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Abstract In this paper, we find some conditions, inclusion relation for Poisson distribution
series ℏ(s, σ) to be in the class T Dλ(α, β, ξ; 1) of analytic functions defined by Al-Oboudi dif-

ferential operator. Further, we consider the integral operator G(m,σ) =
σ∫
0

ℏ(s,t)
t dt to be in the

above class. Several corollaries and consequences of the main results are also considered.

1 Introduction

Let ℘ be the class of the functions

ℏ(σ) = σ +
∞∑
ι=2

aισ
ι, (1.1)

which are analytic in the disk U = {σ ∈ C : |σ| < 1}. Further, let T be a subclass of ℘
consisting of functions of the form,

ℏ(σ) = σ −
∞∑
ι=2

|aι|σι, σ ∈ U. (1.2)

The elementary distributions such as the Poisson, the Pascal, the Logarithmic, the Binomial, the
Borel, the Beta Negative Binomial have been partially studied in Geometric Function Theory
from a theoretical point of view (see for example, [13, 15, 21, 22, 23]).

In [17], Porwal introduced a power series whose coefficients are probabilities of Poisson
distribution (PD)

ϕ(s, σ) = σ +
∞∑
ι=2

sι−1

(ι− 1)!
e−sσι

where s > 0. Further, Porwal [17] defined a series

ℏ(s, σ) = 2σ − ϕ(s, σ) = σ −
∞∑
ι=2

sι−1

(ι− 1)!
e−sσι.

Corresponding to the series ℏ(s, σ) and using the Hadamard product for ℏ ∈ ℘, Porwal and
Kumar [18] introduced a new linear operator ϖ(s) : ℘→℘ defined by

ϖ(s)ℏ(σ) := ϕ(s, σ) ∗ ℏ(σ) = σ +
∞∑
ι=2

sι−1

(ι− 1)!
e−saισ

ι
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where ∗ denotes Hadamard product.
For a function ℏ ∈ ℘ given by (1.1), Al-Oboudi in [14] defined a differential operator as

follows,

D0ℏ(σ) = ℏ(σ),

Dλℏ(σ) = D1
λℏ(σ) = (1 − λ)ℏ(σ) + λσℏ′(σ) = Dλℏ(σ), λ ≥ 0 (1.3)

in general

Dn
λℏ(σ) = Dλ(Dn−1ℏ(σ)). (1.4)

If ℏ(σ) is given by (1.1), then we observe that

Dn
λℏ(σ) = σ +

∞∑
ι=2

[1 + (ι− 1)λ]naισι (1.5)

when λ = 1, we get Sălăgean differential operator [20].
A function ℏ ∈ ℘ is said to be in the class Dλ(α, β, ξ;n), if and only if∣∣∣∣ (Dn

λℏ(σ))′ − 1)
2ξ [(Dn

λℏ(σ))′ − α]− [(Dn
λℏ(σ))′ − 1]

∣∣∣∣ < β (1.6)

where 0 ≤ α < 1/2ξ, 0 < β ≤ 1, 1/2 ≤ ξ ≤ 1, n ∈ N ∪ {0}, σ ∈ U.
Let

T Dλ(α, β, ξ;n) = T ∩ Dλ(α, β, ξ;n).

The class T Dλ(α, β, ξ;n) was introduced by Joshi and Sangle [12].
A function ℏ ∈ ℘ is said to be in the class Rκ(A,B),κ ∈ C\{0}, −1 ≤ B < A ≤ 1, if it

satisfies the inequality ∣∣∣∣ ℏ′(σ)− 1
(A−B)κ −B[ℏ′(σ)− 1]

∣∣∣∣ < 1, σ ∈ U.

This class was introduced by Dixit and Pal [6].
Following the works done in ([1]-[5],[7]-[11],[16],[19]), we determine some conditions for

ℏ(s, σ) to be in the class T Dλ(α, β, ξ; 1). Furthermore, we will prove the inclusion relation

Rκ(A,B) ⊂ Dλ(α, β, ξ; 1). Finally, we give conditions for the integral operator G(m,σ) =
σ∫
0

ℏ(s,t)
t dt

to be in the class T Dλ(α, β, ξ; 1).
To prove our main results, we will need the following results.

