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Abstract In this paper, we define the concept of a p’-functional and we use norm deriva-
tives to introduce p$°-orthogonality and discuss its geometrical properties. We describe rela-
tionships between pS°-orthogonality and Birkhoff-James orthogonality on one hand and semi-
orthogonality on the other. In particular, we provide illustrations showing that p2°-orthogonality
cannot be compared to other well-known orthogonalities. Finally, we characterize the inner
product spaces using the properties of p2°-orthogonality.

1 Introduction

The notion of orthogonality is one of the fascinating ideas in studying the geometry of normed
spaces. The orthogonality relations derived from the norm derivatives provide a useful frame-
work for studying the geometric structure of a normed space. One of the most intriguing orthog-
onality concepts is the Birkhoff-James orthogonality, which was first proposed by Birkhoff [3]
and then modified by James [9]. Isosceles and Pythagorean orthogonalities were first introduced
to normed space by James [8] in 1945.

In 1986, Amir [1] introduced the functional using norm derivative, which is helpful in ana-
lyzing the geometry of normed spaces. The concept of the norm derivatives naturally arises from
the Gateaux derivative of the norm’s two-sided limiting feature, making them suitable general-
izations of the latter. Furthermore, Mili¢i¢ [13] provided a new functional and orthogonality, a
combination of norm derivatives. Later, Zamani and Moslehian [15] extended the norm orthog-
onality as a convex combination of norm derivatives. Recently, Enderami et al. [6] introduced a
new functional and on the basis of norm derivatives, an orthogonality relation in complex normed
spaces is established.

Inspired by these results, we introduce a functional and p°-orthogonality relation in the
framework of a normed space with a complex field. Also, we investigate its interesting geomet-
ric properties in complex normed space. We also obtain an association between the orthogo-
nality defined in the paper with Birkhoff-James orthogonality and semi-orthogonality. Conse-
quently, we give some examples that illustrate that the p$°-orthogonality is incomparable with
other renowned orthogonalities. In the last, we characterize the inner product space using the
properties of p2°.

2 Preliminaries

In this section, we provide some fundamental definitions, notations and results which will be
used in the sequel.

Throughout the paper, we consider a complex normed space (X, |.||).

According to Birkhoff-James (see [3, 9]), a vector p € X is considered to be orthogonal to a
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vector ¢ € X, denoted by p L 5 ¢, if
lp+rqll = [Ipl, forall r € R.
In 1986, Amir [1] defined the norm derivatives as, for all p,q € X,

lp +nqll — lIpll

pi(pq) = lim o+ nall* — llp> _
’ U

n—0+ 27)

Ipl Tirm,
Following are the well-known properties of norm derivatives (see [2]) in &, for all p,q € X

and for every v = |vy|e?, § = |5]e* in C, we obtain

@ p-(p,q) < p+(p,9);

(i) px(p,yp) = Re()|pIl,
(i) px(p,vp+ ) = Re()pIP* + px(p q).
@) pi(vp,84) = [116]p+ (p, €'~ g),

™) lp=(yp,60)] < [lvpllidgll.

(vi) p+(p,vq) = Re(p,~q), for inner product space.
(vii) p L,, ¢ ifand only if py(p,q) =0.
Mili¢i¢ [13] defined the mapping p : X x X — C by

~p—(p,a) +pi(p,q)
p(p,q) = 3 ,

for all p, g € X and introduced the corresponding p-orthogonality in terms of norm derivatives :

p L, qifand only if p(p,q) = p—(p.9) Jz””(pv 9 _,

It’s interesting to note that the relations 1, ,1, and L, are generally incomparable in a
non-smooth normed space but are equivalent in an inner product space.
In 2015, Chen and Lu [5] introduced the notion of p,-orthogonality which is defined by:

p L, qifandonly if p.(p,q) = p—(p,q)p+(p,q) =0,

where p,q € X.
Furthermore, Zamani and Moslehian [15] introduced p,-orthogonality as a generalisation of
orthogonality relations dependent on norm derivatives,

p Ly, gifandonly if px(p,q) = Ao—(p,q) + (1 = A)p+(p,q) =0,

foreach p,q € X and A € [0, 1]. In addition, they provided a p, based characterization of inner
product spaces.

