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Abstract The present research article endeavors to utilize fixed point theorems to explore
the existence and uniqueness of solutions to coupled ordinary differential equations. To accom-
plish this aim, we introduce the concept of a triple-composed bipolar metric space, which is
a generalization of bipolar metric space. Additionally, we introduce the notion of λ-admissible
mapping with respect to ζ for single-valued covariant and contravariant mappings in the context
of a triple-composed bipolar metric space. Furthermore, we introduce new contraction condi-
tions including covariant (λ, ζ)-contraction, contravariant (λ, ζ)-contraction, and contravariant
(λ, ζ)-rational contraction, which enables us to establish novel fixed point results. Moreover, we
introduce coupled covariant (λ, ζ)-contraction to demonstrate the existence and uniqueness of
coupled fixed points in the setting of a triple-composed bipolar metric space. To complement
our theoretical findings, we present compelling and non-trivial illustrative examples. Through
this comprehensive investigation, we contribute to the advancement of fixed point theory and its
applications in the study of coupled ordinary differential equations.

1 Introduction

The natural sciences are intricately interconnected, and mathematics plays a pivotal role in ad-
vancing these disciplines. Mathematicians continually strive to develop mechanisms and tech-
niques to enhance other sciences. The fixed point technique stands out as a powerful method
that aids mathematicians in providing effective approaches for solving models in both ordinary
and partial differential equations, as encountered in engineering, chemistry, and physics. Fur-
thermore, owing to the symmetric property of metric spaces, fixed point theory remains a cru-
cial tool in advancing studies across diverse fields and disciplines, including topology, game
theory, optimal control, artificial intelligence, logic programming, dynamical systems and func-
tional analysis. Mathematicians leverage the fixed point technique to find both analytical and
numerical solutions to integral and differential equations, as evidenced by works cited in ref-
erences [5, 6, 7, 8, 9, 10, 23, 24, 25, 26, 27]. The Banach Contraction Principle [11] is a
fundamental fixed point theorem that establishes the existence and uniqueness of a fixed point
for self-contractive mappings in a metric space. Various generalizations and extensions of this
theorem can be found in the literature, involving modifications to the contraction mapping or the
generalization of the type of metric spaces. An example includes the double-composed metric
space introduced by Ayoob et al. [2] in 2023, where the concept involves the composition of two
control functions. In 2016, Mutlu and Gürdal [3, 12] introduced the concept of a bipolar metric
space and explored certain basic fixed point and coupled fixed point theorems for covariant and
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contravariant maps, subject to specific contractive conditions. It is a fascinating generalization
of metric spaces. This generalization led to the study of various fixed point results for some con-
tractive mappings which led to wide applications in many branches of mathematics, including
nonlinear analysis and its applications(see [13, 14, 15, 16, 17, 18]). And it was later extended
in 2023 by Mani et al. [4], who introduced the notion of bipolar controlled metric space, and by
Taleb et al. [1], who introduced the notion of triple bipolar controlled metric space.

On the other hand, the initial introduction of the concept of α-admissible mapping in a metric
space was credited to Samet et al. [21], and later, Utku et al. [20] adapted this concept to bipolar
metric spaces. In 2013, Salimi et al. [22] further expanded the notion of α-admissible mapping
in a metric space to the concept of α-admissible mapping with respect to β. Additionally, the
reformulation of this concept in bipolar metric space was undertaken by the authors in reference
([1],[19]).

The basic idea behind this work is to apply fixed point theorems to prove the existence and
uniqueness of solutions to coupled ordinary differential equations. To achieve this objective, we
generalization the work of Mutlu and Gürdal [3] by introducing the concept of a triple-composed
bipolar metric space and modifying the work of Salimi et al. [22] by presenting the concept of
λ-admissible mapping with respect to ζ for single-valued covariant and contravariant map-
pings in a triple-composed bipolar metric space. The paper is organized as follows. In Section
(2), we define the triple-composed bipolar metric space and investigate some of its topological
properties. Section (3) presents our main results, wherein we establish new fixed point theo-
rems based on the conditions of covariant (λ, ζ)-contraction, contravariant (λ, ζ)-contraction,
and contravariant (λ, ζ)-rational contraction. To achieve this, we introduce the concept of λ-
admissible mapping with respect to ζ for single-valued covariant and contravariant mappings
in the setting of a triple-composed bipolar metric space. Additionally, we introduce coupled
covariant (λ, ζ)-contraction to prove some coupled fixed points in a triple-composed bipolar
metric space. In Section (4), we apply our results to demonstrate the existence and uniqueness of
solutions for coupled ordinary differential equations. Our results make a significant contribution
to the current body of literature, pushing it forward, and offering a novel approach to verifying
the existence and uniqueness of solutions for differential equations.

2 Preliminaries

The following basic definitions are required in the sequel and we begin with a definition of
the double-composed metric space introduced by Ayoob et al. [2] in 2023 which is a novel
generalization of metric space.

Definition 2.1 ([2]). Let Ξ be a non-empty set and f, g : [0,∞) → [0,∞) be two non-constant
functions. A function d : Ξ × Ξ → [0,∞) is called a double-composed metric if it satisfies:

(d1) d(ω, ν) = 0 ⇔ ω = ν, ∀ ω, ν ∈ Ξ.

(d2) d(ω, ν) = d(ν, ω), ∀ ω, ν ∈ Ξ.

(d3) d(ω, ν) ≤ f(d(ω, µ)) + g(d(µ, ν)), ∀ ω, ν, µ ∈ Ξ.

The pair (Ξ, d) is called double-composed metric space (DCMS for short).

The concept of bipolar metric space was introduced by Mutlu et al. [3] in the following
manner.

Definition 2.2 ([3]). Let Ξ and Π be non-empty sets. A function dB : Ξ × Π → [0,∞) is called
bipolar metric if it satisfies:

(dB1 ) dB(ω, ν) = 0 ⇔ ω = ν, ∀ (ω, ν) ∈ Ξ × Π.

(dB2 ) dB(ω, ν) = dB(ν, ω), ∀ ω, ν ∈ Ξ ∩ Π.

(dB3 ) dB(ω, ν) ≤ dB(ω, ν1) + dB(ω1, ν1) + dB(ω1, ν), ∀ ω, ω1 ∈ Ξ and ν, ν1 ∈ Π.

The triplet (Ξ,Π, dB) is called bipolar metric space (BMS for short).

Mani et al. [4] proposed the following generalization of bipolar metric space called bipolar
controlled metric space.



Fixed Point Theorems and its Application in Differential Equations 779

Definition 2.3 ([4]). Let Ξ and Π be non-empty sets and γ : Ξ × Π → [1,∞). A function
dBC : Ξ × Π → [0,∞) is called bipolar controlled metric if it satisfies:

(dBC1 ) dBC(ω, ν) = 0 ⇔ ω = ν, ∀ (ω, ν) ∈ Ξ × Π.

(dBC2 ) dBC(ω, ν) = dBC(ν, ω), ∀ ω, ν ∈ Ξ ∩ Π.

(dBC3 ) dBC(ω, ν) ≤ γ(ω, ν1)dBC(ω, ν1) + γ(ω1, ν1)dBC(ω1, ν1) + γ(ω1, ν)dBC(ω1, ν), ∀ ω, ω1 ∈ Ξ

and ν, ν1 ∈ Π.

The triplet (Ξ,Π, dBC) is called bipolar controlled metric space (BCMS for short).

In [1], Taleb et al. proposed the following generalization of a bipolar controlled metric space
and named it a triple bipolar controlled metric space.

Definition 2.4 ([1]). Let Ξ and Π be non-empty sets and γ, φ, ψ : Ξ × Π → [1,∞). A function
dT : Ξ × Π → [0,∞) is called triple bipolar controlled metric if it satisfies:

(dT1 ) dT(ω, ν) = 0 ⇔ ω = ν, ∀ (ω, ν) ∈ Ξ × Π.

(dT2 ) dT(ω, ν) = dT(ν, ω), ∀ ω, ν ∈ Ξ ∩ Π.

(dT3 ) dT(ω, ν) ≤ γ(ω, ν1)dT(ω, ν1) + φ(ω1, ν1)dT(ω1, ν1) + ψ(ω1, ν)dT(ω1, ν), ∀ ω, ω1 ∈ Ξ and
ν, ν1 ∈ Π.

The triplet (Ξ,Π, dT) is called triple bipolar controlled metric space (TBCMS for short).

Now, we introduce a new space, namely, triple-composed bipolar metric space and investi-
gate some of its topological properties.

Definition 2.5. Let Ξ and Π be non-empty sets and f, g, h : [0,∞) → [0,∞) be three non-
constant functions. A function dT : Ξ × Π → [0,∞) is called triple-composed bipolar metric if
it satisfies:

(dT1 ) dT (ω, ν) = 0 ⇔ ω = ν, ∀ (ω, ν) ∈ Ξ × Π.

(dT2 ) dT (ω, ν) = dT (ν, ω), ∀ ω, ν ∈ Ξ ∩ Π.

