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Abstract The geometry of singular foliations is an important object of mathematics due to its
importance in applications. The paper is devoted to the of the geometry of singular foliation on
four-dimensional Euclidean which generated by orbits of two vector fields. It is shown that orbits
generate singular foliation, whose regular leaf is a not a hyperplane surface i.e. it is a surface
with nonzero torsion. In addition, the invariant functions of the considered vector fields are used
to find solutions of the two-dimensional heat equation that are invariant under the groups of
transformations generated by these vector fields. In this paper, smoothness is the smoothness of
the class C∞..

1 Introduction

Let M be a Riemannian (smooth) manifold of dimension n.

Definition 1.1. A subset L of M is said to be a k − leaf of M if there exists a differentiable
structure σ on L such that

(i) (L, σ) is a connected k-dimensional immersed submanifold of M ,
(ii) if N is an arbitrary locally connected topological space, and f : N → M is a continuous

function such that f(N) ⊂ L, then f : N → (L, σ) is continuous.

It follows from the properties of immersions that if f : N → M is a differentiable mapping
of manifolds such that f(N) ⊂ L, then f : N → (L, σ) is also differentiable. In particular,
σ is the unique differentiable structure on L which makes L into an immersed k-dimensional
submanifold of M. Since M is paracompact,every connected immersed submanifold of M is
separable,and so the dimensional k of a leaf L is uniquely determined.

Definition 1.2. We say that F is a Cq-foliation of M with singularities if F is partition of M into
Cq-leaves ofM such that, for every xϵM, there exists a local Cq-chart ψ ofM with the following
properties:

(a) The domain of ψ is of the from U ×W, where U is an open neighbourhood of 0 in Rk, W
is an open neighbourhood of 0 in Rn−k, and k is the dimension of the leaf through x.

(b) ψ(0, 0) = x.
(c) If L is a leaf of F, then L ∩ ψ(U ×W ) = ψ(U × l), where l = {wϵW : ψ(0, w)ϵL}.

If the dimension of L is maximal, it is called regular, otherwise, L is called singular. It is
known that orbits of vector fields generate singular foliation (see [2, 18, 19]).

Let us consider a set of vector fields D ⊂ V (M)of the Lie algebra of all smooth (class C∞)
vector fields V (M) and the smallest Lie subalgebra containing D by A(D). Let t → Xt(x) be
an integral curve of the vector field X with the initial point x for t = 0, which is defined in some
region I(x) of real line.
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Definition 1.3. The orbit L(x) of a systemD of vector fields through a point x is the set of points
y in M such that there exist t1, t2, ..., tk ∈ R and vector fields Xi1 , Xi2 , ..., Xik ∈ D such that

y = Xtk
ik
(X

tk−1
ik−1

(...(Xt1
i1
)...)),

where k is an arbitrary positive integer.

There are many investigations which devoted to the topology and geometry of orbits of a
system of vector fields [2, 10, 11]. The fundamental result in the study of orbits is Sussmann
theorem [18], which asserts that every orbit is an immersed submanifold of M .

2 On the geometry of singular foliation of the four-dimensional Euclidean
space

First, let us recall some characteristics of two-dimensional surface F in four-dimensional Eu-
clidean space E4. Consider on the surface F at the point x some nonzero vector ξ. A hyperplane
E3(x, ξN) in E4, defined by the vector ξ and the normal plane N at the point x, intersects the
surface F along some curve γ. By its construction, the curve γ is a three-dimensional curve.
Curvature kN (x, ξ) and torsion χN (x, ξ) of the curve γ at the point x are called, respectively,
the normal curvature and the normal torsion of the surface at the point x in the direction ξ.

Geometry of two-dimensional surfaces in E4 is an essential part of differential geometry and
studied by many authors [5, 6, 7, 17]. It is known that two-dimensional hyperplane surfaces
are zero normal torsion surfaces. However, two-dimensional torus S1 × S1 on the hypersphere
S3 in E4 is zero normal torsion surface, although it is not hyperplane surface. The geometry of
hyperplane surfaces is given in [7].

The Gaussian torsion χG is an invariant of the extrinsic geometry of the surface. If a and b
are the semiaxes of an ellipse of normal curvature, then χG = ±2ab, where the sign is taken to
be plus in the case when under a rotation of the tangent vector in the positive direction the corre-
sponding point on the ellipse moves in the positive direction in accordance with the orientation
in the normal plane, and minus if this point moves in the negative direction [1].

