a unique solution (x∗, y∗) ∈ Ph,e × Pk,f . Moreover, for any
initial values x0, u0 ∈ Ph,e and y0, v0 ∈ Pk,f , by constructing successively the sequences

xn = A1(xn−1, un−1, yn−1), yn = A2(xn−1, vn−1, yn−1),

un = A1(un−1, xn−1, vn−1), vn = A2(un−1, yn−1, vn−1),
n = 1, 2, ..., (3.7)

we have ∥xn−x∗∥ −→ 0, ∥un−x∗∥ −→ 0 and ∥yn−y∗∥ −→ 0, ∥vn−y∗∥ −→ 0 (as n −→ ∞).

Proof. Let Φ1 : Ph,e × Ph,e × Pk,f → E and Φ2 : Ph,e × Pk,f × Pk,f → E be two operators
defined by

Φ1(x, u, y) = A1(x, u, y) +B1(x, u) + e,

Φ2(x, v, y) = A2(x, v, y) +B2(y, v) + f,

for any x, u ∈ Ph,e and any y, v ∈ Pk,f . Consider the vector operator Φ : Ph,e × Pk,f ×
Ph,e × Pk,f → E × E defined by Φ(x, y, u, v) = (Φ1(x, u, y),Φ2(x, v, y)). Then, using the
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mixed monotone properties of the operators A1, A2, B1 and B2, it is easy to see that Φ is a
cooperative mixed monotone vector operator. Moreover, since A1(h, h, k), B1(h, h) ∈ Ph,e we
have Φ1(h, h, k) ∈ Ph,e, and since A2(h, k, k), B2(k, k) ∈ Pk,f we have Φ2(h, k, k) ∈ Pk,f .

Next, from (S4) we have, for any x, u ∈ Ph,e and any y, v ∈ Pk,f

A1(x, u, y) +R1A1(x, u, y) +R1e ⪰ R1B1(x, u) + (R1 − 1)e

+ R1A1(x, u, y) +R1e,

A2(x, v, y) +R2A2(x, v, y) +R2f ⪰ R2B2(y, v) + (R2 − 1)f

+ R2A2(x, v, y) +R2f.

Therefore,

A1(x, u, y) ⪰
R1

1 +R1
Φ1(x, u, y)−

e

1 +R1
,

A2(x, v, y) ⪰
R2

1 +R2
Φ2(x, v, y)−

f

1 +R2
. (3.8)

Using (S2), (S3) and (3.8), we have for any x, u ∈ Ph,e, for any y, v ∈ Pk,f and for any
µ, ν ∈ (a, b)

Φ1

(
τ1(µ)x+ (τ1(µ)− 1)e,

1
τ1(µ)

u+ (
1

τ1(µ)
− 1)e, τ2(ν)y + (τ2(ν)− 1)f

)
− τ1(µ)Φ1(x, u, y)

= A1

(
τ1(µ)x+ (τ1(µ)− 1)e,

1
τ1(µ)

u+ (
1

τ1(µ)
− 1)e, τ2(ν)y + (τ2(ν)− 1)f

)
+B1

(
τ1(µ)x+ (τ1(µ)− 1)e,

1
τ1(µ)

u+ (
1

τ1(µ)
− 1)e

)
+ e

− τ1(µ)(A1(x, u, y) +B1(x, u) + e)

⪰ ψ(µ, ν)A1(x, u, y) + (ψ(µ, ν)− 1)e+ τ1(µ)B1(x, u),

+ (τ1(µ)− 1)e+ e− τ1(µ)A1(x, u, y)− τ1(µ)B1(x, u)− τ1(µ)e

= (ψ(µ, ν)− τ1(µ))A1(x, u, y) + (ψ(µ, ν)− 1)e

⪰ (ψ(µ, ν)− τ1(µ))
( R1

1 +R1
Φ1(x, u, y)−

e

1 +R1

)
+ (ψ(µ, ν)− 1)e

=
R1(ψ(µ, ν)− τ1(µ))

1 +R1
Φ1(x, u, y) +

(
ψ(µ, ν)− 1 − ψ(µ, ν)− τ1(µ)

1 +R1

)
e.