(dT3 ) dT (ω, ν) ≤ f(dT (ω, ν1)) + g(dT (ω1, ν1)) + h(dT (ω1, ν)), ∀ ω, ω1 ∈ Ξ and ν, ν1 ∈ Π.

The triplet (Ξ,Π, dT ) is called triple-composed bipolar metric space (T CBMS for short).

Remark 2.6. We observe that TBCMS and T CBMS are two independent generalizations of
BMS. The former entails the multiplication of control functions, while the latter involves the
composition of control functions.

Remark 2.7. Every BMS is a T CBMS with the control functions f(u) = g(u) = h(u) = u.
However, the reverse may not be true, as illustrated by the following example.

Example 2.8. Let Ξ = {0, 1, 2}, Π = {2, 4, 6} and f, g, h : [0,∞) → [0,∞) be three non-
constant functions defined by f(u) = u + 1, g(u) = u + 9 and h(u) = u. Define a function
dT : Ξ × Π → [0,∞) by dT (ω, ν) = |ω − ν|2, ∀ ω ∈ Ξ, ν ∈ Π. Then, (Ξ,Π, dT ) is T CBMS.
However, it is not BMS.

Proof. Note that (dT1 ) and (dT2 ) are straightforward to confirm, we will focus on proving (dT3 ).
Let ω = 0, ω1 = 1, ν = 6 and ν1 = 2 then dT (ω, ν) = dT (0, 6) = |0 − 6|2 = 36.

Now
f(dT (ω, ν1)) = f(dT (0, 2)) = f(4) = 5,
g(dT (ω1, ν1)) = g(dT (1, 2)) = g(1) = 10,
h(dT (ω1, ν)) = h(dT (1, 6)) = h(25) = 25.
Therefore, 36 = dT (ω, ν) ≤ f(dT (ω, ν1))+ g(dT (ω1, ν1))+ h(dT (ω1, ν)) = 40. By follow-

ing identical steps, one can establish the validity of the remaining cases, and in each instance, we
derive dT (ω, ν) ≤ f(dT (ω, ν1))+ g(dT (ω1, ν1))+h(dT (ω1, ν)) for all ω, ω1 ∈ Ξ and ν, ν1 ∈ Π.
Hence, (Ξ,Π, dT ) is T CBMS.
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Next, If we take f(u) = g(u) = h(u) = u then we get
36 = dT (ω, ν) > f(dT (ω, ν1)) + g(dT (ω1, ν1)) + h(dT (ω1, ν)) = dT (ω, ν1) + dT (ω1, ν1) +

dT (ω1, ν) = 4+ 1+ 25 = 30. Hence, in this case (Ξ,Π, dT ) is not BMS. Therefore, T CBMS
need not be a BMS.

The topological concepts such as continuity, convergence, and Cauchy properties on
T CBMS are provided in the following

Definition 2.9. Let (Ξ,Π, dT ) be an T CBMS with non-constant control functions f, g, h :
[0,∞) → [0,∞).

(1) The set Ξ is called the left pole and the set Π is called the right pole of (Ξ,Π, dT ).

(2) ω ∈ Ξ is called left point, ν ∈ Π is called right point and ω ∈ Ξ ∩ Π is called central point.

(3) {ωρ} in Ξ is called left sequence, {νρ} in Π is called right sequence and {ωρ} in Ξ ∩ Π is
called central sequence.

Definition 2.10. Let (Ξ1,Π1, dT1) and (Ξ2,Π2, dT2) be two T CBMS with non-constant control
functions f1, g1, h1, f2, g2, h2 : [0,∞) → [0,∞) and H : Ξ1 ∪ Π1 → Ξ2 ∪ Π2 be a function

(1) If H(Ξ1) ⊆ Ξ2 and H(Π1) ⊆ Π2, then H is called covariant mapping and written as H :
(Ξ1,Π1, dT1) ⇒ (Ξ2,Π2, dT2).

(2) If H(Ξ1) ⊆ Π2 and H(Π1) ⊆ Ξ2, then H is called contravariant mapping and written as
H : (Ξ1,Π1, dT1) ⇄ (Ξ2,Π2, dT2).

(3) A covariant or a contravariant map H from (Ξ1,Π1, dT1) to (Ξ2,Π2, dT2) is continuous, iff
(ωρ) → ν on (Ξ1,Π1, dT1) implies (Hωρ) → Hν on (Ξ2,Π2, dT2).

Definition 2.11. Let (Ξ,Π, dT ) be an T CBMS with non-constant control functions f, g, h :
[0,∞) → [0,∞).

(1) A sequence {ωρ} is said to be convergent to ω iff either {ωρ} is a left sequence, ω is a
right point and lim

ρ→∞
dT (ωρ, ω) = 0, or {ωρ} is a right sequence, ω is a left point and

lim
ρ→∞

dT (ω, ωρ) = 0.

(2) A sequence ({ωρ}, {νρ}) on the set Ξ × Π is called a bisequence on (Ξ,Π, dT ).

(3) If {ωρ}, {νρ} are convergent, then the bisequence ({ωρ}, {νρ}) is known as convergent. If
{ωρ}, {νρ} are both convergent to a point u ∈ Ξ ∩ Π, then the bisequence ({ωρ}, {νρ}) is
known as biconvergent.

(4) A bisequence ({ωρ}, {νρ}) on (Ξ,Π, dT ) is said to be a Cauchy bisequence if for each ε > 0
there exists a positive integer ρ0 ∈ N such that dT (ωρ, νϱ) < ε for all ρ, ϱ ≥ ρ0.

(5) T CBMS is called complete, if every Cauchy bisequence in this space is convergent.

A sequence converging in T CBMS may not possess a unique limit. To ensure uniqueness in
the limit, we present the following result.

Proposition 2.12. When (Ξ,Π, dT ) be T CBMS with non-constant control functions f, g, h :
[0,∞) → [0,∞) satisfying f(0) + g(0) + h(0) = 0, the every convergent bisequence has a
unique limit.

Proof. Suppose that the bisequence ({ωρ}, {νρ}) on (Ξ,Π, dT ) is convergen to u, v ∈ Ξ∩Π. By
the definition of convergence, we have

lim
ρ→∞

dT (ωρ, u) = 0, lim
ρ→∞

dT (ωρ, v) = 0, lim
ρ→∞

dT (u, νρ) = 0 and lim
ρ→∞

dT (v, νρ) = 0.

We consider the left sequences, the proof for the right sequences is similar. Now, by definition
(2.5), we have

dT (u, v) ≤ f(dT (u, u)) + g(dT (ωρ, u)) + h(dT (ωρ, v)).
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As f , g, and h exhibit continuity, taking the limit in the provided inequality yields

dT (u, v) ≤ f(dT (u, u)) + g( lim
ρ→∞

dT (ωρ, u)) + h( lim
ρ→∞

dT (ωρ, v))

= f(0) + g(0) + h(0) = 0.

Thus, dT (u, v), which further implies that u = v.

3 Main Results

In this section, we will establish fixed point theorems for single-valued covariant and contravari-
ant λ-admissible mapping with respect to ζ over triple-composed bipolar metric space under co-
variant (λ, ζ)-contraction, contravariant (λ, ζ)-contraction, contravariant (λ, ζ)-rational con-
traction and coupled covariant (λ, ζ)-contraction.

3.1 Fixed Point Results for Covariant Mappings

Definition 3.1. Let λ : Ξ → [0,∞) and ζ : Π → [0,∞) be two mappings. A covariant mapping
H : (Ξ,Π, dT ) ⇒ (Ξ,Π, dT ) is said to be covariant λ-admissible mapping with respect to ζ if:

ω ∈ Ξ, ν ∈ Π, λ(ω) ≥ ζ(ν) ⇒ λ(Hω) ≥ ζ(Hν).

Example 3.2. Let Ξ = [0,∞), Π = (−∞, 0] and λ : Ξ → [0,∞), ζ : Π → [0,∞) are defined as

λ(ω) = eω and ζ(ν) = eν , ∀ ω ∈ Ξ and ν ∈ Π.

A mapping H : Ξ∪Π → Ξ∪Π defined by H(ω) = ω
2 is a covariant λ-admissible mapping with

respect to ζ.

Proof. Note that H(Ξ) ⊆ Ξ and H(Π) ⊆ Π then H is a covariant map.

Since ω ∈ [0,∞) and ν ∈ (−∞, 0] then λ(ω) = eω ≥ ζ(ν) = eν implies

λ(Hω) = eHω = e
ω
2 ≥ ζ(Hν) = eHν = e

ν
2 .

Thus, H is a covariant λ-admissible mapping with respect to ζ.

Remark 3.3. (1) If ζ(ν) = 1 for all ν ∈ Π, as per Definition (3.1), the following condition is
obtained:

ω ∈ Ξ, λ(ω) ≥ 1 ⇒ λ(Hω) ≥ 1.

In this case, H is called covariant λ-admissible mapping with respect to ζ∗.

(2) If λ(ω) = 1 for all ω ∈ Ξ, as per Definition (3.1), the following condition is obtained:

ν ∈ Π, ζ(ν) ≤ 1 ⇒ ζ(Hν) ≤ 1.

