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Abstract The present paper establishes numerical solutions of fractional kinetic equations by
employing the fractional B-spline collocation method. The exact and approximate solutions ob-
tained are also compared with the help of examples by presenting their numerical and graphical
results.

1 Introduction

Initial value problems occur in many branches of sciences and engineering, for fluid dynamics,
quantum mechanics, optimal problems, etc. Since the mid-20th century, the significance of
numerical solutions has grown due to the increasing complexity of problems that often lack
analytical solutions. Different types of Spline functions have been used by many authors for
solving various initial values problems, for example, Sallam and Karaballi [21], Sallam and
Anwar [20], Siddiqi and Akram [24] and Siddiqi et al. [25] can be seen for references. Spline
functions are great tools to solve initial value problems. The fractional B-splines experience fast
decay toward infinity and differential operators and have a sparse representation in the functional
space they generate. Thus, the proposed method in this paper ultimately results in the solution
of a sparse linear system. B-spline results thus obtained produce higher accuracy results as
compared with those of polynomial interpolation methods.

On the other hand, the collocation method is very useful in mathematics for solving nu-
merical solutions of ordinary differential equations, partial differential equations, and integral
equations. Fairweather and Meade [7] formulated, analyzed, and implemented the orthogonal
spline collocation (OSC) named spline collocation at Gauss points for the numerical solution
of partial differential equations in two space variables. Johnson [9] investigated the collocation
method due to their simplicity and inherent efficiency for its application to a model problem
with similarities to the equations of fluid dynamics. Mazzia et al.[12] analyzed a class of spline
collocation methods for the numerical solution of ordinary differential equations (ODEs) with
collocation points coinciding with the knots. Jator and Sinkala in [8] introduced a numerical so-
lution of the boundary value problems for the dth order linear boundary value problem by using
the B-spline collocation method of order k.

Kadalbajoo et al. [10] presented an exponential B-spline collocation method for a self-adjoint
singularly perturbed boundary value problem. To demonstrate the efficiency of the finding of this
method a numerical experiment is conducted. Rao et al. [17] presented a B-spline collocation
method for a class of self-adjoint singularly perturbed boundary value problems. The purpose
was to bifurcate the domain of the differential equation into three non-overlapping subdomains.
Rao et al. [18] also presented an exponential B-spline collocation method for self-adjoint sin-
gularly perturbed boundary value problems. In his used convergence analysis of the same was
obtained and a method was obtained for the second order uniform convergence. A collocation
method based on polynomial splines was also introduced by Blank in [3] and saved a variety of
fractional differential equations, depending on linear and nonlinear differential problems, multi-
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term and multi-order problems, common and partial differential equations, etc. Rashidinia et
al.[19] also developed a cubic B-spline collocation method and also provided an application
to approximate the solution of Fredholm integral equations and their convergent nature. The
methods introduced by Aster et al. [1] are applicable for all kinds of numerical solutions in the
ill-posed problem in a stable fashion. Esen et al. also introduced a B-spline collocation method
and used it for diffusion-wave equations and also applied it in Caputo fractional derivatives for
their numerical solution [6]. Some more use of the collocation method has also been done by
Sayevand et al. [22] and Pitolli [15] with their application. Motivated by above works, in this
paper, we applied the collocation method to solve numerical problem and develop an efficient
and accurate method for solving fractional kinetic equation.

2 Fractional Kinetic Equations

The following definitions are required for studying the numerical solutions of fractional kinetic
equations.

Definition 2.1 (Riemann-Liouville Integral). Let t > 0, µ ∈ C, ℜ(µ) > 0. Then (see for more
detail [13, 14, 16])

0D
−µ
t f(t) =

1
Γ(µ)

∫ t

0
(t− ν)

µ−1
f(ν)dν, (t > 0,ℜ(µ) > 0). (2.1)

Definition 2.2 (Riemann-Liouville derivative). Let µ ∈ C, ℜ(µ) ≥ 0, η = [ℜ(µ)] + 1, t >
0. Then

(0D
µ
t f) (t) =

dη

dtη

(
0D

−(η−µ)
t f

)
(t) =

1
Γ(η − µ)

(
d

dt

)η ∫ t

0

f(ν)dν

(t− ν)µ−η+1 . (2.2)

It has the property

Iµtζ =
Γ(ζ + 1)

Γ(ζ + 1 + µ)
tζ+µ. (2.3)

Caputo fractional derivative of order µ, (see for more detail [5, 11]) which is a modification of
the Riemann-Liouville is also required for the present study.