It follows that

Φ1

(
τ1(µ)x+ (τ1(µ)− 1)e,

1
τ1(µ)

u+ (
1

τ1(µ)
− 1)e, τ2(ν)y + (τ2(ν)− 1)f

)
⪰

(R1(ψ(µ, ν)− τ1(µ))

1 +R1
+ τ1(µ)

)
Φ1(x, u, y) +

(
ψ(µ, ν)− 1 − ψ(µ, ν)− τ1(µ)

1 +R1

)
e

=
R1ψ(µ, ν) + τ1(µ)

1 +R1
Φ1(x, u, y) +

(R1ψ(µ, ν) + τ1(µ)

1 +R1
− 1

)
e.

In the same way we obtain

Φ2

(
τ1(µ)x+ (τ1(µ)− 1)e,

1
τ2(ν)

v + (
1

τ2(ν)
− 1)f, τ2(ν)y + (τ2(ν)− 1)f

)
⪰ R2ψ(µ, ν) + τ2(ν)

1 +R2
Φ2(x, v, y) +

(R2ψ(µ, ν) + τ2(ν)

1 +R2
− 1

)
f.

Define the function φ(µ, ν) = min{R1ψ(µ,ν)+τ1(µ)
1+R1

, R2ψ(µ,ν)+τ2(ν)
1+R2

}. Then φ satisfies the hypoth-
esis (H2) in Theorem 3.1. Consequently, all hypotheses of Theorem 3.1 hold. So we obtain the
conclusion of Theorem 3.2.
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4 Application to systems of fractional differential equations

Recently, the theory of fractional calculus, notably fractional differential equations, have been of
great interest to many researchers because of its wide range of applications in various fields, such
as physics, mechanics, engineering, biology, etc. We refer to, e.g., [6, 11, 12, 13, 18, 19, 23] and
references therein for studies on fractional differential equations. A main motivation for this last
section is the lower number of papers concerned with systems of fractional differential equations.
We shall apply Theorem 3.2 in section 3 to prove the existence and uniqueness of a solution for
the system (1.3). For the sake of convenience, we begin by giving some definitions and well
known results concerning our problem. For more details, we refer to [14, 16, 17, 27, 29, 30, 31,
35].

Let E = C[0, 1] be the Banach space of continuous, real-valued functions on the unit interval
[0, 1] with the standard norm ∥x∥ = supt∈[0,1] |x(t)|. Consider the set

P = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]} .

Then, it is easy to show that P is a normal cone in the space C[0, 1] of which the normality
constant is 1.

Definition 4.1 ([13]). Let α > 0 be a real number and x : (0,+∞) → R be a continuous
function. The Riemann-Liouville derivative of order α is defined as

Dα
0+x(t) =

1
Γ(n− α)

dn

dtn

∫ t

0

x(s)

(t− s)α−n+1 ds

and the Riemann-Liouville integral of order α is defined as

Iα0+x(t) =
1

Γ(α)

∫ t

0

x(s)

(t− s)1−α ds,

where n = [α] + 1, [α] denotes the integer part of the number α. Γ(α) is the Euler Gamma
function defined by

Γ(α) =

∫ +∞

0
tα−1e−tdt.

Lemma 4.2 ([7]). Let f ∈ C([0, 1]) be given. Then the fractional boundary value problem
−Dα

0+x(t) = f(t), 0 < t < 1, n− 1 < α < n,

x(i)(0) = 0, 0 ≤ i ≤ n− 2,
[Dβ

0+x(t)]t=1 = 0, 1 ≤ β ≤ n− 2
(4.1)

has a unique solution

x(t) =

∫ 1

0
Gα,β(t, s)f(s)ds,

where

Gα,β(t, s) =
1

Γ(α)

{
tα−1(1 − s)α−β−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,
tα−1(1 − s)α−β−1, 0 ≤ t ≤ s ≤ 1

(4.2)

is the Green’s function for this problem.

Lemma 4.3 ([7, 31]). The Green’s functionGα,β(t, s) in Lemma 4.2 has the following properties.

(i) Gα,β(t, s) is a continuous fonction on [0, 1]× [0, 1];

(ii) Gα,β(t, s) ≥ 0 for each (t, s) ∈ [0, 1]× [0, 1];

(iii) For all t, s ∈ [0, 1],

[1 − (1 − s)β](1 − s)α−β−1tα−1 ≤ Γ(α)Gα,β(t, s) ≤ (1 − s)α−β−1tα−1;

(iv) maxt∈[0,1]Gα,β(t, s) = Gα,β(1, s), for each s ∈ [0, 1].
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Next, regarding problem (1.3) we define the functions

e(t) = a

∫ 1

0
Gα,γ(t, s)ds =

a

(α− γ)Γ(α)

