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Abstract This treatise intends to examine the mathematical representation of the interplay
between cancer cells and virotherapy, utilizing a mathematical model. This model will be fur-
ther extrapolated to encompass a fractional mathematical paradigm through the incorporation
of Atangana-Baleanu derivatives. Subsequently, we will provide evidence of the viability and
distinctiveness of the solution to the augmented mathematical framework. Finally, we will apply
numerical techniques to derive a numerical resolution of the fractional mathematical model.

1 Introduction

Whether it is a developed or developing nation, Cancer is amongst the most prevalent diseases.
A study has shown that the countries having low and middle income do not have a designated
care system for the cancer patients. According to statistics about 18.1million cancer cases were
reported in 2020 (The most recent data available). The documented cases of cancer amounted to
18.1 million, with a disproportionate distribution of diagnoses between males (9.3 million) and
females (8.8 million). The data indicates that the most ubiquitous forms of cancer worldwide are
breast and lung cancers. Every year, a significant global population receives a cancer diagnosis,
with a majority of those diagnosed ultimately succumbing to the disease. The total number of
deaths globally due to cancer were recorded to be a devastating 10 million worldwide.
The origin of Cancer goes back to around 3000 BC, when it was first discovered in Egypt. The
traces of cancer were found in fossils and human mummies in ancient Egypt. The designation
"Cancer" was first introduced by the Greek medical practitioner, Hippocrates, widely regarded as
the originator of the medical profession. The terms that Hippocrates propounded were ‘Carcinos’
referring to non-ulcer forming tumours and ‘Carcinoma’ referring to ulcer forming tumours.
Later the Greek term was translated to the word ‘Cancer’ by Celsus, a Roman physician.
In cancer, cells within the body multiply uncontrollably and can disseminate to other areas. The
fundamental process of cell division drives this proliferation, generating new cells as needed
for bodily functions [19]-[21]. The old cells get damaged and eventually die. The new cells
generated through cell division takes their place [20]. But sometimes this process is disrupted
and the damaged cells continue to grow further and multiply in certain parts of the body giving
rise to lumps of tissue called tumour. Tumours can be classified into ‘Cancerous’ and ‘Non-
Cancerous’ [7]. Cancerous tumours invade other nearby tissues of the body while non-cancerous
tumours don’t [1].
The current study is done with the use of mathematical modeling and fractional calculus. The use
of fractional calculus in mathematical modelling has become more appropriate in recent years.
Fractional calculus is one of the most significant and influential areas of mathematics because
of its many useful operators and logical concepts. It produces more precise results because
of the memory effect of its kernels. At the moment, fractional calculus is receiving much more
attention from mathematicians and researchers than the integer order system because it allows for
infinitely many points at which the results can be analysed, whereas the integer ordered system



Exploring a Mathematical Model... 695

limits us to integers. In this work we have tried to analyze the effect of virions and cancer cells
over the period of time, means it is a strive to check the effect of virotheraphy in treatment of
cancer.
In this research work, we are going to modify the mathematical model describing the cancer cells
interaction with virotherapy which was proposed by Abernathy et al [2]. This model describes
the relation between the uninfected cells of tumor U , the tumor with infected cells I , V represent
Virions, and the Effector T cells E, given as

