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Abstract In this paper, we define the concept of a ρn∗ -functional and we use norm deriva-
tives to introduce ρ∞∗ -orthogonality and discuss its geometrical properties. We describe rela-
tionships between ρ∞∗ -orthogonality and Birkhoff-James orthogonality on one hand and semi-
orthogonality on the other. In particular, we provide illustrations showing that ρ∞∗ -orthogonality
cannot be compared to other well-known orthogonalities. Finally, we characterize the inner
product spaces using the properties of ρ∞∗ -orthogonality.

1 Introduction

The notion of orthogonality is one of the fascinating ideas in studying the geometry of normed
spaces. The orthogonality relations derived from the norm derivatives provide a useful frame-
work for studying the geometric structure of a normed space. One of the most intriguing orthog-
onality concepts is the Birkhoff-James orthogonality, which was first proposed by Birkhoff [3]
and then modified by James [9]. Isosceles and Pythagorean orthogonalities were first introduced
to normed space by James [8] in 1945.

In 1986, Amir [1] introduced the functional using norm derivative, which is helpful in ana-
lyzing the geometry of normed spaces. The concept of the norm derivatives naturally arises from
the Gateaux derivative of the norm’s two-sided limiting feature, making them suitable general-
izations of the latter. Furthermore, Milićić [13] provided a new functional and orthogonality, a
combination of norm derivatives. Later, Zamani and Moslehian [15] extended the norm orthog-
onality as a convex combination of norm derivatives. Recently, Enderami et al. [6] introduced a
new functional and on the basis of norm derivatives, an orthogonality relation in complex normed
spaces is established.

Inspired by these results, we introduce a functional and ρ∞∗ -orthogonality relation in the
framework of a normed space with a complex field. Also, we investigate its interesting geomet-
ric properties in complex normed space. We also obtain an association between the orthogo-
nality defined in the paper with Birkhoff-James orthogonality and semi-orthogonality. Conse-
quently, we give some examples that illustrate that the ρ∞∗ -orthogonality is incomparable with
other renowned orthogonalities. In the last, we characterize the inner product space using the
properties of ρ∞∗ .

2 Preliminaries

In this section, we provide some fundamental definitions, notations and results which will be
used in the sequel.

Throughout the paper, we consider a complex normed space (X , ‖.‖).

According to Birkhoff-James (see [3, 9]), a vector p ∈ X is considered to be orthogonal to a
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vector q ∈ X , denoted by p ⊥B q, if

‖p+ rq‖ ≥ ‖p‖, for all r ∈ R.

In 1986, Amir [1] defined the norm derivatives as, for all p, q ∈ X ,

ρ±(p, q) = lim
η→0±

‖p+ ηq‖2 − ‖p‖2

2η
= ‖p‖ lim

η→0±

‖p+ ηq‖ − ‖p‖
η

.

Following are the well-known properties of norm derivatives (see [2]) in X , for all p, q ∈ X
and for every γ = |γ|eiθ, δ = |δ|eiω in C, we obtain

(i) ρ−(p, q) ≤ ρ+(p, q);

(ii) ρ±(p, γp) = Re(γ)‖p‖2,

(iii) ρ±(p, γp+ q) = Re(γ)‖p‖2 + ρ±(p, q),

(iv) ρ±(γp, δq) = |γ||δ|ρ±(p, ei(ω−θ)q),

(v) |ρ±(γp, δq)| ≤ ‖γp‖‖δq‖,

(vi) ρ±(p, γq) = Re〈p, γq〉, for inner product space.

(vii) p ⊥ρ± q if and only if ρ±(p, q) = 0.

Milićić [13] defined the mapping ρ : X × X → C by

ρ(p, q) =
ρ−(p, q) + ρ+(p, q)

2
,

for all p, q ∈ X and introduced the corresponding ρ-orthogonality in terms of norm derivatives :

p ⊥ρ q if and only if ρ(p, q) =
ρ−(p, q) + ρ+(p, q)

2
= 0.

It’s interesting to note that the relations ⊥ρ+ ,⊥ρ− and ⊥ρ are generally incomparable in a
non-smooth normed space but are equivalent in an inner product space.
In 2015, Chen and Lu [5] introduced the notion of ρ∗-orthogonality which is defined by:

p ⊥ρ∗ q if and only if ρ∗(p, q) = ρ−(p, q)ρ+(p, q) = 0,

where p, q ∈ X .
Furthermore, Zamani and Moslehian [15] introduced ρλ-orthogonality as a generalisation of
orthogonality relations dependent on norm derivatives,

p ⊥ρλ q if and only if ρλ(p, q) = λρ−(p, q) + (1− λ)ρ+(p, q) = 0,

for each p, q ∈ X and λ ∈ [0, 1]. In addition, they provided a ρλ based characterization of inner
product spaces.