Let us consider a family of D = {X1, X2} vector fields on four-dimensional Euclidean space
E4 with Cartesian coordinates t, x1, x2, u, where

X1 = exp(t)
∂

∂t
+ exp(t)u

∂

∂u
,X2 = (x2

1 − x2
2)

∂

∂x1
+ 2x1x2

∂

∂x2
− 4x1u

∂

∂u
. (2.1)

Theorem 2.1. The family of orbits of the vector fields (2.1) generates a singular foliation whose
regular leaf is not hyperplane surface ( a surface with nonzero normal torsion).

Proof. Now we check the condition of Hermann theorem. It is easy to check that [X1, X2] = 0.
It follows from Hermann theorem the family D is completely integrable.

We need to find the invariant functions of the groups generated by vector fields (2.1). It is not
difficult to check that the functions

F 1(t, x1, x2, u) = x2
2ue

−t, F 2(t, x1, x2, u) = x2 +
x2

1
x2

(2.2)

are invariant functions. It is known that a function f is a invariant function if and only if X(f) =
0 [15] We can check that it holds the following equalities

X1(F
1) = 0, X1(F

2) = 0, X2(F
1) = 0, X2(F

2) = 0. (2.3)

These invariant functions give us a family of two-dimensional surfaces

x2
2ue

−t = C1, x2 +
x2

1
x2

= C2, (2.4)

where C1, C2 are constants.
For given C1, C2 let us denote by FC the connectivity component of the regular surface,

which is defined by the system of equations (2.4).
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For definiteness, we will assume that C1 > 0. If p0(x0
1, x

0
2, t

0, u0) ∈ FC , it follows from
equalities (2.3) the orbit L(p0) is contained in the surface FC .

At any p(x1, x2, t, u) of the FC vectors X1(p), X1(p) linearly independent which shows the
orbit L(p0) is a two-dimensional manifold. It follows that L(p0) = FC .

Now one can check the metric characteristics of the surface FC . In order to find Gauss torsion
We will use formulas from the paper [1].

Let us denote by h the vector of the dimension 10 with components

h11, h12, h13, h14, h22, h23, h24, h33, h34, h44 (2.5)

which are calculated by following formulas

hir = δir −
1
∆
⟨ηi, ηr⟩.

where δir is Kronecker symbol, bracket ⟨·, ·⟩ is inner product and

∆ = |gradF 1|2 · |gradF 2|2 − ⟨gradF 1, gradF 2⟩2
.

Note that ∆ is the length of bivector

[gradF 1|, |gradF 2]

and ∆ > 0 due to the regularity of the surface FC . Vectors ηi are defined by following formulas

ηi = (F 1
i gradF

2 − F 2
i gradF

1),

where i = 1, 2, 3, 4.
We also use notation for partial derivatives

∂F i

∂xk
= F i

k.

and also use renumbering x1 = t, x2 = x1, x3 = x2, x4 = u.
We also need (6 × 1) matrix q with components q12, q13, q14, q23, q24, q34, where

qij = εijkl
1√
∆

∣∣ F 1
k F 1

l

F 2
k F 2

l

∣∣
where εijkl is Kronecker symbol.

We also introduce (10 × 6) matrix B

B =
1√
∆



(1112) (1113) (1114) (1123) (1124) (1134)
(1212) (1213) (1214) (1223) (1224) (1234)
(1312) (1313) (1314) (1323) (1324) (1334)
(1412) (1413) (1414) (1423) (1424) (1434)
(2212) (2213) (2214) (2223) (2224) (2234)
(2312) (2313) (2314) (2323) (2324) (2334)
(2412) (2413) (2414) (2423) (2424) (2434)
(3312) (3313) (3314) (3323) (3324) (3334)
(3412) (3413) (3414) (3423) (3424) (3434)
(4412) (4413) (4414) (4423) (4424) (4434)


with elements

(ijkl) =
∣∣ F 1

ik F 1
il

F 2
jk F 2

jl

∣∣+ ∣∣ F 1
jk F 1

jl

F 2
ik F 2

il

∣∣.
Now we ready to write the formula for the Gauss torsion χG

χG = ⟨h,Bq⟩.
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Now, using the above formulas, let’s move on to calculating torsion.

gradF 1 = {−x2
2ue

−t, 0, 2x2ue
−t, x2

2e
−t}, gradF 2 = {0,

2x1

x2
, 1 −

x2
1

x2
2
, 0}

∆ = e−2t[(x2
1 + x2

2)
2(u2 + 1) + 16u2x2

1]

h11 =
∆ − u2e−2t(x2

1 + x2
2)

2

∆
, h12 =

4x1u
2e−2t(x2

1 − x2
2)

∆
, h13 =

8x2
1x2ue

−2t

∆
,

h14 = −
ue−2t(x2

1 + x2
2)

2

∆
, h22 =

(x2
1 − x2

2)
2(u2 + 1)− 16x2

1u
2

∆
, h23 =

2x1x2e
−2t(x2

1 − x2)2(u2 + 1)
∆

,

h24 =
4x1ue

−2t(x2
2 − x2

1)

∆
, h33 =

4x2
1x

2
2(u

2 + 1)
∆

, h34 =
−8x2

1x2ue
−2t

∆
, h44 =

∆ − e−2t(x2
1 + x2

2)
2

∆
.