In this case, H is called covariant λ∗-admissible mapping with respect to ζ.

In Example (3.2) if we take ζ(ν) = 1 for all ν ∈ Π then ζ(Hν) = 1. Since, λ(ω) = eω ≥ 1
for all ω ∈ Ξ implies λ(Hω) = eHω = e

ω
2 ≥ 1.

Similarly, if we take λ(ω) = 1 for all ω ∈ Ξ then λ(Hω) = 1. Since, ζ(ν) = eν ≤ 1 for all
ν ∈ Π implies ζ(Hν) = eHν = e

ν
2 ≤ 1.

Definition 3.4. Let (Ξ,Π, dT ) be an T CBMS with non-constant control functions f, g, h :
[0,∞) → [0,∞). A mapping H : (Ξ,Π, dT ) ⇒ (Ξ,Π, dT ) is said to be a covariant (λ, ζ)-
contraction if H is covariant and there exists the functions λ : Ξ → [0,∞), ζ : Π → [0,∞) and
y ∈ (0, 1) such that λ(ω)λ(Hω) ≥ ζ(ν)ζ(Hν) implies

dT (Hω,Hν) ≤ ydT (ω, ν), ∀ ω ∈ Ξ and ν ∈ Π. (3.1)



782 Mohammed M. A. Taleb and V. C. Borkar

Theorem 3.5. Let (Ξ,Π, dT ) be a complete T CBMS with non-constant control functions f, g, h :
[0,∞) → [0,∞) and H : (Ξ,Π, dT ) ⇒ (Ξ,Π, dT ) be a covariant (λ, ζ)-contraction such that
the following conditions are satisfied:

(h1) H is a covariant λ-admissible mapping with respect to ζ.

(h2) There exists ω0 ∈ Ξ, ν0 ∈ Π such that λ(ω0) ≥ ζ(ν0) and λ(ω0) ≥ ζ(Hν0).

(h3) f, g and h are continuous and non-decreasing functions with f(0) + g(0) + h(0) = 0 and
h is additive.

(h4) lim
ϱ,ρ→∞

[
ϱ−2∑
ı=ρ

hı−ρ
(
f(yıdT (ω0, ν1)) + g(yı+1dT (ω0, ν0))

)
+ hϱ−ρ−1(yϱ−1dT (ω0, ν1))

]
= 0,

where hı−ρ
(
f(yıdT (ω0, ν1)) + g(yı+1dT (ω0, ν0))

)
and hϱ−ρ−1(yϱ−1dT (ω0, ν1)) denote the

composite functions.

(h5) H is continuous.

(h6) If ω, ν ∈ Ξ ∩ Π (ω ̸= ν) are fixed points of H then λ(ω) ≥ ζ(ν).

Then, the mapping H : Ξ ∪ Π → Ξ ∪ Π possesses a unique fixed point.

Proof. Let ω0 ∈ Ξ and ν0 ∈ Π such that

λ(ω0) ≥ ζ(ν0) and λ(ω0) ≥ ζ(Hν0). (3.2)

Define the bisequence (ωρ, νρ) by Hωρ = ωρ+1 and Hνρ = νρ+1, ρ ∈ N. Now, by (3.2) and (h1),
we have

λ(Hω0) ≥ ζ(Hν0) and λ(Hω0) ≥ ζ(Hν1), (3.3)

from (3.2) and (3.3), we get

λ(ω0)λ(Hω0) ≥ ζ(ν0)ζ(Hν0) (3.4)

...

λ(ωρ)λ(Hωρ) ≥ ζ(νρ)ζ(Hνρ),

and

λ(ω0)λ(Hω0) ≥ ζ(ν1)ζ(Hν1) (3.5)

...

λ(ωρ−1)λ(Hωρ−1) ≥ ζ(νρ)ζ(Hνρ).

Applying (3.1), we get

dT (ωρ+1, νρ+1) = dT (Hωρ,Hνρ) ≤ ydT (ωρ, νρ) (3.6)

...

≤ yρ+1dT (ω0, ν0),

and

dT (ωρ, νρ+1) = dT (Hωρ−1,Hνρ) ≤ ydT (ωρ−1, νρ) (3.7)

...

≤ yρdT (ω0, ν1).
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Let ρ, ϱ ∈ N such that ρ < ϱ, we have

dT (ωρ, νϱ) ≤ f(dT (ωρ, νρ+1)) + g(dT (ωρ+1, νρ+1)) + h(dT (ωρ+1, νϱ))

≤ f(dT (ωρ, νρ+1)) + g(dT (ωρ+1, νρ+1)) + hf(dT (ωρ+1, νρ+2))

+ hg(dT (ωρ+2, νρ+2)) + h2(dT (ωρ+2, νϱ))

≤ f(dT (ωρ, νρ+1)) + g(dT (ωρ+1, νρ+1)) + hf(dT (ωρ+1, νρ+2)) + hg(dT (ωρ+2, νρ+2))

+ h2f(dT (ωρ+2, νρ+3)) + h2g(dT (ωρ+3, νρ+3)) + h3(dT (ωρ+3, νϱ))

...

≤ f(dT (ωρ, νρ+1)) + g(dT (ωρ+1, νρ+1)) + hf(dT (ωρ+1, νρ+2)) + hg(dT (ωρ+2, νρ+2))

+ h2f(dT (ωρ+2, νρ+3)) + h2g(dT (ωρ+3, νρ+3)) + · · ·+ hϱ−ρ−2f(dT (ωϱ−2, νϱ−1))

+ hϱ−ρ−2g(dT (ωϱ−1, νϱ−1)) + hϱ−ρ−1(dT (ωϱ−1, νϱ))

=
ϱ−2∑
ı=ρ

hı−ρf(dT (ωı, νı+1)) +
ϱ−2∑
ı=ρ

hı−ρg(dT (ωı+1, νı+1)) + hϱ−ρ−1(dT (ωϱ−1, νϱ))

=
ϱ−2∑
ı=ρ

hı−ρ (f(dT (ωı, νı+1)) + g(dT (ωı+1, νı+1))) + hϱ−ρ−1(dT (ωϱ−1, νϱ)).

Since f , g and h are non-decreasing functions, the compositions

hı−ρ (f(dT (ωı, νı+1)) + g(dT (ωı+1, νı+1))) and hϱ−ρ−1(dT (ωϱ−1, νϱ)),

are also non-decreasing. Using (3.6) and (3.7) in above inequality, we obtain

dT (ωρ, νϱ) ≤
ϱ−2∑
ı=ρ

hı−ρ
(
f(yıdT (ω0, ν1)) + g(yı+1dT (ω0, ν0))

)
+ hϱ−ρ−1(yϱ−1dT (ω0, ν1)).

(3.8)
Letting the lim

ρ,ϱ→∞
in (3.8), by condition (h4), we get

lim
ρ,ϱ→∞

dT (ωρ, νϱ) = 0. (3.9)

Likewise, we can deduce
lim

ρ,ϱ→∞
dT (ωϱ, νρ) = 0. (3.10)

Therefore, ({ωρ}, {νρ}) is a Cauchy bisequence in (Ξ,Π, dT ). Since (Ξ,Π, dT ) is a complete
T CBMS, then ({ωρ}, {νρ}) biconverges. That is, there exists p ∈ Ξ ∩ Π such that {ωρ} → p
and {νρ} → p. By (h5), H is continuous, Hp = lim

ρ→∞
Hωρ = lim

ρ→∞
ωρ+1 = p ∈ Ξ ∩ Π.

Uniqueness
Suppose that q ∈ Ξ ∩ Π is another fixed point of H such that p ̸= q, then by (h6), we have

λ(p) ≥ ζ(q), (3.11)

and by (h1), we get
λ(Hp) ≥ ζ(Hq). (3.12)

From (3.11) and (3.12), we obtain

λ(p)λ(Hp) ≥ ζ(q)ζ(Hq). (3.13)

Using (3.1), we have

dT (p, q) = dT (Hp,Hq) ≤ ydT (p, q)) < dT (p, q),

which is a contradiction since y ∈ (0, 1), which implies dT (p, q) = 0, i.e. p = q.
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Example 3.6. Let Ξ = [0,∞), Π = (−∞, 0] and dT : Ξ × Π → [0,∞) defined by dT (ω, ν) =
|ω − ν|2. Define functions f, g, h : [0,∞) → [0,∞) by f(u) = eu−1, g(u) = 2u and h(u) = 5u,
u ≥ 0. Then, (Ξ,Π, dT ) is a complete T CBMS with control functions f, g and h.

Define H : Ξ ∪ Π → Ξ ∪ Π by H(ω) = ω
2 , for all ω ∈ Ξ ∪ Π and λ : Ξ → [0,∞),

ζ : Π → [0,∞) are defined as

λ(ω) = eω and ζ(ν) = eν for all ω ∈ Ξ and ν ∈ Π.