dU

dt
= θ U

(
1 − I + U

δ

)
− β V U − α1 E U, U(0) = U0

dI

dt
= β U V − α2 I E − γ2 I, I(0) = I0

dE

dt
= λ I − γ3 E, E(0) = E0

dV

dt
= A+ χ γ2 I − γ4 V, V (0) = V0

let θ denote the rate of uninfected tumor cell growth, δ represent the total carrying capacity of
tumor cells, β stand for the infection rate of tumor cells, α1 signify the rate at which uninfected
cells decay via T-cells, α2 denote the rate at which infected cells decay via T-cells, γ2 indicate
the rate of infected cell decay, γ3 denote the rate of effector T-cell decay, γ4 represent the rate
of virion decay, A stand for the dosage of virotherapy, χ represent the number of virions re-
leased via infected cell lysis, and λ denote the rate of T-cell growth via infected tumor cells. In
this study, we will enhance the previously mentioned mathematical model by incorporating the
Atangana-Baleanu derivative to form a fractional mathematical model. The Atangana-Baleanu
operator was chosen because of its special properties, which include a nonlocal and nonsingular
kernel that is represented by the Mittag-Leffler function. The complex dynamics included in
the model under study are ideally captured by this operator. This approach is beneficial as it ac-
counts for memory and after-effects, which are often ignored in traditional models. This is due to
the fact that many biological systems exhibit fractional electrical conductance in their cell mem-
branes and can be categorized as non-integer models. Fractional calculus, with its advancements
in fields such as physics, chemistry, biochemistry, biology, medicine, etc. (as seen in references
([9]-[11]), provides a deeper understanding of biological systems. The presence and distinctive-
ness of the solution are extensively elucidated, with numerical solutions for the mathematical
model utilizing the Atangana-Baleanu derivative operator being derived. Due to its fractional
order, this derivative provides more accurate findings than the exponential kernel derivative,
making it a more generalised variant of the exponential kernel derivative. In this work, we will
extend the above mentioned mathematical model to the fractional mathematical model using
the Atangana-Baleanu derivative. Since the biological systems have memory or aftereffects and
because of this reason the modeling of these biological systems using the concept of fractional
order derivatives gives many advantages in which the effects like memory are neglected. It is
also observed that there is fractional order electrical conductance in the cell membrane of many
biological organisms and they are classified in groups of non integer models. Thus, fractional
derivatives gives better understanding of these biological models. Fractional calculus has many
developments in fields of physics, chemistry, biochemistry, biology, medicine etc. A detailed
proof for the existence and the uniqueness of the solution is presented. The numerical solutions
are presented for the fractional mathematical model in sense of the Atangana-Baleanu derivative
operator.
The structure of the article is given as follows: Section 1 is about introduction and some pre-
requisites. Section 2 is about the mathematical model under consideration. Part 3 is having
the numerical scheme used in analysis while next section is about the graphical and numerical
solution of the problem. In section 5, we have concluded the article.

Definition 1.1. Consider a function µ integrable on R, and suppose 0 < η < 1. The Atangana-
Baleanu derivative [24] of fractional order can then be expressed as follows:

FAB
0 ζηt (µ(t)) =

K(η)

1 − η

∫ t

0
µ′(τ)Eη

[
−η

(t− τ)η

1 − η

]
dτ. (1.1)
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The expression for the A-B derivative of fractional order η, in the Caputo sense, is represented
by FAB

0 ζtη. The derivative is accompanied by the Mittag Leffler function Eη and normalization
K(η) function such as K(0) = 1 = K(1).

Definition 1.2. The Atangana-Baleanu integral of order η of the integrable function µ on R is
defined as follows

IFABη

t (µ(t)) =
1 − η

K(η)
µ(t) +

η

K(η)Γ(η)

∫ t

0
µ(τ)(t− τ)η−1dτ. (1.2)

Theorem 1.3. Let us consider
IFABη

t (µ(t)) = f(t),

possesses a solution defined as

µ(t) =
1 − η

K(η)
f(t) +

η

K(η)Γ(η)

∫ t

0
f(τ)(t− τ)η−1dτ,

for more details (see [3]–[6]).

2 Fractional Mathematical Model of Cancer Cell with Its Interaction With
Virotheraphy and it’s Analysis

We proceed to expand the mathematical model into the fractional framework for the interaction
between Cancer Cells and Virotherapy, employing the AB derivative operator. Moreover, to
maintain dimensional consistency between the right and left sides of the resultant fractional
model, parameters with units of (time)−1 are elevated to the power of η.

FAB
0 ζηt U(t) = θη U

(
1 − U + I

δ

)
− βη U V − αη

1 U E, U(0) = U0

FAB
0 ζηt I(t) = βη U V − αη

2 I E − γη
2 I, I(0) = I0

FAB
0 ζηt E(t) = λη I − γη

3 E, E(0) = E0

FAB
0 ζηt V (t) = A+ χ γη

2 I − γη
4 V, V (0) = V0

(2.1)

here, the AB fractional derivative of order η is represented by 0FABζtη.

2.1 preliminary results

Given that the non-negative initial conditions hold for define system, we observe that the system
remains invariant in the non-negative orthant. Furthermore, owing to the vector field’s contin-
uous differentiability, the Picard-Lindel theorem guarantees the presence of a distinct outcome
for given equations, when non-negative initial conditions are applied.