For the matrix B we have

B =
2

et
√

∆



0 0 0 0 0 0
x2u −x1u 0 2u x2 x1

−x1u
x2

1u
x2

0 −2x1u
x2

−x1
x2

1
x2

0 0 0 0 0 0
0 0 0 0 0 0

−2u 2u
x2

0 − 2u
x2

−2 2x1
x2

−x2 0 0 −2 0 0
4x1u
x2

− 4x2
1u

x2
2

0 4x1u
x2

2

4x1
x2

− 4x2
1

x2
2

x1 −x2
1

x2
0 2x1

x2
0 0

0 0 0 0 0 0


For the vector q

q =
2

et
√

∆



x2
1 − x2

2

2x1x2

−4x1u

0
u(x2

2 − x2
1)

−2x1x2u


It follows for the Gauss torsion we have following

χG =
16[7x4

1 + x2
2(x

2
2 − 4x2

1) + 2(x2
1 − x2

2)(u
2(x2

1 − x2
2)− 4x2

1e
2t(u2 + 1))]

(x1x2u)−1e4t∆2 .

This formula shows at regular points Gauss torsion is not equal zero.

3 TWO-DIMENSIONAL HEAT EQUATION WITHOUT A SOURCE OF
HEAT RELEASE AND WITHOUT A SOURCE OF ABSORPTION

Recently, geometry and differential equations have complemented each other in solving various
problems [20],[21].

The papers [8, 13] deal with integrating of ordinary differential equations and linear partial
differential equations based on known infinitesimal symmetries. The Lie algebra of infinitesimal
generators of the symmetry group for the one-dimensional heat equation was used in [14].

Numerous studies [4, 12, 14, 15] are devoted to finding symmetry groups of differential equa-
tions and their applications for research.

In this section, invariant solutions of the two-dimensional heat equation are found and stud-
ied. For systems of partial differential equations, the symmetry group can be used to explicitly
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find particular types of solutions that are themselves invariant under some subgroup of the sys-
tem’s full symmetry group.

For example, solutions to a partial differential equation in two independent variables that are
invariant with respect to a given one-parameter symmetry group are found by solving a system of
ordinary differential equations. The class of group-invariant solutions includes exact solutions
that have direct mathematical or physical significance.

Consider the two-dimensional heat equation

ut =
2∑

i=1

∂

∂xi
(ki(u)

∂u

∂xi
) +Q(u) (3.1)

where u = u(x1, x2, t) ≥ 0 is the temperature function, ki(u) ≥ 0, Q(u) are functions of
temperature u.

The function Q(u) describes the heat release process if Q(u) > 0 and the heat absorption
process if Q(u) < 0.

Studies show that the thermal conductivity coefficients k1(u), k2(u) in a fairly wide range
of parameters can be described by a power-law function of temperature, i.e. it has the form
k(u) = uσ.

It is known that the group of transformations allowed by the two-dimensional nonlinear equa-
tion thermal conductivity is very rich when the thermal conductivity coefficients are a power
function with negative exponents [3, 16]. Such a dependence of the coefficients arises in the
description of diffusion processes in polymers, semiconductors, porous media, in some tasks
chemistry, etc. [9].

Consider the case k1(u) = k2(u) = u−1, Q(u) = 0. In this case, equation (1) has the
following form:

ut = u−1
∆u− u−2(∇u)2 (3.2)

where ∆u = ∂2u
∂x2

1
+ ∂2u

∂x2
2

is the Laplace operator, ∇u = { ∂u
∂x1

, ∂u
∂x2

} is the gradient of function u.
As shown in [4], in this case one of the subgroups of the symmetry group of equation (2) is

generated by the following vector fields:

X1 = t
∂

∂t
+ u

∂

∂u
,X2 = (x2

1 − x2
2)

∂

∂x1
+ 2x1x2

∂

∂x2
− 4x1u

∂

∂u
. (3.3)

This means that the flows of these vector fields generate a group of transformations of the
variable space that transform the solutions of equation (2) into solutions.