Then, H is a covariant λ-admissible mapping with respect to ζ. Therefore, we obtain
λ(ω)λ(Hω) ≥ ζ(ν)ζ(Hν) implies

dT (Hω,Hν) = |Hω −Hν|2

=
∣∣∣ω

2
− ν

2

∣∣∣2
=

1
4
|ω − ν|2

≤ 1
2
|ω − ν|2

=
1
2
dT (ω, ν), for all ω ∈ Ξ, ν ∈ Π.

Let y = 1
2 , we have λ(ω)λ(Hω) ≥ ζ(ν)ζ(Hν) implies

dT (Hω,Hν) ≤ ydT (ω, ν), ∀ ω ∈ Ξ, ν ∈ Π.

Then, H is a covariant (λ, ζ)-contraction and all the conditions of Theorem (3.5) are satisfied,
hence, H has 0 ∈ Ξ ∩ Π as a unique fixed point.

Corollary 3.7. Let (Ξ,Π, dT ) be a complete T CBMS with non-constant control functions f, g, h :
[0,∞) → [0,∞) and H : (Ξ,Π, dT ) ⇒ (Ξ,Π, dT ) be a covariant mapping such that the follow-
ing conditions are satisfied:

(h1) H is a covariant λ-admissible mapping with respect to ζ∗.

(h2) There is λ : Ξ → [0,∞) and y ∈ (0, 1) such that λ(ω)λ(Hω) ≥ 1 implies

dT (Hω,Hν) ≤ ydT (ω, ν), ∀ ω ∈ Ξ and ν ∈ Π. (3.14)

(h3) There is ω0 ∈ Ξ such that λ(ω0) ≥ 1.

(h4) f, g and h are continuous and non-decreasing functions with f(0) + g(0) + h(0) = 0 and
h is additive.

(h5) lim
ϱ,ρ→∞

[
ϱ−2∑
ı=ρ

hı−ρ
(
f(yıdT (ω0, ν1)) + g(yı+1dT (ω0, ν0))

)
+ hϱ−ρ−1(yϱ−1dT (ω0, ν1))

]
= 0,

where hı−ρ
(
f(yıdT (ω0, ν1)) + g(yı+1dT (ω0, ν0))

)
and hϱ−ρ−1(yϱ−1dT (ω0, ν1)) denote the

composite functions.

(h6) H is continuous.

(h7) If ω, ν ∈ Ξ ∩ Π (ω ̸= ν) are fixed points of H then λ(ω) ≥ 1 and ζ(ν) = 1.

Then, the mapping H : Ξ ∪ Π → Ξ ∪ Π possesses a unique fixed point.

Proof. Consider λ : Ξ → [0,∞) and ζ : Π → [0,∞) as ζ(ν) = 1 and λ(ω) ≥ 1 in Theorem
(3.5).

Corollary 3.8. Let (Ξ,Π, dT ) be a complete T CBMS with non-constant control functions f, g, h :
[0,∞) → [0,∞) and H : (Ξ,Π, dT ) ⇒ (Ξ,Π, dT ) be a covariant mapping such that the follow-
ing conditions are satisfied:
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(h1) H is a covariant λ∗-admissible mapping with respect to ζ.

(h2) There is ζ : Π → [0,∞) and y ∈ (0, 1) such that ζ(ν)ζ(Hν) ≤ 1 implies

dT (Hω,Hν) ≤ ydT (ω, ν), ∀ ω ∈ Ξ and ν ∈ Π. (3.15)

(h3) There is ν0 ∈ Π such that ζ(ν0) ≤ 1.

(h4) f, g and h are continuous and non-decreasing functions with f(0) + g(0) + h(0) = 0 and
h is additive.

(h5) lim
ϱ,ρ→∞

[
ϱ−2∑
ı=ρ

hı−ρ
(
f(yıdT (ω0, ν1)) + g(yı+1dT (ω0, ν0))

)
+ hϱ−ρ−1(yϱ−1dT (ω0, ν1))

]
= 0,

where hı−ρ
(
f(yıdT (ω0, ν1)) + g(yı+1dT (ω0, ν0))

)
and hϱ−ρ−1(yϱ−1dT (ω0, ν1)) denote the

composite functions.

(h6) H is continuous.

(h7) If ω, ν ∈ Ξ ∩ Π (ω ̸= ν) are fixed points of H then λ(ω) = 1 and ζ(ν) ≤ 1.

Then, the mapping H : Ξ ∪ Π → Ξ ∪ Π possesses a unique fixed point.

Proof. Consider λ : Ξ → [0,∞) and ζ : Π → [0,∞) as λ(ω) = 1 and ζ(ν) ≤ 1 in Theorem
(3.5).

3.2 Fixed Point Results for Contravariant Mappings

Definition 3.9. Let λ : Ξ → [0,∞) and ζ : Π → [0,∞) be two mappings. A contravariant
mapping H : (Ξ,Π, dT ) ⇄ (Ξ,Π, dT ) is said to be contravariant λ-admissible mapping with
respect to ζ if:

ω ∈ Ξ, ν ∈ Π, λ(ω) ≥ ζ(ν) ⇒ λ(Hν) ≥ ζ(Hω).

Example 3.10. Let Ξ = [0,∞), Π = (−∞, 0] and λ : Ξ → [0,∞), ζ : Π → [0,∞) are defined
as

λ(ω) = eω and ζ(ν) = eν , ∀ ω ∈ Ξ and ν ∈ Π.

A mapping H : Ξ∪Π → Ξ∪Π defined by H(ω) = −ω
2 is a contravariant λ-admissible mapping

with respect to ζ.

Proof. Note that H(Ξ) ⊆ Π and H(Π) ⊆ Ξ then H is a contravariant map.

Since ω ∈ [0,∞) and ν ∈ (−∞, 0] then λ(ω) = eω ≥ ζ(ν) = eν implies λ(Hν) = eHν =
e−

ν
2 ≥ ζ(Hω) = eHω = e−

ω
2 .

Thus, H is a contravariant λ-admissible mapping with respect to ζ.

Remark 3.11. (1) If ζ(ν) = 1 for all ν ∈ Π, as per Definition (3.9), the following condition is
obtained:

ω ∈ Ξ, λ(ω) ≥ 1 ⇒ λ(Hν) ≥ 1, for all ν ∈ Π.

In this case, H is called contravariant λ-admissible mapping with respect to ζ∗.

(2) If λ(ω) = 1 for all ω ∈ Ξ, as per Definition (3.9), the following condition is obtained:

ν ∈ Π, ζ(ν) ≤ 1 ⇒ ζ(Hω) ≤ 1, for all ω ∈ Ξ.

In this case, H is called contravariant λ∗-admissible mapping with respect to ζ.

In Example (3.10) if we take ζ(ν) = 1 for all ν ∈ Π then ζ(Hω) = 1 for all ω ∈ Ξ. Since,
λ(ω) = eω ≥ 1 for all ω ∈ Ξ implies λ(Hν) = eHν = e−

ν
2 ≥ 1 for all ν ∈ Π.

Similarly, if we take λ(ω) = 1, for all ω ∈ Ξ then λ(Hν) = 1 for all ν ∈ Π. Since,
ζ(ν) = eν ≤ 1 for all ν ∈ Π implies ζ(Hω) = eHω = e−

ω
2 ≤ 1 for all ω ∈ Ξ.
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Definition 3.12. Let (Ξ,Π, dT ) be an T CBMS with non-constant control functions f, g, h :
[0,∞) → [0,∞). A mapping H : (Ξ,Π, dT ) ⇄ (Ξ,Π, dT ) is said to be a contravariant (λ, ζ)-
contraction if H is contravariant and there exists the functions λ : Ξ → [0,∞), ζ : Π → [0,∞)
and y ∈ (0, 1) such that λ(ω)λ(Hν) ≥ ζ(ν)ζ(Hω) implies

dT (Hν,Hω) ≤ ydT (ω, ν), ∀ ω ∈ Ξ and ν ∈ Π. (3.16)

Theorem 3.13. Let (Ξ,Π, dT ) be a complete T CBMS with non-constant control functions
f, g, h : [0,∞) → [0,∞) and H : (Ξ,Π, dT ) ⇄ (Ξ,Π, dT ) be a contravariant (λ, ζ)-contraction
such that the following conditions are satisfied:

(h1) H is a contravariant λ-admissible mapping with respect to ζ.

(h2) There exists ω0 ∈ Ξ such that λ(ω0) ≥ ζ(Hω0).

(h3) f, g and h are continuous and non-decreasing functions with f(0) + g(0) + h(0) = 0 and
f is additive.

(h4) lim
ϱ,ρ→∞

[
fϱ−ρ(y2ϱdT (ω0, ν0)) +

ϱ−1∑
ı=ρ

f ı−ρ
(
g(y2ı+2dT (ω0, ν0)) + h(y2ı+1dT (ω0, ν0))

)]
= 0,

where fϱ−ρ(y2ϱdT (ω0, ν0)) and f ı−ρ
(
g(y2ı+2dT (ω0, ν0)) + h(y2ı+1dT (ω0, ν0))

)
denote the

composite functions.

(h5) H is continuous.