2.2 Boundedness

To ensure our model doesn’t anticipate unrestrained cell proliferation, we verify that the cell
populations remain constrained. Specifically, regarding the uninfected tumor cells:

FAB
0 ζηt U(t) = θηU

(
1 − U+I

δ

)
− βηV U − αη

1EU,

≤ θη
(
1 − U

δ

)
U,

< 0, if U
δ > 1.

Thus, limt→∞ sup U(t) ≤ 1. We can obtain an upper limit for the population of infected
tumor cells by utilizing this upper bound. Referring to above model, we have:
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FAB
0 ζηt (U + I) = θη

(
1 − U+I

δ

)
U − αη

1EU − αη
2EI − γη

2 I,

≤ θη
(
1 − U+I

δ

)
U,

< 0, if U+I
δ > 1.

It follows that limt→∞ supI(t) ≤ 1. Utilizing the asymptotic upper bound of the infected tumor
cells, for effector T-cells we have FAB

0 ζηt E(t) = λη − γη
3 E. By standard comparison theory, it

follows that lim
t→∞

supE(t) ≤ λη

γη
3
. Similarly, for the virion population, we have lim

t→∞
supV (t) ≤

A+χγη
2

γη
4

.

2.3 Existence of equilibrium

To establish equilibrium [12]-[18] of (2.1), we must solve the following system of equations:

θηU∗
(

1 − U∗ + I∗

δ

)
− βηV ∗U∗ − αη

1E
∗U∗ = 0, (2.2)

βη V ∗U ∗ − αη
2 I

∗E∗ − γη
2 I

∗ = 0, (2.3)

ληI∗ − γη
3 E

∗ = 0, (2.4)

A+ χγη
2 I

∗ − γη
4 V

∗ = 0. (2.5)

If we consider U∗ = 0, we get I∗ = E∗ = 0 and V = A
γη

4
. Hence we get the cure state equilib-

rium points p0 = (0, 0, 0, A
γη

4
).

Although if we assume U∗ ̸= 0, we obtain the values of U∗, E∗, V ∗ from above equations
depending on I∗:

E∗ = ληI∗

γη
3

,

V ∗ =
A+χγη

2 I∗

γη
4

,

U∗ = δ − I∗ − δβη

θη V ∗ − δαη
1

θη E∗,

or

U∗ = δ − I∗ − δβη

θη

(
A+ χγη

2 I
∗

γη
4

)
−

δαη
1

θη

(
ληI∗

γη
3

)
.

Substituting these expression into (3) leaves us with a polynomial in I∗, denoted by f(I∗):

f(I∗) = βηU∗V ∗ − αη
2I

∗E∗ − γη
2 I

∗,

= βη
(
δ − I∗ − δβη

θη

A+χγη
2 I∗

γη
4

− δαη
1

θη
ληI∗

γη
3

)(
A+χγη

2 I∗

γη
4

)
− αη

1I
∗
(

ληI∗

γη
3

)
− γη

2 I
∗

= −
(

θηβηχγη
2 γη

4 +δ(βη)2χ2(γη
2 )

2

θη(γη
4 )

2 +
θηληαη

1 γ
η
4 +δβηχληαη

1 γ
η
2

θηγη
3 γη

4

)
I∗2

−
(
γη

2 + Aβη

γη
4

+
2A(βη)2δχγη

2
θη(γη

4 )
2 +

Aδβηληαη
1

θηγη
3 γη

4
− χβηδγη

2
γη

4

)
I∗ +

Aβηδ(γη
4 −Aβη

θη )
(γη

4 )
2 .

The number of internal equilibria is thus determined by the number of the solutions to
f(I∗) = 0. We first note that f(I∗) is a quadratic function and that the coefficient on I∗2 is
negative. We also note that the constant term is positive if and only if γη

4 > Aβη

θη . by Descartes’
Rule of Signs, it follows that there exists one unique positive real root for f(I∗). Since I∗ is
positive and real, U∗, E∗ , and V ∗ must also be positive and real. We conclude that there exists
a unique cancer persistence state of the form P ∗ = (U∗, I∗, E∗, V ∗) when γη

4 > Aβη

θη . We sum-
marize these results in the following theorem:
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Theorem 2.1. 1. We have the only one state of the form P0 = (0, 0, 0, A
γη

4
).

2. When Aβη

θη < γη
4 ,there exists a unique cancer persistence state of the form P ∗ = (U∗, I∗, E∗, V ∗).