Lemma 1.1. [12] A function ℏ of the form (1.2) is in T Dλ(α, β, ξ;n) if and only if

∞∑
ι=2

[1 + (ι− 1)λ]ιn [1 + β (2ξ − 1)] |aι| ≤ 2βξ (1 − α) , (1.7)

where 0 ≤ α < 1
2ξ , 0 < β ≤ 1 , 1

2 ≤ ξ ≤ 1 , n ∈ N ∪ {0}, λ ≥ 0. The result is sharp.

Lemma 1.2. [6]If ℏ ∈ Rκ(A,B) is of the form , then

|aι| ≤ (A−B)
|κ|
ι
, ι ∈ N− {1}.

The result is sharp.

In this paper, we assume that 0 ≤ α < 1
2ξ, 0 < β ≤ 1, 1

2 ≤ ξ ≤ 1 and λ ≥ 0.
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2 Condition to be in the class T Dλ(α, β, ξ; 1)

Firstly, we obtain the following condition for ℏ(s,σ) to be in the class T Dλ(α, β, ξ; 1).

Theorem 2.1. If s > 0, then ℏ(s, σ) ∈ T Dλ(α, β, ξ; 1) if and only if

(1 + β (2ξ − 1)) s2 + (β (2ξ − 1) + 4 − λ)s

+(1 + β (2ξ − 1)) (2 − λ) (1 − e−s)

≤ 2βξ(1 − α). (2.1)

Proof. Since

ℏ(s, σ) = σ −
∞∑
ι=2

sι−1

(ι− 1)!
e−sσι

according to (1.7), we must show that

H :=
∞∑
ι=2

[1 + (ι− 1)λ]ι [1 + β (2ξ − 1)]
sι−1

(ι− 1)!
e−s ≤ 2βξ(1 − α)

or, equivalently

H :=
∞∑
ι=2

[
ι2 (1 + β (2ξ − 1)) + ι(1 − λ) (1 + β (2ξ − 1))

] sι−1

(ι− 1)!
e−s ≤ 2βξ(1 − α). (2.2)

Writing
ι = (ι− 1) + 1,

and
ι2 = (ι− 1)(ι− 2) + 3(ι− 1) + 1,

in (2.2) we obtain

H =
∞∑
ι=2

(ι− 1)(ι− 2) (1 + β (2ξ − 1))
sι−1

(ι− 1)!
e−s

+
∞∑
ι=2

(ι− 1) [β (2ξ − 1) + 4 − λ]
sι−1

(ι− 1)!
e−s

+
∞∑
ι=2

(1 + β (2ξ − 1)) (2 − λ)
sι−1

(ι− 1)!
e−s

= (1 + β (2ξ − 1))
∞∑
ι=3

sι−1

(ι− 3)!
e−s

+(β (2ξ − 1) + 4 − λ)
∞∑
ι=2

sι−1

(ι− 2)!
e−s

+(1 + β (2ξ − 1)) (2 − λ)
∞∑
ι=2

sι−1

(ι− 1)!
e−s

= (1 + β (2ξ − 1)) s2 + (β (2ξ − 1) + 4 − λ)s

+(1 + β (2ξ − 1)) (2 − λ) (1 − e−s),

which is bounded above by 2βξ(1 − α) if and only if (2.1) holds.
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3 Inclusion result

Now, we will prove the inclusion relation Rκ(A,B) ⊂ Dλ(α, β, ξ; 1).

Theorem 3.1. Let s > 0 and ℏ ∈ Rκ(A,B). Then ϖ(s)ℏ ∈ T Dλ(α, β, ξ; 1) if

(A−B) |κ|
[
(1 + β (2ξ − 1)) s+ (2 − λ) (1 + β (2ξ − 1)) (1 − e−s)

]
≤ 2βξ(1 − α). (3.1)

Proof. From (1.7) it suffice to show that

Q :=
∞∑
ι=2

[
ι2 (1 + β (2ξ − 1)) + ι(1 − λ) (1 + β (2ξ − 1))

] sι−1

(ι− 1)!
e−s |aι| ≤ 2βξ(1 − α).