(h6) If ω, ν ∈ Ξ ∩ Π (ω ̸= ν) are fixed points of H then λ(ω) ≥ ζ(ν).

Then, the mapping H : Ξ ∪ Π → Ξ ∪ Π possesses a unique fixed point.

Proof. Let ω0 ∈ Ξ such that
λ(ω0) ≥ ζ(Hω0). (3.17)

Define the bisequence (ωρ, νρ) by Hωρ = νρ and Hνρ = ωρ+1, ρ ∈ N. Now, by (h1), we have

λ(ω0) ≥ ζ(Hω0) = ζ(ν0) ⇒ λ(Hν0) ≥ ζ(Hω0). (3.18)

From (3.18), we get

λ(ω0)λ(Hν0) ≥ ζ(ν0)ζ(Hω0) (3.19)

...

λ(ωρ)λ(Hνρ) ≥ ζ(νρ)ζ(Hωρ),

and
λ(ω1) = λ(Hν0) ≥ ζ(Hω0) = ζ(ν0) ⇒ λ(Hν0) ≥ ζ(Hω1). (3.20)

From (3.20), we get

λ(ω1)λ(Hν0) ≥ ζ(ν0)ζ(Hω1) (3.21)

...

λ(ωρ)λ(Hνρ−1) ≥ ζ(νρ−1)ζ(Hωρ).

Now, using (3.19), (3.21) and applying (3.16), we get

dT (ωρ, νρ) = dT (Hνρ−1,Hωρ) ≤ ydT (ωρ, νρ−1) (3.22)

...

≤ y2ρdT (ω0, ν0),
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dT (ωρ+1, νρ+1) = dT (Hνρ,Hωρ+1) ≤ ydT (ωρ+1, νρ) (3.23)

...

≤ y2ρ+2dT (ω0, ν0).

and

dT (ωρ+1, νρ) = dT (Hνρ,Hωρ) ≤ ydT (ωρ, νρ) (3.24)

...

≤ y2ρ+1dT (ω0, ν0).

Let ρ, ϱ ∈ N such that ρ < ϱ, we have

dT (ωϱ, νρ) ≤ f(dT (ωϱ, νρ+1)) + g(dT (ωρ+1, νρ+1)) + h(dT (ωρ+1, νρ))

≤ f2(dT (ωϱ, νρ+2)) + fg(dT (ωρ+2, νρ+2)) + fh(dT (ωρ+2, νρ+1))

+ g(dT (ωρ+1, νρ+1)) + h(dT (ωρ+1, νρ))

≤ f3(dT (ωϱ, νρ+3)) + f2g(dT (ωρ+3, νρ+3))

+ f2h(dT (ωρ+3, νρ+2)) + fg(dT (ωρ+2, νρ+2))

+ fh(dT (ωρ+2, νρ+1)) + g(dT (ωρ+1, νρ+1)) + h(dT (ωρ+1, νρ))

...

≤ fϱ−ρ(dT (ωϱ, νϱ)) + fϱ−ρ−1g(dT (ωϱ, νϱ))

+ fϱ−ρ−1h(dT (ωϱ, νϱ−1)) + · · ·+ f2g(dT (ωρ+3, νρ+3))

+ f2h(dT (ωρ+3, νρ+2)) + fg(dT (ωρ+2, νρ+2)) + fh(dT (ωρ+2, νρ+1))

+ g(dT (ωρ+1, νρ+1)) + h(dT (ωρ+1, νρ))

= fϱ−ρ(dT (ωϱ, νϱ)) +
ϱ−1∑
ı=ρ

f ı−ρg(dT (ωı+1, νı+1)) +
ϱ−1∑
ı=ρ

f ı−ρh(dT (ωı+1, νı))

= fϱ−ρ(dT (ωϱ, νϱ)) +
ϱ−1∑
ı=ρ

f ı−ρ (g(dT (ωı+1, νı+1)) + h(dT (ωı+1, νı))) .

Since f , g and h are non-decreasing functions, the compositions

fϱ−ρ(dT (ωϱ, νϱ)) and f ı−ρ (g(dT (ωı+1, νı+1)) + h(dT (ωı+1, νı))) ,

are also non-decreasing. Using (3.22), (3.23) and (3.24) in above inequality, we obtain

dT (ωϱ, νρ) ≤ fϱ−ρ(y2ϱdT (ω0, ν0)) +
ϱ−1∑
ı=ρ

f ı−ρ
(
g(y2ı+2dT (ω0, ν0)) + h(y2ı+1dT (ω0, ν0))

)
.

(3.25)
Letting the lim

ρ,ϱ→∞
in (3.25), by condition (h4), we obtain

lim
ρ,ϱ→∞

dT (ωϱ, νρ) = 0. (3.26)

Similarly, we can derive
lim

ρ,ϱ→∞
dT (ωρ, νϱ) = 0. (3.27)

Therefore, ({ωρ}, {νρ}) is a Cauchy bisequence in (Ξ,Π, dT ). Since (Ξ,Π, dT ) is a complete
T CBMS, then ({ωρ}, {νρ}) biconverges. That is, there exists p ∈ Ξ ∩ Π such that {ωρ} → p
and {νρ} → p. By (h5), H is continuous, Hp = lim

ρ→∞
Hωρ = lim

ρ→∞
νρ = p ∈ Ξ ∩ Π.
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Uniqueness
Suppose that q ∈ Ξ ∩ Π is another fixed point of H such that p ̸= q, then by (h6), we have

λ(p) ≥ ζ(q), (3.28)

and by (h1), we get
λ(Hq) ≥ ζ(Hp). (3.29)

From (3.26) and (3.27), we obtain

λ(p)λ(Hq) ≥ ζ(q)ζ(Hp). (3.30)

Using (3.16), we have

dT (p, q) = dT (Hp,Hq) = dT (Hq,Hp) ≤ ydT (p, q)) < dT (p, q),

which is a contradiction since y ∈ (0, 1), which implies dT (p, q) = 0, i.e. p = q.

Example 3.14. Let Ξ = [0,∞), Π = (−∞, 0] and dT : Ξ × Π → [0,∞) defined by dT (ω, ν) =
|ω − ν|2. Define functions f, g, h : [0,∞) → [0,∞) by f(u) = 2u, g(u) = 3u and h(u) = eu−1,
u ≥ 0. Then, (Ξ,Π, dT ) is a complete T CBMS with control functions f, g and h.
Define H : Ξ∪Π → Ξ∪Π by H(ω) = −ω

2 , for all ω ∈ Ξ∪Π and λ : Ξ → [0,∞), ζ : Π → [0,∞)
are defined as

λ(ω) = eω and ζ(ν) = eν for all ω ∈ Ξ and ν ∈ Π.

Then, H is a contravariant λ-admissible mapping with respect to ζ. Therefore, we obtain
λ(ω)λ(Hν) ≥ ζ(ν)ζ(Hω) implies

dT (Hν,Hω) = |Hν −Hω|2

=
∣∣∣−ν

2
− (−ω

2
)
∣∣∣2

=
∣∣∣ω

2
− ν

2

∣∣∣2
=

1
4
|ω − ν|2

≤ 1
2
|ω − ν|2

=
1
2
dT (ω, ν), for all ω ∈ Ξ, ν ∈ Π.

Let y = 1
2 , we have λ(ω)λ(Hν) ≥ ζ(ν)ζ(Hω) implies

dT (Hν,Hω) ≤ ydT (ω, ν), ∀ ∈ Ξ, ν ∈ Π.

Then, H is a contravariant (λ, ζ)-contraction and all the conditions of Theorem (3.13) are satis-
fied, hence, H has 0 ∈ Ξ ∩ Π as a unique fixed point.

Corollary 3.15. Let (Ξ,Π, dT ) be a complete T CBMS with non-constant control functions
f, g, h : [0,∞) → [0,∞) and H : (Ξ,Π, dT ) ⇄ (Ξ,Π, dT ) be a contravariant mapping such
that the following conditions are satisfied:

(h1) H is a contravariant λ-admissible mapping with respect to ζ∗.

(h2) There is λ : Ξ → [0,∞) and y ∈ (0, 1) such that λ(ω)λ(Hν) ≥ 1 implies

dT (Hν,Hω) ≤ ydT (ω, ν), ∀ ω ∈ Ξ and ν ∈ Π. (3.31)

(h3) There exists ω0 ∈ Ξ such that λ(ω0) ≥ 1.
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(h4) f, g and h are continuous and non-decreasing functions with f(0) + g(0) + h(0) = 0 and
f is additive.

(h5) lim
ϱ,ρ→∞

[
fϱ−ρ(y2ϱdT (ω0, ν0)) +

ϱ−1∑
ı=ρ

f ı−ρ
(
g(y2ı+2dT (ω0, ν0)) + h(y2ı+1dT (ω0, ν0))

)]
= 0,

where fϱ−ρ(y2ϱdT (ω0, ν0)) and f ı−ρ
(
g(y2ı+2dT (ω0, ν0)) + h(y2ı+1dT (ω0, ν0))

)
denote the

composite functions.

(h6) H is continuous.