Due to Lumer [12] and Giles [7], there exists a mapping [., .] : X ×X → C for every normed
space (X , ‖.‖), known as a semi-inner product (s.i.p.), satisfying the following properties, for all
p, q, w ∈ X and γ, δ ∈ C,

(i) [γp+ δq, w] = γ[p, w] + δ[q, w],

(ii) [p, γq] = γ̄[p, q],

(iii) [p, p] = ‖p‖2,

(iv) |[p, q]| ≤ ‖p‖‖q‖.

In an arbitrary normed space, the idea of orthogonality can be presented in a variety of ways. A
semi-orthogonality of the components p and q in a semi inner product [., .] is defined by

p ⊥s q if and only if [q, p] = 0.
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The structure of the paper is as follows.
In Section 3, first we define a functional ρn∗ : X × X → C defined by

ρn∗ (p, q) =
2
n

n∑
`=1

ρ∗(p, c`q),

where the scalars c`, ` = 1, 2, . . . , n are the n-th roots of unity in C.
Thereafter, we generalize the functional ρn∗ : X ×X → C by defining a ρ∞∗ : X ×X → C as

ρ∞∗ (p, q) =
1
π

∫ 2π

0
ρ∗(p, e

iθq)dθ.

Also, we discuss their basic geometrical properties using norm derivatives.
On the basis of the mapping ρ∞∗ , we define an orthogonality relation in Section 4 as follows

p ⊥ρ∞∗ q if ρ∞∗ (p, q) = 0.

In addition, we demonstrate certain comparable relations using s.i.p. [., .] on X . Also, we show
that ⊥ρ∞∗ ⊆⊥B if |ρ∞∗ (p, q)| ≤ ‖p‖‖q‖ for all p, q ∈ X .

3 A new functional form

Now, we introduce a new functional using ρ∗ functional in the setting of complex normed space.

Definition 3.1. For the n-th root of unity c1, c2, ....cn we define a functional ρn∗ on X as

ρn∗ (p, q) =
2
n

n∑
`=1

ρ∗(p, c`q),

for all p, q ∈ X .

Remark 3.2. (i) From the above definition, for n = 1, c1 = 1, then we get ρ1
∗ =

2
1{ρ∗(p, 1q)} =

2ρ∗(p, q).

(ii) For n = 2, c1 = 1 and c2 = −1, we have ρ2
∗ =

2
2{ρ∗(p, 1q) + ρ∗(p,−1q)} = 2ρ∗(p, q).

(iii) For n = 1 and n = 2 we now have
∑n
i=1 c

2
n = n, but when we take n > 2, this fact is not

true. So, It’s fascinating to think about the nth roots of unity, where n is greater than 2.

In this part, we begin with some properties of the functional ρ∗ in X .

Proposition 3.3. For all p, q ∈ X and for every γ = |γ|eiθ, δ = |δ|eiω in C, we have

(i) ρ∗(p, γp) = {Re(γ)}2‖p‖4,

(ii) ρ∗(p, γp+ q) = {Re(γ)}2‖p‖4 + 2Re(γ)‖p‖2ρ(p, q) + ρ∗(p, q),

(iii) ρ∗(γp, δq) = |γ|2|δ|2ρ∗(p, ei(ω−θ)q),

(iv) |ρ∗(γp, δq)| ≤ ‖γp‖2‖δq‖2,

(v) ρ∗(p, γq) = {Re〈p, γq〉}2, for inner product space.

Proof. (i) We know that, ρ±(p, γp) = Re(γ)‖p‖2.
Therefore,

ρ∗(p, γp) = ρ−(p, γp)ρ+(p, γp) = {Re(γ)}2‖p‖4.

(ii) Consider,

ρ+(p, γp+ q) = ρ+(p, q) +Re(γ)‖p‖2.
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and

ρ−(p, γp+ q) = ρ−(p, q) +Re(γ)‖p‖2.

Therefore,

ρ∗(p, γp+ q) = ρ−(p, γp+ q)ρ+(p, γp+ q)

= {Re(γ)‖p‖2 + ρ−(p, q)}{Re(γ)‖p‖2 + ρ+(p, q)}

= {Re(γ)}2‖p‖4 + 2Re(γ)‖p‖2ρ(p, q) + ρ∗(p, q).