Definition 2.3 (Caputo fractional derivatives). Let µ ∈ C, ℜ(µ) ≥ 0, t > 0. Then

(
C
0 Dµ

t f
)
(t) =

dη

dtη

(
0D

−(η−µ)
t f

)
(t) =

1
Γ(η − µ)

(
d

dt

)η ∫ t

0

fη(ν)dν

(t− ν)µ−η+1 , (2.4)

where m− 1 < µ < η.

Saxena and Kalla [23] considered the fractional kinetic equation

N(t)−N0f(t) = −δµ 0D
−µ
t N(t), (ℜ(v) > 0), (2.5)

where N(t) denotes the density number of a given species at time t, N0 = N(0) is the number
density of that species at time t = 0, δ is a constant and f ∈ L(0,∞). 0D

−1
t is the special case

of the Riemann-Liouville integral operator 0D
−µ
t .

The equation (2.5) can be written as

δµ 0D
−µ
t N(t) + L(N(t)) = N0f(t), (2.6)

where L is a linear operator.

3 Fractional B-splines

In this section, we summarize the main definitions of the B-splines and fractional B-splines.
The fractional B-splines first time mentioned by Unser and Blu in [26] and later extended to
Schoenberg’s family of polynomial splines to all fractional degrees.
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Definition 3.1. The basic functions for Schoenberg’s polynomial splines with uniform knots are
[4, 2]

ρn(t) =
1
n!

n+1∑
λ=0

(−1)λ
(

n+ 1
λ

)
(t− λ)n+, n ∈ N.

The one-side power function (x− λ)n+ is defined as

(t− λ)n+ =

{
(t− λ)n if t ≥ λ

0 if t < λ

}
, n ∈ N.

Definition 3.2. The fractional B-spline of fractional degree µ is defined as

ρµ(t) =
1

Γ(µ+ 1)

∑
λ≥0

(−1)λ
(

µ+ 1
λ

)
(t− λ)µ+, n ∈ N

.

Theorem 3.3. The fractional splines ρµ(t) are in L1 for all ζ > −1. Moreover, for ζ > −1
2

, they

are in L2 as well.

Proof. For the detailed proof, we recommend to see [26].

The basic space of fractional spline of degree µ, with scale µ is defined as

Sµ =

{
ν : c ∈ L2, S(t) =

∑
k∈Z

c(k).ρµ
(
t

µ
− k

)}
,

which involves stretching the basis functions by a factor of a and spacing them accordingly.

4 Fractional B-spline collocation method

In this section, the fractional B-spline collocation method is applied to obtain the approximate
solution of (2.5). Numerical results are obtained for (2.5) by using the collocation method with
fractional B-splines basic functions for finding an approximate solution Nn(t) to the exact solu-
tion N(t).

Figure 1. Approximate Solution of equation (4.9)

Let us chose a sequence of dimensional subspace Xn ⊂ X,n ≥ 1. It is assumed that Xn

have a basis {φ1, . . . φd}. We require a function Nn(t) ∈ Xn defined as follows

Nn(t) =
d∑

λ=1

cλφλ(t), t ∈ [0, b], (4.1)
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Figure 2. Exact Solution of equation (4.9)

Table 1. Numerical results of exact and approximate solution with absolute error of equation
(4.9)

x Exact Approximation Absolute Error
0.0 1.00000000 1.00000000 0.00000000
0.1 0.64727000 0.54727000 0.00529237
0.2 0.59074600 0.39074600 0.00208223
0.3 0.55631200 0.25631200 0.00656861
0.4 0.53148100 0.13148100 0.01716970
0.5 0.51208400 0.01208400 0.02848310
0.6 0.49619100 0.10380900 0.01583830
0.7 0.48275000 0.21725000 0.01893480
0.8 0.47112000 0.32888000 0.01790620
0.9 0.46088400 0.43911600 0.01506940
1.0 0.45175100 0.54824900 0.01126620

where cj are unknown quantities to be established. To construct an approximate solution, a mesh
0 = t0 < t1 < ... < td = b as a uniform partition of the solution domain 0 ≤ t ≤ b is considered
by the knots tλ and next the approximate solution is obtained by substituting (4.1) into (2.5)
which yields