(h7) If ω, ν ∈ Ξ ∩ Π (ω ̸= ν) are fixed points of H then λ(ω) ≥ 1 and ζ(ν) = 1.

Then, the mapping H : Ξ ∪ Π → Ξ ∪ Π possesses a unique fixed point.

Proof. Consider λ : Ξ → [0,∞) and ζ : Π → [0,∞) as ζ(ν) = 1 and λ(ω) ≥ 1, ω ∈ Ξ in
Theorem (3.13).

Corollary 3.16. Let (Ξ,Π, dT ) be a complete T CBMS with non-constant control functions
f, g, h : [0,∞) → [0,∞) and H : (Ξ,Π, dT ) ⇄ (Ξ,Π, dT ) be a contravariant mapping such
that the following conditions are satisfied:

(h1) H is a contravariant λ∗-admissible mapping with respect to ζ.

(h2) There is ζ : Π → [0,∞) and y ∈ (0, 1) such that ζ(ν)ζ(Hω) ≤ 1 implies

dT (Hν,Hω) ≤ ydT (ω, ν), ∀ ω ∈ Ξ and ν ∈ Π. (3.32)

(h3) There exists ν0 ∈ Π such that ζ(ν0) ≤ 1.

(h4) f, g and h are continuous and non-decreasing functions with f(0) + g(0) + h(0) = 0 and
f is additive.

(h5) lim
ϱ,ρ→∞

[
fϱ−ρ(y2ϱdT (ω0, ν0)) +

ϱ−1∑
ı=ρ

f ı−ρ
(
g(y2ı+2dT (ω0, ν0)) + h(y2ı+1dT (ω0, ν0))

)]
= 0,

where fϱ−ρ(y2ϱdT (ω0, ν0)) and f ı−ρ
(
g(y2ı+2dT (ω0, ν0)) + h(y2ı+1dT (ω0, ν0))

)
denote the

composite functions.

(h6) H is continuous.

(h7) If ω, ν ∈ Ξ ∩ Π (ω ̸= ν) are fixed points of H then λ(ω) = 1 and ζ(ν) ≤ 1.

Then, the mapping H : Ξ ∪ Π → Ξ ∪ Π possesses a unique fixed point.

Proof. Consider λ : Ξ → [0,∞) and ζ : Π → [0,∞) as λ(ω) = 1 and ζ(ν) ≤ 1 in Theorem
(3.13).

Now, we introduce a theorem that serves as a natural extension of Theorem (3.13). However,
before delving into the theorem, we provide the following definition.

Definition 3.17. Let (Ξ,Π, dT ) be an T CBMS with non-constant control functions f, g, h :
[0,∞) → [0,∞). A mapping H : (Ξ,Π, dT ) ⇄ (Ξ,Π, dT ) is said to be a contravariant (λ, ζ)-
rational contraction if H is contravariant and there exists the functions λ : Ξ → [0,∞), ζ : Π →
[0,∞) and y ∈ (0, 1) such that λ(ω)λ(Hν) ≥ ζ(ν)ζ(Hω) implies

dT (Hν,Hω) ≤ ymax
{
dT (ω, ν), dT (ω,Hω), dT (Hν, ν),

dT (ω,Hω)dT (Hν, ν)
1 + dT (ω, ν)

}
, (3.33)

∀ ω ∈ Ξ and ν ∈ Π.

Theorem 3.18. Let (Ξ,Π, dT ) be a complete T CBMS with non-constant control functions
f, g, h : [0,∞) → [0,∞) and H : (Ξ,Π, dT ) ⇄ (Ξ,Π, dT ) be a contravariant (λ, ζ)-rational
contraction such that the following conditions are satisfied:

(h1) H is a contravariant λ-admissible mapping with respect to ζ.
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(h2) There exists ω0 ∈ Ξ such that λ(ω0) ≥ ζ(Hω0).

(h3) f, g and h are continuous and non-decreasing functions with f(0) + g(0) + h(0) = 0 and
h is additive.

(h4) lim
ϱ,ρ→∞

[
ϱ−1∑
ı=ρ

hı−ρ
(
f(y2ıdT (ω0, ν0)) + g(y2ı+1dT (ω0, ν0))

)
+ hϱ−ρ(y2ϱdT (ω0, ν0))

]
= 0,

where hı−ρ
(
f(y2ıdT (ω0, ν0)) + g(y2ı+1dT (ω0, ν0))

)
and hϱ−ρ(y2ϱdT (ω0, ν0)) denote the

composite functions.

(h5) H is continuous.

(h6) If ω, ν ∈ Ξ ∩ Π (ω ̸= ν) are fixed points of H then λ(ω) ≥ ζ(ν).

Then, the mapping H : Ξ ∪ Π → Ξ ∪ Π possesses a unique fixed point.

Proof. Let ω0 ∈ Ξ such that
λ(ω0) ≥ ζ(Hω0). (3.34)

Define the bisequence (ωρ, νρ) by Hωρ = νρ and Hνρ = ωρ+1, ρ ∈ N. Now, by (h1), we have

λ(ω0) ≥ ζ(Hω0) = ζ(ν0) ⇒ λ(Hν0) ≥ ζ(Hω0). (3.35)

From (3.35), we get

λ(ω0)λ(Hν0) ≥ ζ(ν0)ζ(Hω0) (3.36)

...

λ(ωρ)λ(Hνρ) ≥ ζ(νρ)ζ(Hωρ),

and
λ(ω1) = λ(Hν0) ≥ ζ(Hω0) = ζ(ν0) ⇒ λ(Hν0) ≥ ζ(Hω1). (3.37)

From (3.37), we get

λ(ω1)λ(Hν0) ≥ ζ(ν0)ζ(Hω1) (3.38)

...

λ(ωρ)λ(Hνρ−1) ≥ ζ(νρ−1)ζ(Hωρ).

Now, using (3.36), (3.38) and applying (3.33), we get

dT (ωρ+1, νρ) = dT (Hνρ,Hωρ)

≤ ymax

{
dT (ωρ, νρ), dT (ωρ,Hωρ), dT (Hνρ, νρ),

dT (ωρ,Hωρ)dT (Hνρ, νρ)
1 + dT (ωρ, νρ)

}

= ymax

{
dT (ωρ, νρ), dT (ωρ, νρ), dT (ωρ+1, νρ),

dT (ωρ, νρ)dT (ωρ+1, νρ)

1 + dT (ωρ, νρ)

}

≤ ymax

{
dT (ωρ, νρ), dT (ωρ, νρ), dT (ωρ+1, νρ), dT (ωρ+1, νρ)

}

= ymax

{
dT (ωρ, νρ), dT (ωρ+1, νρ)

}
.

If dT (ωρ, νρ) < dT (ωρ+1, νρ) then, we have dT (ωρ+1, νρ) < ydT (ωρ+1, νρ) which is a contra-
diction to the fact that y ∈ (0, 1). Thus, dT (ωρ+1, νρ) < dT (ωρ, νρ), then

dT (ωρ+1, νρ) ≤ ydT (ωρ, νρ) (3.39)

...

≤ y2ρ+1dT (ω0, ν0),
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likewise,

dT (ωρ, νρ) = dT (Hνρ−1,Hωρ)

≤ ymax

{
dT (ωρ, νρ−1), dT (ωρ,Hωρ), dT (Hνρ−1, νρ−1),

dT (ωρ,Hωρ)dT (Hνρ−1, νρ−1)

1 + dT (ωρ, νρ−1)

}

= ymax

{
dT (ωρ, νρ−1), dT (ωρ, νρ), dT (ωρ, νρ−1),

dT (ωρ, νρ)dT (ωρ, νρ−1)

1 + dT (ωρ, νρ−1)

}

≤ ymax

{
dT (ωρ, νρ−1), dT (ωρ, νρ), dT (ωρ, νρ−1), dT (ωρ, νρ)

}

= ymax

{
dT (ωρ, νρ−1), dT (ωρ, νρ)

}
.

If dT (ωρ, νρ−1) < dT (ωρ, νρ) then, we have dT (ωρ, νρ) < ydT (ωρ, νρ) which is a contradiction
to the fact that y ∈ (0, 1). Thus, dT (ωρ, νρ) < dT (ωρ, νρ−1), implies

dT (ωρ, νρ) ≤ ydT (ωρ, νρ−1) (3.40)

...

≤ y2ρdT (ω0, ν0).

Let ρ, ϱ ∈ N such that ρ < ϱ, we have

dT (ωρ, νϱ) ≤ f(dT (ωρ, νρ)) + g(dT (ωρ+1, νρ)) + h(dT (ωρ+1, νϱ))

≤ f(dT (ωρ, νρ)) + g(dT (ωρ+1, νρ)) + hf(dT (ωρ+1, νρ+1))

+ hg(dT (ωρ+2, νρ+1)) + h2(dT (ωρ+2, νϱ))

≤ f(dT (ωρ, νρ)) + g(dT (ωρ+1, νρ)) + hf(dT (ωρ+1, νρ+1)) + hg(dT (ωρ+2, νρ+1))

+ h2f(dT (ωρ+2, νρ+2)) + h2g(dT (ωρ+3, νρ+2)) + h3(dT (ωρ+3, νϱ))

...