Theorem 3.1. The invariant solutions of equation (3.2), with respect to the group of transforma-
tions generated by vector fields (3.3), are the functions

u =
t

x2
2
V (ξ)

where

V (ξ) =
1

2C2
1
ξ2 tan

(C2 − ξ)2

4C2
1

, ξ =
x2

x2
1 + x2

2
.

C1, C2 are arbitrary constants

Proof. We will find solutions to equation (3.2) that are invariant under the transformation groups
generated by the vector fields (3.3).

To do this, we first find the invariant functions of these transformations. It is known that [15,
p. 117] a smooth function f : M → R is an invariant function of the transformation group G
acting on the manifold M if and only if X(f) = 0 for each infinitesimal generator X of the
group G. Using this criterion, we find that the functions

I1(t, x1, x2, u) =

√
t

x2
√
u
, (3.4)

I2(t, x1, x2, u) =
x2

x2
1 + x2

2
, (3.5)
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are invariant functions of the group of transformations generated by vector fields (4), which
follows from the following equalities

X1(Ii) = X2(Ii) = 0, i = 1, 2. (3.6)

The solution of equation (3.2) is sought in the form

u =
t

x2
2
V (ξ)

where
ξ =

x2

x2
1 + x2

2
.

Then for the function V (ξ) we obtain the following second-order differential equation:

V − 2 = ξ2(
V ′′

V
− V ′2

V 2 ).

Integrating this equation, we get that

V (ξ) =
1

2C2
1
ξ2 tan

(C2 − ξ)2

4C2
1

4 TWO-DIMENSIONAL HEAT EQUATION WITH A SOURCE OF HEAT
RELEASE

Now consider the case when there is a heat source, i.e. k1(u) = k2(u) = u−1, Q(u) = u. In this
case equation (1) has the following form:

ut = u−1
∆u− u−2(∇u)2 + u. (4.1)

As shown in [4], in this case one of the subgroups of the symmetry group of equation (2) is
generated by the following vector fields:

X1 = exp(t)
∂

∂t
+ exp(t)u

∂

∂u
,X2 = A(x1, x2)

∂

∂x1
+B(x1, x2)

∂

∂x2
− 2Ax1u

∂

∂u
, (4.2)

where A(x1, x2),B(x1, x2) are solutions of the Cauchy-Riemann system.
For convenience, consider the case A+ iB = z2. Then we obtain a group of transformations

generated by the following vector fields.

X1 = exp(t)
∂

∂t
+ exp(t)u

∂

∂u
,X2 = (x2

1 − x2
2)

∂

∂x1
+ 2x1x2

∂

∂x2
− 4x1u

∂

∂u
. (4.3)

This means that the flow of this vector field generates a group of transformations of the space
of variables (t, x1, x2, u), which transform solutions of equation (4.1) into solutions.

Theorem 4.1. The invariant solutions of equation (4.1), with respect to the group of transforma-
tions generated by vector fields (4.3), are the functions

u = C2
et

(x2
1 + x2

2)
2
e
C1

x2
x2

1
+x2

2

where C1, C2 are arbitrary constants.

Proof. We will find solutions to equation (4.1) that are invariant under the group of transforma-
tions generated by vector fields (4.3). To do this, we first find the invariant functions of these
transformations. Using the above criterion, we find that the functions

I1(t, x1, x2, u) =
e

t
2

x2
√
u
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ξ =
x2

x2
1 + x2

2
.

are invariant functions of the transformation group.
The solution of equation (4.1) is sought in the form

u =
et

x2
2
V (ξ) (4.4)

where V (ξ)− is a differentiable function.
Substituting function (4.4) into (4.1) for the function V (ξ), we obtain the following second-

order differential equation:
ξ2V ′′

V
− ξ2V ′2

V 2 + 2 = 0.

Integrating this equation, we get that

V = C2ξ
2eC1ξ,

where C1, C2 are are arbitrary constants.

5 Conclusion remarks

The paper is devoted to the geometry of singular foliation on four-dimensional Euclidean which
is generated by orbits of two vector fields. It is shown that orbits generate singular foliation,
whose regular leaf is not a hyperplane surface i.e.it is a surface with nonzero torsion. In ad-
dition, the invariant functions of the considered vector fields are used to find solutions of the
two-dimensional heat equation that are invariant under the groups of transformations generated
by these vector fields.

First, we consider a two-dimensional heat equation without a source of heat release and with-
out a source of absorption, which describes the process of heat propagation in a flat area. For
this case, a family of exact solutions is found, depending on arbitrary constants. The solutions
found show that in this case the temperature increases linearly with increasing time.

Then the two-dimensional heat equation with the heat source is considered. The solutions
found show that in this case the temperature grows exponentially with increasing time.
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