Due to Lumer [12] and Giles [7], there exists a mapping [.,.] : X x X — C for every normed
space (X, ||.||), known as a semi-inner product (s.i.p.), satisfying the following properties, for all
p,q,w € X and v, 0 € C,

@) [yp+dq,w] = v[p, w] + d[g, w],
(i) [p,va] = lp.dl,
(i) [p,p] = [Ipll*

(@) |[p,qll < [Ipllllll-

In an arbitrary normed space, the idea of orthogonality can be presented in a variety of ways. A
semi-orthogonality of the components p and ¢ in a semi inner product [., . is defined by

p L q if and only if [¢,p] = 0.
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The structure of the paper is as follows.
In Section 3, first we define a functional p? : X x X — C defined by

n

2
Pi(pa) == pulprcca),

(=1

where the scalars ¢y, £ = 1,2, ..., n are the n-th roots of unity in C.
Thereafter, we generalize the functional p? : X x X — C by defininga p3° : X x X — C as

1 27 )
P (p.q) = — / p«(p, €q)df.
™ Jo

Also, we discuss their basic geometrical properties using norm derivatives.
On the basis of the mapping p2°, we define an orthogonality relation in Section 4 as follows

p Ly qif p(p,q) = 0.

In addition, we demonstrate certain comparable relations using s.i.p. [.,.] on X. Also, we show
that 1 e« C L g if [p2°(p, )| < [|pllllg|| for all p,q € X

3 A new functional form
Now, we introduce a new functional using p, functional in the setting of complex normed space.

Definition 3.1. For the n-th root of unity ¢y, ¢y, ....c, we define a functional p?’ on X" as

n

N 2
pipa) =~ > pelps ceq),

=1
forall p,g € X.

Remark(3.2.) (i) From the above definition, forn = 1, ¢; = 1, then we get p! = 3{p.(p,19)} =
2p4(p,9)-

(ii) Forn =2,¢; = 1 and ¢, = —1, we have p? = %{p*(p, lq) + p«(p, —1q)} = 2p.(p, q).

(iii) For n = 1 and n = 2 we now have >_" | ¢ = n, but when we take n > 2, this fact is not

true. So, It’s fascinating to think about the nth roots of unity, where n is greater than 2.
In this part, we begin with some properties of the functional p, in X.

Proposition 3.3. For all p,q € X and for every vy = |y|e??, 6 = |5|e™ in C, we have

(i) p«(p,vp) = {Re(7)}?(Ip

(ii) p«(p,yp +q) = {Re()IpII* + 2Re(v)|IplI*p(p, q) + p«(p, q),
w—0)

4

(iii) p«(7p,0q) = [11*|6] s (p, " ~)q),
(iv) |p«(vp, 69)| < [lvpl*l|ogl?,
(v) p«(p,vq) = {Re(p,vq)}>, for inner product space.

Proof. (i) We know that, p (p,vp) = Re(7)|p|*.
Therefore,

pu(p.0) = p—(p, )P+ (. 7P) = {Re(7) I *.

(i1) Consider,

p+(p, 70 + @) = p+(p,q) + Re(7)|lp|*.
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and

p—(p,vp+q) = p—(p,q) + Re()Ip|*-
Therefore,
p«(p, P+ q) = p—(p, 7P + @) p+ (P, 7P + )
= {Re()pI* + p—(p, @) HRe()|pII* + p+ ()}
= {Re()}[lpll* + 2Re()lIpI*p(p: @) + pu(p: ).
(iii) Consider
p+(vp:8q) = [l6lp+(p, e’ @).
Therefore,