≤ f(dT (ωρ, νρ)) + g(dT (ωρ+1, νρ)) + hf(dT (ωρ+1, νρ+1)) + hg(dT (ωρ+2, νρ+1))

+ h2f(dT (ωρ+2, νρ+2)) + h2g(dT (ωρ+3, νρ+2)) + · · ·+ hϱ−ρ−1f(dT (ωϱ−1, νϱ−1))

+ hϱ−ρ−1g(dT (ωϱ, νϱ−1)) + hϱ−ρ(dT (ωϱ, νϱ))

=
ϱ−1∑
ı=ρ

hı−ρf(dT (ωı, νı)) +
ϱ−1∑
ı=ρ

hı−ρg(dT (ωı+1, νı)) + hϱ−ρ(dT (ωϱ, νϱ))

=
ϱ−1∑
ı=ρ

hı−ρ (f(dT (ωı, νı)) + g(dT (ωı+1, νı))) + hϱ−ρ(dT (ωϱ, νϱ)).

Since f , g and h are non-decreasing functions, the compositions

hı−ρ (f(dT (ωı, νı)) + g(dT (ωı+1, νı))) and hϱ−ρ(dT (ωϱ, νϱ)),

are also non-decreasing. Using (3.39) and (3.40) in above inequality, we obtain

dT (ωρ, νϱ) ≤
ϱ−1∑
ı=ρ

hı−ρ
(
f(y2ıdT (ω0, ν0)) + g(y2ı+1dT (ω0, ν0))

)
+ hϱ−ρ(y2ϱdT (ω0, ν0)).

(3.41)
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Letting the lim
ρ,ϱ→∞

in (3.41), by condition (h4), we obtain

lim
ρ,ϱ→∞

dT (ωρ, νϱ) = 0. (3.42)

Likewise, we can deduce
lim

ρ,ϱ→∞
dT (ωϱ, νρ) = 0. (3.43)

Therefore, ({ωρ}, {νρ}) is a Cauchy bisequence in (Ξ,Π, dT ). Since (Ξ,Π, dT ) is a complete
TCBMS, then ({ωρ}, {νρ}) biconverges. That is, there exists p ∈ Ξ ∩ Π such that {ωρ} → p
and {νρ} → p. By (h5), H is continuous, Hp = lim

ρ→∞
Hωρ = lim

ρ→∞
νρ = p ∈ Ξ ∩ Π.

Uniqueness
Suppose that q ∈ Ξ ∩ Π is another fixed point of H such that p ̸= q, then by (h6), we have

λ(p) ≥ ζ(q), (3.44)

and by (h1), we get
λ(Hq) ≥ ζ(Hp). (3.45)

From (3.44) and (3.45), we obtain

λ(p)λ(Hq) ≥ ζ(q)ζ(Hp). (3.46)

Using (3.33), we have

dT (p, q) = dT (Hp,Hq) = dT (Hq,Hp)

≤ ymax
{
dT (p, q), dT (p,Hp), dT (Hq, q),

dT (p,Hp)dT (Hq, q)
1 + dT (p, q)

}
= ymax

{
dT (p, q), dT (p, p), dT (q, q),

dT (p, p)dT (q, q)

1 + dT (p, q)

}
= ydT (p, q),

which is a contradiction, that implies dT (p, q) = 0, i.e., p = q.

3.3 Coupled Fixed Point Theorems

In this subsection, we present coupled fixed point theorem in triple-composed bipolar metric
spaces.

Definition 3.19. Let (Ξ,Π, dT ) be a T CBMS with non-constant control functions f, g, h :
[0,∞) → [0,∞) and Z : (Ξ × Π,Π × Ξ) ⇒ (Ξ,Π) be a covariant mapping. A point (ω, ν) ∈
Ξ × Π is said to be a coupled fixed point of Z if

Z(ω, ν) = ω and Z(ν, ω) = ν.

Definition 3.20. Let λ : Ξ × Π → [0,∞) and ζ : Π × Ξ → [0,∞) be two mappings. A covariant
mapping Z : (Ξ × Π,Π × Ξ) ⇒ (Ξ,Π) is said to be coupled covariant λ-admissible mapping
with respect to ζ if:

(ω, ν), (x, y) ∈ Ξ × Π, λ(ω, ν) ≥ ζ(y, x) ⇒ λ(Z(ω, ν),Z(ν, ω)) ≥ ζ(Z(y, x),Z(x, y)).

Definition 3.21. Let (Ξ,Π, dT ) be an T CBMS with non-constant control functions f, g, h :
[0,∞) → [0,∞). A mapping Z : (Ξ × Π,Π × Ξ) ⇒ (Ξ,Π) is said to be a coupled covariant
(λ, ζ)-contraction if Z is covariant and there exists the functions λ : Ξ×Π → [0,∞), ζ : Π×Ξ →
[0,∞) and y ∈ (0, 1) such that λ(ω, ν)λ(Z(ω, ν),Z(ν, ω)) ≥ ζ(y, x)ζ(Z(y, x),Z(x, y)) implies

dT (Z(ω, ν),Z(y, x)) ≤ y

2
(dT (ω, y) + dT (x, ν)) for all ω, x ∈ Ξ and ν, y ∈ Π. (3.47)
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Theorem 3.22. Let (Ξ,Π, dT ) be a complete T CBMS with non-constant control functions
f, g, h : [0,∞) → [0,∞) and Z : (Ξ × Π,Π × Ξ) ⇒ (Ξ,Π) be a coupled covariant (λ, ζ)-
contraction such that the following conditions are satisfied:

(h1) H is a coupled covariant λ-admissible mapping with respect to ζ.

(h2) There exists ω0, x0 ∈ Ξ, ν0, y0 ∈ Π such that

λ(ω0, ν0) ≥ ζ(y0, x0),

λ(x0, y0) ≥ ζ(ν0, ω0),

λ(ω0, ν0) ≥ ζ(Z(y0, x0),Z(x0, y0)),

λ(x0, y0) ≥ ζ(Z(ν0, ω0),Z(ω0, ν0)),

λ(Z(ω0, ν0),Z(ν0, ω0)) ≥ ζ(y0, x0),

λ(Z(x0, y0),Z(y0, x0)) ≥ ζ(ν0, ω0).

(h3) f, g and h are continuous and non-decreasing functions with f(u) < u, g(u) < u, h(u) < u,
u > 0 and f(0) + g(0) + h(0) = 0, and h is additive.

(h4) lim
ϱ,ρ→∞

[
ϱ−2∑
ı=ρ

hı−ρ
(
f(y

ı

2 (s0 + r1)) + g(yı+1e0)
)
+ hϱ−ρ−1(yϱ−1(s0 + r1))

]
= 0,

where s0 = dT (ω0, y1) + dT (x0, ν1), r1 = dT (ω1, y0) + dT (x1, ν0), e0 = dT (ω0, y0) +

dT (x0, ν0) and hı−ρ
(
f(y

ı

2 (s0 + r1)) + g(yı+1e0)
)

, hϱ−ρ−1(yϱ−1(s0+r1)) denote the com-
posite functions.

(h5) H is continuous, or if (ω, ν) ∈ Ξ × Π and (xρ, yρ) is a bisequence in Ξ × Π then λ(ω, ν) ≥
ζ(yρ, xρ), ρ ∈ N.

(h6) If (ω, ν), (x, y) ∈ (Ξ × Π) ∩ (Π × Ξ), ((ω, ν) ̸= (x, y)) are coupled fixed points of Z then
λ(ω, ν) ≥ ζ(x, y) and λ(ν, ω) ≥ ζ(y, x).

Then, Z : (Ξ × Π) ∪ (Π × Ξ) → Ξ ∪ Π has a unique coupled fixed point.

Proof. Let ω0, x0 ∈ Ξ, ν0, y0 ∈ Π such that

λ(ω0, ν0) ≥ ζ(y0, x0),

λ(x0, y0) ≥ ζ(ν0, ω0),

λ(ω0, ν0) ≥ ζ(Z(y0, x0),Z(x0, y0)),

λ(x0, y0) ≥ ζ(Z(ν0, ω0),Z(ω0, ν0)),

λ(Z(ω0, ν0),Z(ν0, ω0)) ≥ ζ(y0, x0),

λ(Z(x0, y0),Z(y0, x0)) ≥ ζ(ν0, ω0).