2.4 Stability of the cure state

In this section, we explore the stability of the cure state equilibrium P0 = (0, 0, 0, A
γη

4
).We note

that the nonzero virion population in the cure state results from assuming a continuous constant
dosage treatment. Furthermore, the lack of effector T-cells in the cure state represents there no
longer being a need for an immune response due to cancer clearance.

2.5 Local stability of the cure state

We first consider the local stability of the cure state equilibrium P0 .Recall that our non-dimensionalized
model is

FAB
0 ζηt U(t) = θηU

(
1 − U+I

δ

)
− βηU V − αη

1 U E,
FAB
0 ζηt I(t) = βηU V − αη

2 I E − γη
2 I,

FAB
0 ζηt E(t) = λη I − γη

3 E,
FAB
0 ζηt V (t) = A+ χγη

2 I − γη
4 V.

Evaluating the Jacobian matrix at P0 yields

J

(
0, 0, 0,

A

γη
4

)
=


θη − βηA

γη
4

0 0 0
A
γη

4
−γη

2 0 0

0 λη −γη
3 0

0 χγη
2 0 −γη

4

 ,

with eigenvalues −βηA+θη γη
4

γη
4

,−γη
2 ,−γη

3 ,−γη
4 . Thus, we find the local stability condition for the

cure state to be βηA > θηγη
4 . If this condition is not met, the cure state is unstable.

Now we are going to discuss about the existence and oneness of the solution. We have many
ways to show the existence and oneness of the solution (see [17]–[22]).

2.6 Existence and Oneness

Theorem 2.2. Let us consider the functions as follows

H1(t, U) = θη U

(
1 − U + I

δ

)
− βη U V − αη

1 U E,

H2(t, I) = βη U V − αη
2 I E − γη

2 I, (2.6)

H3(t, E) = λη I − γη
3 E,

H4(t, V ) = A+ χ γη
2 I − γη

4 V,

satisfy the Lipschitz condition; moreover, contract when:

(i) 0 < h1 < 1,

(ii) 0 < h2 < 1,

(iii) 0 < h3 < 1,

(iv) 0 < h4 < 1.

Proof. Let
H2(t, I) = βη U V − αη

2 I E − γη
2 I
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Let I1 and I2 be two functions, then

∥H2(t, I1)−H2(t, I2)∥ =
∥∥αη

2E (I1 − I2) + γη
2 (I1 − I2)

∥∥
≤ (αη

2∥E∥+ γη
2 ) ∥I1(t)− I2(t)∥. (2.7)

Let p1 = supt∥U(t)∥, p2 = supt∥I(t)∥, p3 = supt∥E(t)∥, p4 = supt∥V (t)∥
hence

∥H2(t, I1)−H2(t, I2)∥ ≤ h2∥I1(t)− I2(t)∥,

where
h2 = αη

2p3 + γη
2 .

Therefore, H2(t, U) satisfies Lipschitz’s condition and if 0 < h2 < 1, it also meets the require-
ment for contraction. The same can be shown to be true for H1(t, I), H3(t, E), and H4(t, V ).

Theorem 2.3. An extended mathematical model that encompasses fractional dimensions for the
study of cancer cells and their interaction with virotherapy

FAB
0 ζηt U(t) = θη U

(
1 − U + I

δ

)
− βη U V − αη

1 U E, U(0) = U0

FAB
0 ζηt I(t) = βη U V − αη

2 I E − γη
2 I, I(0) = I0

FAB
0 ζηt E(t) = λη I − γη

3 E, E(0) = E0

FAB
0 ζηt V (t) = A+ χ γη

2 I − γη
4 V. V (0) = V0

(2.8)

Finds a singular solution within the constraints by searching for a value of tmax that meets the
requirements.

1 − η

K(η)
hi +

tηmax

K(η)Γ(η)
hi < 1, for i = 1, 2, 3, 4. (2.9)

where, k1 = d+ n1, k2 = s, k3 = δ.