(
tα−1 − α− γ

α
tα
)
, t ∈ [0, 1],

f(t) = b

∫ 1

0
Gβ,δ(t, s)ds =

b

(β − δ)Γ(β)

(
tβ−1 − β − δ

β
tβ
)
, t ∈ [0, 1]

and put e∗ = max{e(t) : t ∈ [0, 1]}, f∗ = max{f(t) : t ∈ [0, 1]}. It is obvious that e(t) ≥ 0
and f(t) ≥ 0 for all t ∈ [0, 1]. Furthermore, we denote h(t) = L1t

α−1 and k(t) = L2t
β−1 for all

t ∈ [0, 1] with L1 ≥ a
(α−γ)Γ(α) and L2 ≥ b

(β−δ)Γ(β) . Then we have

e(t) ≤ a

(α− γ)Γ(α)
tα−1 ≤ L1t

α−1 = h(t),

f(t) ≤ b

(β − δ)Γ(β)
tβ−1 ≤ L2t

β−1 = k(t).

So we get Ph,e = {x ∈ E : x+ e ∈ Ph} and Pk,f = {x ∈ E : x+ f ∈ Pk}.
Now, we are ready to present and prove the main result in this section.

Theorem 4.4. Assume that F1(t, x, y) = f1(t, x, x, y), F2(t, x, y) = f2(t, x, y, y), G1(t, x) =
g1(t, x, x), G2(t, y) = g2(t, y, y), such that f1, f2, g1, g2 are functions satisfying the following
hypotheses.

(C1) i) f1 : [0, 1]× [−e∗,+∞)× [−e∗,+∞)× [−f∗,+∞) −→ (−∞,+∞);
ii) f2 : [0, 1]× [−e∗,+∞)× [−f∗,+∞)× [−f∗,+∞) −→ (−∞,+∞);
iii) g1 : [0, 1]× [−e∗,+∞)× [−e∗,+∞) −→ (−∞,+∞);
iv) g2 : [0, 1]× [−f∗,+∞)× [−f∗,+∞) −→ (−∞,+∞)

are continuous functions. In addition, for all t ∈ [0, 1], gi(t, 0, Li) ≥ 0 and
◦
Ai = ∅, where

Ai = {t ∈ [0, 1] : gi(t, 0, Li) = 0} and i = 1, 2.

(C2) For all t ∈ [0, 1], all x, u ∈ [−e∗,+∞) and all y, v ∈ [−f∗,+∞), the functions f1(t, ., u, y),
f1(t, x, u, .), f2(t, ., u, y), f2(t, x, u, .), g1(t, ., u), g2(t, ., v) are increasing and the functions
f1(t, x, ., y), f2(t, x, ., y), g1(t, x, .), g2(t, y, .) are decreasing.

(C3) There exist positive-value functions τ1, τ2 on (0, 1) and ϕ on (0, 1)× (0, 1) such that

(i) τ1, τ2 : (0, 1) → (0, 1) are surjections.
(ii) 1 > ϕ(µ, ν) > min{τ1(µ), τ2(ν)}, For all µ, ν ∈ (0, 1).

(iii) For all x, u, y ∈ (−∞,+∞), for all t ∈ [0, 1] and all µ, ν ∈ (0, 1),

f1

(
t, τ1(µ)x+ (τ1(µ)− 1)ρ1,

1
τ1(µ)

u+ (
1

τ1(µ)
− 1)ρ2, τ2(ν)y

+ (τ2(ν)− 1)σ1

)
≥ ϕ(µ, ν)f1(t, x, u, y),

f2

(
t, τ1(µ)x+ (τ1(µ)− 1)ρ3,

1
τ2(ν)

u+ (
1

τ2(ν)
− 1)σ2, τ2(ν)y

+ (τ2(ν)− 1)σ3

)
≥ ϕ(µ, ν)f2(t, x, u, y),

g1

(
t, µx+ (µ− 1)ρ4,

1
µ
u+ (

1
µ
− 1)ρ5

)
≥ µg1(t, x, u),

g2

(
t, µx+ (µ− 1)σ4,

1
µ
u+ (

1
µ
− 1)σ5

)
≥ µg2(t, x, u),

where ρi ∈ [0, e∗], σi ∈ [0, f∗] with i ∈ {1, 2, 3, 4, 5}.