Using Lemma 1.2, we have

|aι| ≤
(A−B) |κ|

ι
.

Therefore,

Q ≤ (A−B) |κ|
[ ∞∑
ι=2

[ι (1 + β (2ξ − 1)) + (1 − λ) (1 + β (2ξ − 1))]
sι−1

(ι− 1)!
e−s

]
. (3.2)

Writing ι = (ι− 1) + 1, in (3.2) we obtain

Q ≤ (A−B) |κ|
[ ∞∑
ι=2

[(ι− 1) (1 + β (2ξ − 1)) + (2 − λ) (1 + β (2ξ − 1))]
sι−1

(ι− 1)!
e−s

]

= (A−B) |κ|
[
[(1 + β (2ξ − 1))

∞∑
ι=2

sι−1

(ι− 2)!
e−s + (2 − λ) (1 + β (2ξ − 1))

∞∑
ι=2

sι−1

(ι− 1)!
e−s

]
= (A−B) |κ|

[
[(1 + β (2ξ − 1)) s+ (2 − λ) (1 + β (2ξ − 1)) (1 − e−s)

]
,

which is bounded above by 2βξ(1 − α), if (3.1) holds.

4 An integral operator

Theorem 4.1. If s > 0,then

G(s, σ) =σ
0
ℏ(s, t)

t
dt (4.1)

is in T Dλ(α, β, ξ; 1) if and only if the inequality

(1 + β (2ξ − 1)) s+ (2 − λ) (1 + β (2ξ − 1)) (1 − e−s) ≤ 2βξ (1 − α) (4.2)

is satisfied.

Proof. Since

G(s, σ) = σ −
∞∑
ι=2

e−ssι−1

(ι− 1)!
σι

ι
= σ −

∞∑
ι=2

e−ssι−1

ι!
σι,

by (1.7) we need only to show that
∞∑
ι=2

[
ι2 (1 + β (2ξ − 1)) + ι(1 − λ) (1 + β (2ξ − 1))

] sι−1

ι!
e−s ≤ 2βξ (1 − α)

that is, we need only to show that
∞∑
ι=2

[ι (1 + β (2ξ − 1)) + (1 − λ) (1 + β (2ξ − 1))]
sι−1

(ι− 1)!
e−s ≤ 2βξ (1 − α) . (4.3)

Using similar computations like in the proof of in Theorem 3.1 it follows that the inequality (4.3)

is satisfied whenever (4.2) holds.
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5 Special cases

Let ξ = 1/2 in the above theorems, we obtain the following results.

Corollary 5.1. If s > 0, then ℏ(s, σ)∈ T Dλ(α, β, 1/2; 1) if and only if

s2 + (4 − λ)s+ (2 − λ) (1 − e−s) ≤ β(1 − α).

Corollary 5.2. Let s > 0 and ℏ ∈ Rκ(A,B).Then ϖ(s)ℏ ∈ T Dλ(α, β, 1/2; 1) if

(A−B) |κ|
[
s+ (2 − λ)(1 − e−s)

]
≤ β(1 − α).

Corollary 5.3. If s > 0, then G(s, σ) ∈ T Dλ(α, β, 1/2; 1) if and only if

s+ (2 − λ)(1 − e−s) ≤ β(1 − α).

6 Conclusions

Due the earlier works in [4, 5, 7]), we find a condition and inclusion relation for PD series to be in
a class of analytic functions with negative coefficients defined by Al-Oboudi differential operator.
Further, we consider an integral operator related to PD series. Some interesting corollaries and
applications of the results are also discussed.
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operator, J. Indones. Math. Soc. (MIHMI) ,vol. 15.No. 2 (2009),pp. 79-89.

[13] W. Nazeer, Q. Mehmood, S. M. Kang and A. U. Haq, An application of Binomial distribution series on
certain analytic functions, J. Comput. Anal. Appl. 26 (2019), 11-17.

[14] F.M. Al-Oboudi, On univalent functions defined by generalized Sălăgean operator, IJMMS 27 (2004),
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