Proof. Consider

FAB
0 ζηt U(t) = θη U

(
1 − U + I

δ

)
− βη U V − αη

1 U E, U(0) = U0 (2.10)

let

H1(t, U) = θη U

(
1 − U + I

δ

)
− βη U V − αη

1 U E

.
Subsequently, equation (2.10) can be expressed as:

FAB
0 ζηt U(t) = H1(t, U). (2.11)

Using theorem 1.3, we get

U(t) = U0 +
1 − η

K(η)
H1(t, U(t)) +

η

K(η)Γ(η)

∫ t

0
(t− ρ)η−1H1(ρ, U(ρ))dρ. (2.12)

Let us consider Z = (0, T ) which is define for operator G : C(Z,R4) −→ C(J,R4) such that

Y [U(t)] = U0 +
1 − η

K(η)
H1(t, U(t)) +

η

K(η)Γ(η)

∫ t

0
(t− ρ)η−1H1(ρ, U(ρ))dρ. (2.13)

So we have that (2.12) can be like Z[U(t)] = U(t). Now define norm on Z as ∥U∥ = Supt∈Z |U(t)|.
Then C(Z,R4) and ∥.∥ defines a Banach Space. Consider
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G[U1(t)]−G[U2(t)] =
1 − η

K(η)
(H1(t, U1(t))−H1(t, U2(t)))+

ζ

K(η)Γ(η)

∫ t

0
(t− ρ)η−1 (H1(ρ, U1(ρ))−H1(ρ, U2(ρ))) dρ. (2.14)

By taking the modulus of equation (2.14) and applying the triangle inequality, we arrive at

|G[U1(t)]−G[U2(t)]| ≤ 1 − η

K(η)
|(H1(t, U1(t))−H2(t, U2(t)))|+

η

k(η)Γ(η)

∫ t

0

∣∣(t− ρ)η−1 (H1(ρ, U1(ρ))−H1(ρ, U2(ρ))) dρ
∣∣ . (2.15)

As the function H1(t, U(t)) agrees with the Lipschitz condition, we have

|G(U1)−G(U2)| ≤
(

1 − η

K(η)
h1 +

tηmax

K(η)Γ(η)
h1

)
|U1 − U2| . (2.16)

Also equation (2.16) will be a contraction only if

1 − η

K(η)
h1 +

tηmax

K(η)Γ(η)
h1 < 1. (2.17)

The utilization of the Banach Fixed Point theorem has enabled us to definitively control the
presence of a solitary solution for extended SEIR model, with the purpose of surmising the
Omicron variant through the lens of the AB derivative operator.

3 Development of Numerical Method

Toufik and Atangana [8] defined a numerical approach for calculating derivatives of fractional
order with non singular and non local kernels [22]-[25]. Consider

FAB
0 ζηt µ(t) = d(t, µ(t)), t ≥ 0, µ(0) = µ0. (3.1)

The above equation can be rephrased by utilizing Theorem (1),

µ(t)− µ(0) =
1 − η

K(η)
d(t, µ(t)) +

η

K(η)Γ(η)

∫ t

0
(t− τ)η−1d(τ, µ(τ))dτ. (3.2)

We have at t = tm+1, the above equation (3.2) reduces in to the following equation

µ(tn+1)− µ(0) =
1 − η

K(η)
d(tm, µ(tm)) +

η

K(η)Γ(η)

∫ tm+1

0
(tm+1 − τ)η−1d(τ, µ(τ))dτ, (3.3)

or

µm+1 = µ(tm+1) = µ(0) +
1 − η

K(η)
d(tm, µ(tm))

+
η

K(η)Γ(η)

m∑
j=0

∫ tj+1

tj

(tm+1 − τ)η−1d(τ, µ(τ))dτ. (3.4)

Considering d(τ , µ(τ )) through Lagrange polynomial interpolation,

qn = d(τ, µ(τ)) =
τ − ti−1

ti − ti−1
d(ti, µti) +

τ − ti
ti−1 − ti

d(ti−1, µti−1). (3.5)

Substituting the value of d(τ, µ(τ)) in equation (3.4), we get
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µm+1 = µ(0) +
1 − η

K(η)
d(tm, µ(tm)) +

η

K(η)Γ(η)
m∑
i=0

(
d(ti, µ(ti))

l

∫ ti+1

ti

(t− ti−1)(tm+1 − t)
η−1

dt

−d(ti−1, µ(ti−1))

l

∫ ti+1

ti

(t− ti−1)(tm+1 − t)
η−1

dt

)
. (3.6)

Substituting l = ti − ti−1 and on simplification, we get

µm+1 = µ0 +
1 − η

K(η)
d(tm, µ(tm)) +

η

K(η)
m∑
i=0

[
lη d(ti, µti)

Γ(η + 2)
((m− i+ 1)η (m+ 2 − i+ η)− (m− i)η(m+ 2 − i+ 2η))

− lη d(ti−1, µ(ti−1))

Γ(η + 2)
(
(m+ 1 − i)η+1 − (m− i)η (m+ 1 − i+ η)

)]
. (3.7)

The numerical method for the fractional model of cancer cells, incorporating the A-B derivative
operator, is demonstrated using the previously outlined numerical technique.