(C4) For all t ∈ [0, 1], for all x, u ∈ [−e∗,+∞) and all y, v ∈ [−f∗,+∞), there exist two
constants R1, R2 > 0 such that

f1(t, x, u, y) ≥ R1.g1(t, x, u) and f2(t, x, v, y) ≥ R2.g2(t, y, v).
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Then problem (1.3) has a unique solution (x∗, y∗) in Ph,e×Pk,f . Moreover, for any x0, u0 ∈
Ph,e and any y0, v0 ∈ Pk,f , if we construct the sequences

xn+1(t) =

∫ 1

0
Gα,γ(t, s)[f1(s, xn(s), un(s), yn(s))

+ g1(s, xn(s), un(s))]ds− e(t),

un+1(t) =

∫ 1

0
Gα,γ(t, s)[f1(s, un(s), xn(s), vn(s))

+ g1(s, un(s), xn(s))]ds− e(t),

yn+1(t) =

∫ 1

0
Gβ,δ(t, s)[f2(s, xn(s), vn(s), yn(s))

+ g2(s, yn(s), vn(s))ds− f(t),

vn+1(t) =

∫ 1

0
Gβ,δ(t, s)[f2(s, un(s), yn(s), vn(s))

+ g2(s, vn(s), yn(s))ds− f(t),

for n ∈ N, we get {xn(t)}, {un(t)} both converge to x∗(t) and {yn(t)}, {vn(t)} both
converge to y∗(t), uniformly for all t ∈ [0, 1].

Proof. We will prove that all hypotheses of Theorem 3.2 are satisfied for suitable operators.
1) By Lemma 4.2, proplem (1.3) has the integral formulation

x(t) =

∫ 1

0
Gα,γ(t, s)[f1(s, x(s), x(s), y(s)) + g1(s, x(s), x(s))− a]ds,

y(t) =

∫ 1

0
Gβ,δ(t, s)[f2(s, x(s), y(s), y(s)) + g2(s, y(s), y(s))− b]ds.

which gives by a simple calculation

x(t) =

∫ 1

0
Gα,γ(t, s)f1(s, x(s), x(s), y(s))ds− e(t)

+

∫ 1

0
Gα,γ(t, s)g1(s, x(s), x(s))ds− e(t) + e(t),

y(t) =

∫ 1

0
Gβ,δ(t, s)f2(s, x(s), y(s), y(s))ds− f(t)

+

∫ 1

0
Gβ,δ(t, s)g2(s, y(s), y(s))ds− f(t) + f(t).

For every x, u ∈ Ph,e, every y, v ∈ Pk,f and every t ∈ [0, 1], define the operators

A1(x, u, y)(t) =

∫ 1

0
Gα,γ(t, s)f1(s, x(s), u(s), y(s))ds− e(t),

A2(x, v, y)(t) =

∫ 1

0
Gβ,δ(t, s)f2(s, x(s), v(s), y(s))ds− f(t),

B1(x, u)(t) =

∫ 1

0
Gα,γ(t, s)g1(s, x(s), u(s))ds− e(t)

and

B2(y, v)(t) =

∫ 1

0
Gβ,δ(t, s)g2(s, y(s), v(s))ds− f(t).
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Then, it is not difficult to see that (x, y) is the solution of system (1.3) if and only if x =
A1(x, x, y) + B1(x, x) + e and y = A2(x, y, y) + B2(y, y) + f , that is, (x, y) is a fixed point of
the vector operatoe Ψ = (A1 +B1 + e,A2 +B2 + f) in Ph,e × Pk,f .

2) From (C2), we get easily that Φ = (A1, A2) is a cooperative mixed monotone operator and
B1, B2 are mixed monotone.

3) We show that (S1) in Theorem 3.2 is satiseied. Using Lemma 4.2, Lemma 4.3 and (C2),
we obtain

A1(h, h, k)(t) + e(t) =

∫ 1

0
Gα,γ(t, s)f1(s, h(s), h(s), k(s))ds

≥ h(t)

L1Γ(α)

∫ 1

0
(1 − (1 − s)α)(1 − s)α−γ−1f1(s, 0, L1, 0)ds,

B1(h, h)(t) + e(t) =

∫ 1

0
Gα,γ(t, s)g1(s, h(s), h(s))ds

≥ h(t)

L1Γ(α)

∫ 1

0
(1 − (1 − s)α)(1 − s)α−γ−1g1(s, 0, L1)ds,

A1(h, h, k)(t) + e(t) =

∫ 1

0
Gα,γ(t, s)f1(s, h(s), h(s), k(s))ds

≤ h(t)