(iii) Consider

ρ±(γp, δq) = |γ||δ|ρ±(p, ei(ω−θ)q).

Therefore,
ρ∗(γp, δq) = |γ|2|δ|2ρ∗(p, ei(ω−θ)).

(iv) Using the definition of ρ∗, we have

|ρ∗(γp, δq)| = |ρ−(γp, δq)ρ+(γp, δq)|
= |ρ−(γp, δq)||ρ+(γp, δq)|
≤ ‖γp‖‖δq‖‖γp‖‖δq‖
= ‖γp‖2‖δq‖2.

(v) Consider,

ρ±(p, γq) = Re〈p, γq〉.

So, ρ∗(p, γq) = ρ−(p, γq)ρ+(p, γq) = {Re〈p, γq〉}2.

The next consequence is obvious (see [6]).

Lemma 3.4. Suppose that c1, c2, . . . , cn are the nth roots of unity. Then
n∑̀
=1
c2
` = 0 =

n∑̀
=1
c`

2, for

n > 2.

We discuss some basic properties of functional ρn∗ .

Proposition 3.5. (i) ρn∗ (p, p) = ‖p‖4, for all p ∈ X .

(ii) |ρn∗ (p, q)| ≤ 2‖p‖2‖q‖2, for every p, q in X .

(iii) If the norm of X derives from an inner product 〈., .〉, then ρn∗ (p, q) = 〈p, q〉〈p, q〉 for every
p, q ∈ X .

Proof. (i) For p ∈ X , we have

ρn∗ (p, p) =
2
n

n∑
`=1

ρ∗(p, c`p)

=
2
n

n∑
`=1

{Re(c`)}2‖p‖4 [since ρ∗(p, γp) = Re(γ)‖p‖2]

=
‖p‖4

2n

n∑
`=1

(c` + c̄`)
2

=
‖p‖4

2n

n∑
`=1

(c`
2 + 2|c`|2 + c̄`

2)

=
‖p‖4

2n
(
n∑
`=1

c`
2 + 2

n∑
`=1

|c`|2 +
n∑
`=1

c̄`
2)

=
‖p‖4

2n
(0 + 2n+ 0) (using Lemma 3.4)

= ‖p‖4.



ρ∞∗ -Orthogonality and its Geometrical Properties 687

(ii) For p, q ∈ X , we have

|ρn∗ (p, q)| =
2
n
|
n∑
`=1

ρ∗(p, c`p)|

≤ 2
n

n∑
`=1

|ρ∗(p, c`q)|

≤ 2
n

n∑
`=1

‖p‖2‖c`q‖2

=
2‖p‖2‖q‖2

n

n∑
`=1

|c`|2

= 2‖p‖2‖q‖2.

(iii) Suppose that the norm of X derives from an inner product 〈., .〉. Then for all p, q ∈ X ,

ρn∗ (p, q) =
2
n

n∑
`=1

c`ρ∗(p, c`q)

=
2
n

n∑
`=1

{Re〈p, c`q〉}2 (using Proposition 3.3(v))

=
1

2n

n∑
`=1

(〈p, c`q〉+ 〈p, c`q〉)2

=
1

2n

n∑
`=1

(c̄`〈p, q〉+ c`〈p, q〉)2

=
〈p, q〉2

2n

n∑
`=1

c̄`
2 +
〈p, q〉

2

2n

n∑
`=1

c`
2 +

2〈p, q〉〈p, q〉
2n

n∑
`=1

|c`|2

= 〈p, q〉〈p, q〉.

Remark 3.6. We know that if g : [0, 1]→ C is a continuous function, then

lim
n→∞

1
n

n∑
`=1

g(
k

n
) =

∫ 1

0
g(t)dt. (3.1)

Now, replacing c` with e2kπi/n we get

ρn∗ (p, q) =
2
n

n∑
`=1

ρ∗(p, e
2kπi/nq). (3.2)

Letting n→∞ in (3.2), we get

lim
n→∞

2
n

n∑
`=1

ρ∗(p, e
2kπi/nq) = 2

∫ 1

0
ρ∗(p, e

i2πtq)dt.