Um+1 = U0 +
1 − η

K(η)
H1(tm, U(tm)) +

η

K(η)
m∑
i=0

[
lη H1(ti, Uti)

Γ(η + 2)
((m+ 1 − i)η (m+ 2 − i+ η)− (m− i)η(m+ 2 − i+ 2η))

− lη H1(ti−1, U(ti−1))

Γ(η + 2)
(
(m+ 1 − i)η+1 − (m− i)η (m+ 1 − i+ η)

)]
, (3.8)

where,

H1(t, U) = θη U

(
1 − I + U

δ

)
− βη V U − αη

1 E U.

And

Im+1 = I0 +
1 − η

K(η)
H2(tm, I(tm)) +

η

K(η)
m∑
i=0

[
lη H2(ti, Iti)

Γ(η + 2)
((m+ 1 − i)η (m− i+ 2 + η)− (m− i)η(m− i+ 2 + 2η))

− lη H2(ti−1, I(ti−1))

Γ(η + 2)
(
(m+ 1 − i)1+η − (m− i)η (m+ 1 + η − i)

)]
, (3.9)

where,
H2(t, I) = βη U V − αη

2 I E − γη
2 I.

Also

Em+1 = E0 +
1 − η

K(η)
H3(tm, E(tm)) +

η

K(η)
m∑
i=0

[
lη H3(ti, Eti)

Γ(η + 2)
((m− i+ 1)η (m+ 2 − i+ η)− (m− i)η(m+ 2 − i+ 2η))

− lη H3(ti−1, E(ti−1))

Γ(2 + η)

(
(m+ 1 − i)η+1 − (m− i)η (m+ 1 + η − i)

)]
, (3.10)

where,
H3(t, E) = λη I − γη

3 E.
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Also, we get the relation for V ,

Vm+1 = V0 +
1 − η

K(η)
H4(tm, V (tm)) +

η

K(η)
m∑
i=0

[
lη H4(ti, Vti)

Γ(η + 2)
((m− i+ 1)η (m+ 2 − i+ η)− (m− i)η(m+ 2 − i+ 2η))

− lη H4(ti−1, V (ti−1))

Γ(2 + η)

(
(m− i+ 1)1+η − (m− i)η (m+ 1 − i+ η)

)]
. (3.11)

where,
H4(t, V ) = A+ χ γη

2 I − γη
4 V.

4 Numerical and Graphical Results

In this section, now we are going to find the graphical results of the cancer model under consid-
eration. We have used following parameters with their numeric values [26]:

Parameter Value
δ 3 × 109

λ 2.9
β 8.9 × 10−13

θ 0.31
α1 1.5 × 10−7

α2 1.5 × 10−7

γ3 0.35
γ2 1
γ4 2.3
χ 3500

By using the numerical technique discussed in section 3 and above parameters, we have got
following graphs for various factors defined in the given mathematical model:

5 Conclusion

The objective of this work is to investigate the mathematical model of the interaction between
cancer cells and virotherapy. In order to do this, a mathematical model that describes the dy-
namics of this interaction is put forward. Moreover, by adding Atangana-Baleanu derivatives,
we expand this model to include a fractional mathematical paradigm and offer a more realistic
depiction of the intricate dynamics of cancer cells and virotherapy. The findings show that the
solution to the expanded mathematical framework is both unique and feasible. Study also show
that the increasing number of virions results the increasing number of effective cells which is
quite high than the increasing rate of tumor as well as infected cells. The numerical methods
also yield a numerical solution for the fractional mathematical model. The results of this study
might have a significant impact on how cancer immunotherapy therapies are developed and op-
timized.
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(a) For η = 0.7

(b) For η = 0.9

Figure 1: Growth rate of uninfected tumor cells

(a) For η = 0.7

(b) For η = 0.9

Figure 2: Growth rate of infected tumor cells
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(a) For η = 0.7

(b) For η = 0.9

Figure 3: Growth rate of effector T cells

(a) For η = 0.7

(b) For η = 0.9

Figure 4: Growth rate of virions
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