L1Γ(α)

∫ 1

0
(1 − s)α−γ−1f1(s, L1, 0, L2)ds

and

B1(h, h)(t) + e(t) =

∫ 1

0
Gα,γ(t, s)g1(s, h(s), h(s))ds

≤ h(t)

L1Γ(α)

∫ 1

0
(1 − s)α−γ−1g1(s, L1, 0)ds,

Furthermore, from (C2) and (C4)

f1(s, L1, 0, L2) ≥ f1(s, 0, L1, 0) ≥ R1g1(s, 0, L1), s ∈ [0, 1],

and by (C1), we get∫ 1

0
f1(s, L1, 0, L2)ds ≥

∫ 1

0
f1(s, 0, L1, 0)ds ≥

∫ 1

0
R1g1(s, 0, L1)ds > 0.

It follows, since α > γ, β > δ, Γ(α) > 0 and Γ(β) > 0, that

M1 =
1

L1Γ(α)

∫ 1

0
(1 − (1 − s)α)(1 − s)α−γ−1f1(s, 0, L1, 0)ds > 0,

N1 =
1

L1Γ(α)

∫ 1

0
(1 − (1 − s)α)(1 − s)α−γ−1g1(s, 0, L1)ds > 0,

M2 =
1

L1Γ(α)

∫ 1

0
(1 − s)α−γ−1f1(s, L1, 0, L2)ds > 0,

N2 =
1

L1Γ(α)

∫ 1

0
(1 − s)α−γ−1g1(s, L1, 0)ds > 0.

Thus, M1h(t) ≤ A1(h, h, k)(t)+ e(t) ≤M2h(t) and N1h(t) ≤ B1(h, h)(t)+ e(t) ≤ N2h(t), for
all t ∈ [0, 1], which means that A1(h, h, k), B1(h, h) ∈ Ph,e.

In a similar way we obtain A2(h, k, k), B2(k, k) ∈ Pk,f .
4) By using the same reasoning as in the proofs of [21, Theorem 3.1] and [22, Theorem 5.1],

we show that (S2) and (S3) are satisfied from (C3), and (S4) is satisfied from (C4). The proof is
complete.
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Example 4.5. Take n = 5, α = 9
2 , β = 13

3 , γ = 5
2 , δ =

7
3 , a = 2 and b = 4. Consider the system

of boundary value problems
D

9
2
0+x(t) + f1(t, x(t), x(t), y(t)) + g1(t, x(t), x(t))− 2 = 0,

D
13
3

0+y(t) + f2(t, x(t), y(t), y(t)) + g2(t, y(t), y(t))− 4 = 0,
x(i)(0) = 0 = y(i)(0), i = 0, 1, 2, 3,

[D
5
2
0+x(t)]t=1 = 0 = [D

7
3
0+y(t)]t=1,

(4.3)

where for t ∈ [0, 1],

f1(t, x, u, y) =
(e(t)
e∗

x+
f(t)

f∗
y + e(t) + f(t)

) 1
2
+

(e(t)
e∗

u+ e(t) + 1
)− 1

2
,

f2(t, x, v, y) =
(e(t)
e∗

x+
f(t)

f∗
y + e(t) + f(t)

) 1
3
+

(f(t)
f∗

v + e(t) + 1
)− 1

3
,

g1(t, x, u) = (u+ e(t) + 2)−
1
2 and g2(t, y, v) = (v + f(t) + 2)−

1
3 ,

with e(t) =
t

7
2 − 4

9 t
9
2

Γ( 9
2)

and f(t) =
2t

10
3 − 12

13 t
13
3

Γ( 13
3 )

, for all t ∈ [0, 1]. Hence, we have

e∗ =
5

9Γ( 9
2)
, f∗ =

14
13Γ( 13

3 )
, L1 =

1
Γ( 9

2)
and L2 =

2
Γ( 13

3 )
.

In addition, for any surjective functions τ1, τ2 : (0, 1) → (0, 1), ϕ(µ, ν) =
(

min{τ1(µ), τ2(ν)}
) 1

2
,

for all µ, ν ∈ (0, 1).
Therefore, all hypotheses of Theorem 4.4 are satisfied. Thus, system (4.3) has a unique

solution (x∗, y∗) in Ph,e × Pk,f , where h(t) = L1t
7
2 and k(t) = L2t

10
3 , for all t ∈ [0, 1].
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