Taking θ = 2πt, we have

lim
n→∞

ρn∗ (p, q) =
1
π

∫ 2π

0
ρ∗(p, e

iθq)dθ. (3.3)

Therefore,

ρ∞∗ (p, q) = lim
n→∞

ρn∗ (p, q) =
1
π

∫ 2π

0
ρ∗(p, e

iθq)dθ. (3.4)
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Following, we examine the basic geometrical properties of ρ∞∗ . As the integral functions
under study are 2π-periodic, we’ll frequently use the following equality:

∫ 2π+φ

φ

k(θ)dθ =

∫ 2π

0
k(θ)dθ (φ ∈ R).

Proposition 3.7. For all p, q ∈ X , γ, δ ∈ C, we get

(i) ρ∞∗ (γp, δq) = |γ|2|δ|2ρ∞∗ (p, q)

(ii) ρ∞∗ (p, γp+ q) = γγ̄‖p‖4 + ρ∞∗ (p, q) +
2‖p‖2

π

∫ 2π
0 Re(eiθγ)ρ(p, eiθq)dθ,

(iii) |ρ∞∗ (p, q)| ≤ 2‖p‖2‖q‖2.

Proof. Choose γ = |γ|eiφ and δ = |δ|eiψ, for some ψ, φ ∈ [0, 2π). Therefore by using definition
of ρ∞∗ , we get

ρ∞∗ (γp, δq) =
1
π

∫ 2π

0
ρ∗(|γ|eiφp, |δ|eiψeiθq)dθ

=
1
π

∫ 2π

0
ρ∗(|γ|eiφp, |δ|ei(θ+ψ)q)dθ

=
|γ|2|δ|2

π

∫ 2π

0
ρ∗(p, e

i(θ+ψ−φ)q)dθ [Using (nd3)]

=
|γ|2|δ|2

π

∫ 2π+ψ−φ

ψ−φ
ρ∗(p, e

itq)dt [taking t = θ + ψ − φ]

=
|γ|2|δ|2

π

∫ 2π

0
ρ∗(p, e

itq)dt

= |γ|2|δ|2ρ∞∗ (p, q).

(ii) First, we note that

∫ 2π

0
{Re(eiθγ)}2dθ =

1
2

∫ 2π

0
(eiθγ + e−iθγ̄)2dθ

=
1
4

∫ 2π

0
(e2iθγ2 + γ̄2e−2iθ + 2γγ̄)dθ

=
γ2

4

∫ 2π

0
e2iθdθ +

γ̄2

4

∫ 2π

0
e−2iθdθ +

2γγ̄
4

∫ 2π

0
dθ

= 0 + 0 +
2γγ̄

4
2π

= γγ̄π.
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Further,

ρ∞∗ (p, γp+ q) =
1
π

∫ 2π

0
ρ∗(p, e

iθ(γp+ q))dθ

=
1
π

∫ 2π

0
ρ∗(p, e

iθγp+ eiθq))dθ

=
1
π

∫ 2π

0
ρ∗(p, e

iθγp)dθ +
1
π

∫ 2π

0
2Re(eiθγ)‖p‖2ρ(p, eiθq)dθ

+
1
π

∫ 2π

0
ρ∗(p, e

iθq))dθ

=
1
π
‖p‖4

∫ 2π

0
{Re(eiθγ)}2dθ +

2‖p‖2

π

∫ 2π

0
Re(eiθγ)ρ(p, eiθq)dθ

+
1
π

∫ 2π

0
ρ∗(p, e

iθq))dθ

=
1
π
‖p‖4γγ̄π +

2‖p‖2

π

∫ 2π

0
Re(eiθγ)ρ(p, eiθq)dθ + ρ∞∗ (p, q)

= γγ̄‖p‖4 + ρ∞∗ (p, q) +
2‖p‖2

π

∫ 2π

0
Re(eiθγ)ρ(p, eiθq)dθ.

(iii) For p, q ∈ X , we obtain

|ρ∞∗ (p, q)| = | 1
π

∫ 2π

0
ρ∗(p, e

iθq)dθ|

≤ 1
π

∫ 2π

0
|ρ∗(p, eiθq)dθ|

=
1
π

∫ 2π

0
|ρ∗(p, eiθq)|dθ

≤ 1
π

∫ 2π

0
‖p‖2‖eiθq‖2dθ

=
1
π

∫ 2π

0
‖p‖2‖q‖2dθ

=
1
π
‖p‖2‖q‖2.2π

= 2‖p‖2‖q‖2.