Nn(ti) =
d∑

λ=1

cλ

{
L[φλ(ti)] +

δµ

Γ(η − µ)

∫ ti

0

φη
λ(τ)

(ti − τ)
µ−η+1 dτ

}
−N0f(ti) = 0, (4.2)

where i = 1, . . . , d.

Let X = L2(R). Then y(t) ∈ L2(R), yn(t) ∈ Xn with a = 1
2n n ∈ N exact solution of y(t)

approximates to the form as follows:

φn(t) =
∑
λ∈Z

cλρ
µ(2nt− λ), λ ∈ Z.

By taking 0 ≤ t ≤ b and n ∈ N as follows

φ2n
n (t) =

b∑
λ=1−2n

cλρ
µ(2nt− λ), b ∈ R (4.3)
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with nodes ti = bi
2n then from equation (4.2) and using result (4.3) as follows

N2n
n (ti) =

b∑
λ=1−2n

cλρ
µ(2n(ti − λ) +

∫ ti

0
k(ti, τ)ρ

µ(2nτ − λ)mdτ −N0f(ti), (4.4)

i = 0, . . . , b. where

k(ti, τ) =
δ(t− τ)µ−1

Γ(µ)
.

The absolute error is given by |N(t)−N(t)| as

E2n
n [N(t)] = ∥N(t)−N2n

n (t)∥2 =

{∫ b

0
|N(t)−N2n

n (t)|2
} 1

2

,

when n −→ ∞ and d −→ ∞ then N2n
n (t) −→ N(x).

The factors involved in choice of collocation scheme are

(a) The continuity or regularity and degree of the B-splines affect the number of unknowns.

(b) For a unique solution it is desirable to select the same number of collocation points as
unknowns , that means, the number of equations (residual evaluations) should be equal the
number of unknowns.

(c) As, the accuracy of the solution depends upon the choice of collocation points, therefore an
effective set of collocation points is desired.

Figure 3. Exact and Approximate Solution of equation (4.10)

Theorem 4.1. Consider f(t) = 1 = c in fractional kinetic equation given in (2.5), we have

δµ0D
−µ
t N(t) + L(N(t)) = N0. (4.5)

Then its exact solution is given by

N(t) = N0Eµ,1[−(δt)µ], (4.6)

where Eζ,ρ is Mittag-Leffler function defined as follow

Eζ,ρ[z] =
∞∑
n=0

zn

Γ(ζn+ ρ)
. (4.7)
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Figure 4. Error Analysis of equation (4.10)

Proof. First, taking the Laplace Transform on both sides of (4.5), we have

δµL{0D
−µ
t N(t); p}+ L{N(t); p} = N0L{1, p}, (4.8)

using the result L{0D
−µ
t f(t); p} = p−µF (p) and then after simplification, the above (4.8), re-

duced to

N(p) =
∞∑
r=0

(−1)r

δ−µr
(p)−µr−1, (4.9)

further using the result L−1{p−µ; t} =
tµ−1

Γ(µ)
; where ℜ(µ) > 0 and taking the inverse Laplace

Transform of the above equation (4.9), we have the required result after simplification.

For numerical results and plots in the demonstrated range, we choose here N0 = 1, µ =
1/2, δ = 1

Example 4.2. If δ > 0, µ > 0, and choose f(t) = exp t, then the exact solution of the Eqn.(4.5)(see,
[23, 26])

δµ0D
−µ
t N(t) +N(t) = N0 exp(t), (4.10)

is given by

N(t) = N0 exp(t)Eµ,1[−(δt)µ]. (4.11)

5 Conclusion

We conclude our present work by remarking that the collocation method has been applied to
solve fractional kinetic equations numerically and fractional B-splines are well-established basic
functions that are orthogonal on [0; 1]. In last, we also presented the absolute errors of the finding
results.
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