P+ (70, 6q) = [7*[62pu (p, '@ ~)).
(iv) Using the definition of p,, we have

lp«(vp,09)] = |p—(vp,0q)p+ (7P, 0q)|
lp—(vp, 0q)||p+(vp, 6q)]

< [lpllléglllvpllléqll
= |lvpllloql*.
(v) Consider,
p+(p,7q) = Re(p,7q).
S0, p«(p,7a) = p—(p.7a)p+(p,7a) = {Re(p,79)}*. O
The next consequence is obvious (see [6]).
Lemma 3.4. Suppose that cy,ca, . . ., cy, are the nth roots of unity. Then Xn: c2=0= Xn: @2, for

=1 =1
n > 2.

We discuss some basic properties of functional p7.
Proposition 3.5. (i) p"(p,p) = ||p||*, forallp € X.
(ii) 1p%(p, @)l < 2llp|* |4l for every p, q in X.

(iii) If the norm of X derives from an inner product {.,.), then p(p,q) = (p, @) (p, q) for every
p,q € X.

Proof. (i) For p € X, we have

pi(p,p) = ;Zp*(p, cep)
=1

= 23" (Relen) Pl [since p. (p.7p) = Be(3) ol
=1
D1 5 2
Cp Cy

[l
T
M:

=1

3 |

_ 7”5“4 (e + 2leef’ + &)
" =1
llpl* 5

= o +22|Cé| +Z
Ip]*

= 2—(0 +2n+0) (using Lemma 3.4)
n

4
= |plI"
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(i1) For p, ¢ € X, we have

2 n
Pipa)l = E|ZP*(2?,C£P)\
=1
2 n
< EZV)*(]?,C@QM
(=1
<

2 . 2 2
= plPlleel
n
=1
n

_ 20wl IIQH22|

2
= 2lpI*llal*.

(iii) Suppose that the norm of X derives from an inner product (., .). Then for all p, g € X,

2 n
pi(p,q) = 52640*(@ ceq)
2« 2 »
= = Z{Re(p, ceq)}> (using Proposition 3.3(v))
=1
1< 2
= 5.2 ((peg) + (p,ceg)
=1

1 n
= 272 Cf pa +C( >)2
—1

i Z

/=1 =1

2n

= P.q)(p.q)-

Remark 3.6. We know that if ¢ : [0, 1] — C is a continuous function, then

1~k :
lim —> " g(2) = [ g(t)dt.
ngr;on;g(n) /Og()
we get

p* p’ Zp* p, e Zk‘m/n )

Now, replacing ¢, with e2#7#/»

Letting n — oo in (3.2), we get

2 . 2kmi ! ]
: = Ti/n _ 2mt
Jim EE_I p«(pse q) = 2/0 p+(p, e q)dt.

Taking 6 = 27t, we have

) . 1 27 ;
lim p%(p,q) = */ p«(p,eq)db.

™ Jo

Therefore,

27
= lim p" == .(p,e?q)db.
o 0.0) = Jim ) = [ o)

3.1)

(3.2)

(3.3)

(3.4)
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Following, we examine the basic geometrical properties of pS°. As the integral functions
under study are 27-periodic, we’ll frequently use the following equality:

/hmkwmwz 7 h(0)d6 (6 < R).
[

0
Proposition 3.7. For all p,q € X, 7,6 € C, we get

(i) p° (0, 0q) = I71161*0° (p, q)

» _ 2 2 . .

(ii) p°(p,yp + ) = YAllpll* + p° (0 @) + 22 [27 Re(ei®~) p(p, € q)db,
(i) |p°(p. )| < 2lIpl*llqll*

Proof. Choose v = |y|e!® and § = |§|e®¥, for some 9, ¢ € [0,2). Therefore by using definition
of pg°, we get