Theorem 3.8. Let a complex vector space X be equipped with two norms denoted by ‖.‖1 and
‖.‖2 over the field C. ‖.‖1 and ‖.‖2 are norm equivalent if and only if there exists a positive
constant k such that,

|ρ∞∗,1(p, q)− ρ∞∗,2(p, q)| ≤ kmin{‖p‖2
1‖q‖2

1, ‖q‖2
2‖q‖2

2}

for all p, q ∈ X and where ρ∞∗,c is a functional ρ∞∗ with respect to ‖.‖c, for c = 1, 2.

Proof. Suppose that ‖.‖1 and ‖.‖2 are norm equivalent. So, m‖.‖1 ≤ ‖.‖2 ≤ M‖.‖1 for some
positive numbers m,M . Using Proposition 3.7 (iii), we have

|ρ∞∗,1(p, q)| ≤ 2‖p‖2
1‖q‖2

1,

and
|ρ∞∗,2(p, q)| ≤ 2‖p‖2

2‖q‖2
2.
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Therefore,

|ρ∞∗,1(p, q)− ρ∞∗,2(p, q)| ≤ 2(‖p‖2
1‖q‖2

1 + ‖p‖2
2‖q‖2

2)

≤ 2(‖p‖1‖q‖1 +M2‖p‖2
1‖q‖2

1)

= 2(1 +M2)‖p‖2
1‖q‖2

1.

On the similar lines, we get

|ρ∞∗,1(p, q)− ρ∞∗,2(p, q)| ≤ 2(1 +
1
m2 )‖p‖

2
2‖q‖2

2.

Taking k = max{2(1 +M2), 2(1 + 1
m2 )}, we have,

|ρ∞∗,1(p, q)− ρ∞∗,2(p, q)| ≤ kmin{‖p‖2
1‖q‖2

1, ‖p‖2
2‖q‖2

2}.

Conversely, suppose that for every p ∈ X and k > 0, we have

|ρ∞∗,1(p, p)− ρ∞∗,2(p, p)| ≤ kmin{‖p‖4
1, ‖p‖4

2}.

If min{‖p‖4
1, ‖p‖4

2} = ‖p‖4
1, then

|‖p‖4
1 − ‖p‖4

2| ≤ k‖p‖4
1 ≤ k‖p‖4

2.

Therefore, we get

‖p‖2 ≤ 4
√

1 + k‖p‖1, ‖p‖1 ≤ 4
√

1 + k‖p‖2,

and

1
4
√

1 + k
‖p‖1 ≤ ‖p‖2 ≤ 4

√
1 + k‖p‖1.

Similarly, we get the result, if min{‖p‖4
1, ‖p‖4

2} = ‖p‖4
2.

4 ρ∞∗ -orthogonality

Here, we use the functional (3.4) to define ρ∞∗ -orthogonality in a complex normed space.

Definition 4.1. Define a ρ∞∗ -orthogonality as

p ⊥ρ∞∗ q if and only if ρ∞∗ (p, q) = 0,

for every p, q ∈ X .

It is always worth examining relationships between various types of orthogonality.

Theorem 4.2. ⊥ρ∞∗ =⊥s if ρ∞∗ (p, q) = [q, p], for every p, q ∈ X , where [., .] is a s.i.p. on X .

Proof. Let ρ∞∗ (p, q) = [q, p], for all p, q ∈ X .
If ρ∞∗ (p, q) = 0 then we have [q, p] = 0. So ⊥ρ∞∗ ⊆⊥s.
Also if [q, p] = 0, then we get ρ∞∗ (p, q) = 0. So ⊥s⊆⊥ρ∞∗ .
Hence from the above condition we obtain ⊥ρ∞∗ =⊥s.

The example below demonstrates that in general ⊥B 6⊂⊥ρ∞∗ .

Example 4.3. Let X = l1 be the space of summable sequences over C equipped with its standard
norm. Let p = (0, 0, 1, 0, 0, . . .) and q = (3, 0, 1, 0, 0, . . .). Here, for any ξ ∈ C, we have
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‖p+ ξq‖ = 3|ξ|+ |1 + ξ| ≥ 1 = ‖p‖. So, p ⊥B q.
Consider,

‖p+ teiθq‖ − ‖p‖2

t
=
‖(3teiθ, 0, 1 + teiθ, . . .)‖ − ‖(0, 0, 1, 0, 0, . . .)‖

t

=
|3teiθ|+ |1 + teiθ| − 1

t

=
3|t|
t

+
|1 + teiθ| − 1

t
.

Therefore,

ρ+(p, e
iθq) = lim

t→0+

3|t|
t

+ lim
t→0+

|1 + teiθ| − 1
t

= 3 + lim
t→0+

|1 + teiθ|2 − 1
t(|1 + teiθ|+ 1)

= 3 + lim
t→0+

1 + 2tRe(eiθ) + t2 − 1
t(|1 + teiθ|+ 1)

= 3 + 2Re(eiθ).

Similarly,

ρ−(p, e
iθq) = lim

t→0−

3|t|
t

+ lim
t→0−

|1 + teiθ| − 1
t

= −3 + 2Re(eiθ).

Further,

ρ∗(p, e
iθq) = ρ−(p, e

iθq)ρ+(p, e
iθq)

= {−3 + 2Re(eiθ)}{3 + 2Re(eiθ)}
= {−3 + 2 cos θ)}{3 + 2 cos θ)}

= 4 cos2 θ − 9

Hence

ρ∞∗ (p, q) =
1
π

∫ 2π

0
ρ∗(p, e

iθy)dθ

=
1
π

∫ 2π

0
(4 cos2 θ − 9)dθ

= −14π 6= 0.

Thus p 6⊥ρ∞∗ y. Hence ⊥B 6⊂⊥ρ∞∗ .

Theorem 4.4. ⊥ρ∞∗ ⊆⊥B if |ρ∞∗ (p, q)| ≤ ‖p‖2‖q‖2, for every p, q in X over C.

Proof. First we suppose that |ρ∞∗ (p, q)| ≤ ‖p‖2‖q‖2 holds for every p, q ∈ X . Consider p ⊥ρ∞∗ q,
we have

‖p‖4 = ρ∞∗ (p, p+ tq)

≤ ‖p‖2‖p+ tq‖2.

Assume that p 6= 0. Then we now have, ‖p+ tq‖ ≥ ‖p‖, that is p ⊥B q. Hence ⊥ρ∞∗ ⊆⊥B .

The example below demonstrates that the relationships between ⊥ρ+ ,⊥ρ− ,⊥ρ∗ and ⊥ρ∞∗ are
not generally comparable.
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Example 4.5. Take X = l1 with ‖.‖1. Let p = (0, 1, 0, 0, . . .) and q = (0, i, 0, 0, . . .). On
calculating, we have ρ±(p, q) = 0, ρ∗(p, q) = 0 and ρ∞∗ (p, q) = 1. This implies that ⊥ρ± 6⊂⊥ρ∞∗
and ⊥ρ∗ 6⊂⊥ρ∞∗ .
Again let p = (1, 0, 1, 0, 0, . . .) and q = (1, 0,−1, 0, 0, . . .). On calculating, we have ρ±(p, q) =
1, ρ∗(p, q) = 1 and ρ∞∗ (p, q) = 0. This implies that ⊥ρ∞∗ 6⊂⊥ρ∗ .

5 Characterization

In this section, we give a result on the characterization of inner product spaces using the proper-
ties of ρ∞∗ -functional.

Theorem 5.1. Let (X , ‖.‖) be a normed space. If the norm in X comes from an inner product
then ρ∞∗ (p, q) = ρ∞∗ (q, p).

Proof. Let (X , ‖.‖) be a normed space, and the norm in X comes from an inner product. Con-
sider,

ρ∞∗ (p, q) =
1
π

∫ 2π

0
ρ∗(p, e

iθq)dθ

=
1
π

∫ 2π

0
{Re〈p, eiθq〉}2dθ (using Proposition3.3(v))

=
1

4π

∫ 2π

0

(
〈p, eiθq〉+ 〈p, eiθq〉

)2
dθ

=
1

4π

∫ 2π

0

(
e−iθ〈p, q〉+ eiθ〈p, q〉

)2
dθ

=
1

4π

∫ 2π

0

(
e−2iθ〈p, q〉2 + e2iθ〈p, q〉

2
+ 2〈p, q〉〈p, q〉

)
dθ

=
1

4π

(
0 + 0 + 4π〈p, q〉〈p, q〉

)
= 〈p, q〉〈p, q〉 = 〈p, q〉〈q, p〉.

Similarly, one can prove that ρ∞∗ (q, p) = 〈q, p〉〈q, p〉 = 〈q, p〉〈p, q〉. Hence, ρ∞∗ (p, q) = ρ∞∗ (q, p).

Corollary 5.2. Let (X , ‖.‖) be a normed space, and the norm in X comes from an inner product.
Then p ⊥ q (that is 〈p, q〉 = 0) if and only if p ⊥ρ∞∗ q.
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