1 27 ) ) )
p=omdn) = = [ ol ldle et

1 27
= */0 (Il p, 8]V q)do

™

_ |’Y|2|5\2 " i(0+1p—p) :
= ——— | ppse q)d6 [Using (nd3)]
0

™

Pl e :
= / p«(p, e q)dt [taking t = 0 + ¢ — ¢]
™ P—¢

2 K} 2 21 )
— |’Y| | ‘ / p*(p’ eth)dt
0

™

= PP (p, q)-

(i1) First, we note that

27
{Re( ) }2df = = 5 / ey +e93)%dg

— Z/ 219,}/2+7 e 2Z9+2’)/’_}/)d9
0

2 27 ) ") 2
— l/ 62’9d9+l/ e 2040 + W/ a9
4 A

’Y'Yz

=040+,

= yym.
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Further,

[ ]
3

P (s +q) = pi(p, € (vp + q))db

p«(p, eyp + €q))do

[ ]
3

N—= = |

Cos— 5— 5—

. 1 [ , A
ppr )t + < [ 2Rele ) oo, )9

27

+;/0 p+(p, e“’q))d@
L4 6, \\2 2||PH2 6 i

H l {Re Y)}do + ——— 5 Re(e Y)p(p, e q)do
1 27 )
+;/0 p+(p, e“’q))d@

2 . .

lel VT 4+ S ”p” /O Re(e~)p(p, e q)d6 + p°(p, q)

- 50 2|p 2 i i
=3llpllI* + o (p, @) + % /0 Re(e)p(p, e q)df.

(iii) For p, ¢ € X, we obtain

') 1 m 7
mxn®|—|—/ (0, %))
™ Jo

1 27T )
*AlmmW®M

™

IN

1 27 )
= */0 ps(p, € q)|do

T
1 an 2 0 112
= [ IwlPeaias
T Jo
1 27T 5 5
- f/ ol lg]2d6
™ Jo

1
= —lplPllgll* 27
™

= 2|lp|[*llq|*

IN

O

Theorem 3.8. Let a complex vector space X be equipped with two norms denoted by ||.|| and
I.ll2 over the field C. ||.||; and ||.||2 are norm equivalent if and only if there exists a positive
constant k such that,

102%1 (. q) — P22 (p, @) | < kmin{|p|I7llqlI7, llal3]lal3}
forall p,q € X and where p°, is a functional p3° with respect to ||.||., for c = 1,2.

Proof. Suppose that ||.||; and ||.||> are norm equivalent. So, m|.|[; < ||.|l2 < M]|.||; for some
positive numbers m, M. Using Proposition 3.7 (iii), we have

1025 (P )| < 21l lqllF,

and
1035 (P, 9)| < 2[pl3llal3.
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Therefore,

<2(|lpllillqll + llpl3llqll3)
<2(Ipllillglls + M2|p)3llgl?)
2(1 + M?)|IplI3qll3-

1p21 (P q) — P25 (P, 9)

On the similar lines, we get

10221 (p,a) — P25 (p,0) < 2(1+ %)HMI%IIQII%-
Taking k = max{2(1 + M?),2(1 + -1;)}, we have,
10251 (pa) = P252(p, @) < kmin{|p[TllalT, IpI3llal3}-
Conversely, suppose that for every p € X and k£ > 0, we have
102 (P, p) — P25 (P, p)| < kmin{]|p[[{, Ip[l3}.
If min{]|p|lt, [IplI3} = [[p|I}. then

Il = lIpl3] < ElplT < Kllpll3-

Therefore, we get

Ipllz < VI+Elplh, el < VI+Elpll,

and
1
R < <V1+E|pl.
il < Ipll < VT Fll
Similarly, we get the result, if min{||p[|}, [|p[[3} = |Ip|l3- O

4 pZ°-orthogonality
Here, we use the functional (3.4) to define p2°-orthogonality in a complex normed space.
Definition 4.1. Define a p$°-orthogonality as
p L, g if and only if p3°(p,q) = 0,
for every p,q € X.

It is always worth examining relationships between various types of orthogonality.

Theorem 4.2. | ,-=_1, if p>°(p,q) = [q,p], for every p,q € X, where |., | is a s.i.p. on X.

Proof. Let p°(p,q) = [q,p], forall p,q € X.

If p2°(p, q) = O then we have [g, p] = 0. So L,~C_L,.

Also if [¢,p] = 0, then we get p°(p,q) = 0. So L, CL .

Hence from the above condition we obtain | jc=_1,. ]

The example below demonstrates that in general LpZ 1 .

Example 4.3. Let X = [! be the space of summable sequences over C equipped with its standard
norm. Let p = (0,0,1,0,0,...) and ¢ = (3,0,1,0,0,...). Here, for any ¢ € C, we have
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lp+&qll = 3[§] + 1 +&[ > 1 =|p[l. So,p L5 q.
Consider,

lp +te“ql — [Pl [I(3te”,0,1+te”, .. ) - (0,0,1,0,0,...)]
t t
I3te®] + |1 + te??| — 1
t
11+ tet?| — 1
—

Elld
= —+

~

Therefore,
o0 = Jig e g LIS
= e T
gy
= 3+ 2Re(e").

Similarly,

3t 1+ te'| —
lim 3t + lim [L+te®] -1
t t—0— t

p—(p,e”q) !
t—0
= —3+2Re(e").
Further,

p+(p,€q) = p—(p, Q) p+(p, e’ q)
= {=3 +2Re(e")}{3 + 2Re(e")}
={-3+4+2cosf)}{3+2cosb)}
=4cos’0—9
Hence

1

27
e (pq) = — / p«(p, y)do
™ Jo

1 27
= 7/ (4cos”> 0 — 9)do
™ Jo

= —l4m £0.

Thus p /o y. Hence LpZ 1 joo.

Theorem 4.4. L ,«-C L if |p°(p, q)| < ||p||*||g||* for every p,q in X over C.

Proof. First we suppose that [p2°(p, ¢)| < ||p||*|l¢||* holds for every p,q € X. Considerp L,

we have

Ipl[* = p2°(p. p + tq)
< pll*llp + tal*

Assume that p # 0. Then we now have, ||p + tq|| > ||p||, thatis p L g ¢q. Hence L ,~C 1p.

> g,

O

The example below demonstrates that the relationships between 1, , L, , 1, and 1 ,~ are

not generally comparable.
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Example 4.5. Take X = [! with |.|;. Let p = (0,1,0,0,...) and ¢ = (0,4,0,0,...). On
calculating, we have p+(p,q) = 0, p.(p,q) = 0 and p°(p, ¢) = 1. This implies that 1, &1
and L, &1 .

Againletp = (1,0,1,0,0,...) and ¢ = (1,0,—1,0,0,...). On calculating, we have p4 (p, q) =
1, p«(p,q) = 1 and p3°(p, ¢) = 0. This implies that 1 o 1, .

5 Characterization

In this section, we give a result on the characterization of inner product spaces using the proper-
ties of pS°-functional.

Theorem 5.1. Let (X, ||.||) be a normed space. If the norm in X comes from an inner product
then p2* (p, q) = p°(4, p)-

Proof. Let (X,]|.||) be a normed space, and the norm in X comes from an inner product. Con-
sider,

1

2
P (pq) = — / p«(p, e q)do
™ Jo

27
:i/ {Re(p,e®q)}?d# (using Proposition3.3(v))
T Jo

1 27

1 27

:EO

1 27

:EO

! (O + 0+ 4x(p, q>m)

"

={(p,0){p,q) = (P, 9){(q,p)-

((p, eq) + (p, eie@) "
(e‘ie (p,q) + ewW) ’ dé

(e_zw (p,q)* + eQiBWZ + 2(p, @W) dg

Similarly, one can prove that p°(q,p) = (¢, p) (¢, p) = (¢, p){p, q). Hence, p2°(p, q) = p°(q,p).
O

Corollary 5.2. Let (X, ||.||) be a normed space, and the norm in X comes from an inner product.
Thenp L q (thatis (p,q) =0) ifand only if p L, q.
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