(3.48)

Define bisequence (ωρ, νρ) and (xρ, yρ) as follows:

Z(ωρ, νρ) = ωρ+1,Z(νρ, ωρ) = νρ+1,Z(yρ, xρ) = yρ+1 and Z(xρ, yρ) = xρ+1, ρ ∈ N. (3.49)

Now , by (3.48) and (h1), we get

λ(Z(ω0, ν0),Z(ν0, ω0)) ≥ ζ(Z(y0, x0),Z(x0, y0)),

λ(Z(x0, y0),Z(y0, x0)) ≥ ζ(Z(ν0, ω0),Z(ω0, ν0)),

λ(Z(ω0, ν0),Z(ν0, ω0)) ≥ ζ(Z(y1, x1),Z(x1, y1)),

λ(Z(x0, y0),Z(y0, x0)) ≥ ζ(Z(ν1, ω1),Z(ω1, ν1)),

λ(Z(ω1, ν1),Z(ν1, ω1)) ≥ ζ(Z(y0, x0),Z(x0, y0)),

λ(Z(x1, y1),Z(y1, x1)) ≥ ζ(Z(ν0, ω0),Z(ω0, ν0)).
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implies

λ(ω0, ν0)λ(Z(ω0, ν0),Z(ν0, ω0)) ≥ ζ(y0, x0)ζ(Z(y0, x0),Z(x0, y0)) (3.50)

...

λ(ωρ, νρ)λ(Z(ωρ, νρ),Z(νρ, ωρ)) ≥ ζ(yρ, xρ)ζ(Z(yρ, xρ),Z(xρ, yρ)),

λ(x0, y0)λ(Z(x0, y0),Z(y0, x0)) ≥ ζ(ν0, ω0)ζ(Z(ν0, ω0),Z(ω0, ν0)) (3.51)

...

λ(xρ, yρ)λ(Z(xρ, yρ),Z(yρ, xρ)) ≥ ζ(νρ, ωρ)ζ(Z(νρ, ωρ),Z(ωρ, νρ)),

λ(ω0, ν0)λ(Z(ω0, ν0),Z(ν0, ω0)) ≥ ζ(y1, x1)ζ(Z(y1, x1),Z(x1, y1)) (3.52)

...

λ(ωρ−1, νρ−1)λ(Z(ωρ−1, νρ−1),Z(νρ−1, ωρ−1)) ≥ ζ(yρ, xρ)ζ(Z(yρ, xρ),Z(xρ, yρ)),

λ(x0, y0)λ(Z(x0, y0),Z(y0, x0)) ≥ ζ(ν1, ω1)ζ(Z(ν1, ω1),Z(ω1, ν1)) (3.53)

...

λ(xρ−1, yρ−1)λ(Z(xρ−1, yρ−1),Z(yρ−1, xρ−1)) ≥ ζ(νρ, ωρ)ζ(Z(νρ, ωρ),Z(ωρ, νρ)),

λ(ω1, ν1)λ(Z(ω1, ν1),Z(ν1, ω1)) ≥ ζ(y0, x0)ζ(Z(y0, x0),Z(x0, y0)) (3.54)

...

λ(ωρ, νρ)λ(Z(ωρ, νρ),Z(νρ, ωρ)) ≥ ζ(yρ−1, xρ−1)ζ(Z(yρ−1, xρ−1),Z(xρ−1, yρ−1)),

and

λ(x1, y1)λ(Z(x1, y1),Z(y1, x1)) ≥ ζ(ν0, ω0)ζ(Z(ν0, ω0),Z(ω0, ν0)) (3.55)

...

λ(xρ, yρ)λ(Z(xρ, yρ),Z(yρ, xρ)) ≥ ζ(νρ−1, ωρ−1)ζ(Z(νρ−1, ωρ−1),Z(ωρ−1, νρ−1)).

Let y ∈ (0, 1), using (3.50) − (3.55) and applying (3.47), we get

sρ = dT (ωρ, yρ+1) + dT (xρ, νρ+1)

= dT (Z(ωρ−1, νρ−1),Z(yρ, xρ)) + dT (Z(xρ−1, yρ−1),Z(νρ, ωρ))

≤ y

2
[dT (ωρ−1, yρ) + dT (xρ, νρ−1) + dT (xρ−1, νρ) + dT (ωρ, yρ−1)]

=
y

2
[dT (ωρ−1, yρ) + dT (xρ−1, νρ) + dT (ωρ, yρ−1) + dT (xρ, νρ−1)]

=
y

2
[sρ−1 + rρ],
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where

rρ =dT (ωρ, yρ−1) + dT (xρ, νρ−1)

= dT (Z(ωρ−1, νρ−1),Z(yρ−2, xρ−2)) + dT (Z(xρ−1, yρ−1),Z(νρ−2, ωρ−2))

≤ y

2
[dT (ωρ−1, yρ−2) + dT (xρ−2, νρ−1) + dT (xρ−1, νρ−2) + dT (ωρ−2, yρ−1)]

=
y

2
[dT (ωρ−1, yρ−2) + dT (xρ−1, νρ−2) + dT (ωρ−2, yρ−1) + dT (xρ−2, νρ−1)]

=
y

2
[rρ−1 + sρ−2],

and

sρ−1 =dT (ωρ−1, yρ) + dT (xρ−1, νρ)

= dT (Z(ωρ−2, νρ−2),Z(yρ−1, xρ−1)) + dT (Z(xρ−2, yρ−2),Z(νρ−1, ωρ−1))

≤ y

2
[dT (ωρ−2, yρ−1) + dT (xρ−1, νρ−2) + dT (xρ−2, νρ−1) + dT (ωρ−1, yρ−2)]

=
y

2
[dT (ωρ−2, yρ−1) + dT (xρ−2, νρ−1) + dT (ωρ−1, yρ−2) + dT (xρ−1, νρ−2)]

=
y

2
[sρ−2 + rρ−1].

Therefore,

sρ ≤ y

2
[sρ−1 + rρ] (3.56)

≤ y

2

[y
2
(sρ−2 + rρ−1) +

y

2
(rρ−1 + sρ−2)

]
≤ y2

2
[sρ−2 + rρ−1]

...

≤ yρ

2
[s0 + r1] ,

and

eρ =dT (ωρ+1, yρ+1) + dT (xρ+1, νρ+1) (3.57)

= dT (Z(ωρ, νρ),Z(yρ, xρ)) + dT (Z(xρ, yρ),Z(νρ, ωρ))

≤ y

2
[dT (ωρ, yρ) + dT (xρ, νρ) + dT (xρ, νρ) + dT (ωρ, yρ)]

= y [dT (ωρ, yρ) + dT (xρ, νρ)]

= yeρ−1

...

≤ yρ+1e0.

Let ρ, ϱ ∈ N such that ρ < ϱ. From Theorem (3.5), we have

dT (ωρ, yϱ) ≤
ϱ−2∑
ı=ρ

hı−ρ (f(dT (ωı, yı+1)) + g(dT (ωı+1, yı+1)))+hϱ−ρ−1(dT (ωϱ−1, yϱ)), (3.58)

and

dT (xρ, νϱ) ≤
ϱ−2∑
ı=ρ

hı−ρ (f(dT (xı, νı+1)) + g(dT (xı+1, νı+1))) + hϱ−ρ−1(dT (xϱ−1, νϱ)). (3.59)
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Then, by (3.56), (3.57), (3.58) and (3.59), we get

dT (ωρ, yϱ) + dT (xρ, νϱ) ≤
ϱ−2∑
ı=ρ

hı−ρ
(
f(dT (ωı, yı+1) + dT (xı, νı+1)) + g(dT (ωı+1, yı+1)

+ dT (xı+1, νı+1))
)
+ hϱ−ρ−1(dT (ωϱ−1, yϱ) + dT (xϱ−1, νϱ))

≤
ϱ−2∑
ı=ρ

hı−ρ
(
f(sı) + g(eı)

)
+ hϱ−ρ−1(sϱ−1)

...

≤
ϱ−2∑
ı=ρ

hı−ρ

(
f

(
yı

2
(s0 + r1)

)
+ g

(
yı+1e0

))
+ hϱ−ρ−1 (yϱ−1(s0 + r1)

)
.

Letting the lim
ρ,ϱ→∞

in above inequality and by condition (h4), we obtain

lim
ρ,ϱ→∞

[dT (ωρ, yϱ) + dT (xρ, νϱ)] = 0.

Similarly, we can derive

lim
ρ,ϱ→∞

[dT (ωϱ, yρ) + dT (xϱ, νρ)] = 0.

Then (ωρ, yρ) and (xρ, νρ) are Cauchy bisequences. Using completeness of (Ξ,Π, dT ), we
say that there exist ω, x ∈ Ξ and ν, y ∈ Π with

lim
ρ→∞

ωρ = y, lim
ρ→∞

xρ = ν, lim
ρ→∞

νρ = x, and lim
ρ→∞

yρ = ω. (3.60)

Therefore, for an arbitrary ε > 0 there exists ρ0 ∈ N with

dT (ωρ, y) <
ε

3
, dT (xρ, ν) <

ε

3
, dT (x, νρ) <

ε

3
and dT (ω, yρ) <

ε

3
, for all ρ ≥ ρ0.

Since (ωρ, yρ) and (xρ, νρ) are Cauchy bisequences, we get

dT (ωρ, yρ) <
ε

3
and dT (xρ, νρ) <

ε

3
.

By (h5) and (h1), we have λ(ω, ν) ≥ ζ(yρ, xρ) implies

λ(Z(ω, ν),Z(ν, ω)) ≥ ζ(Z(yρ, xρ),Z(xρ, yρ)),

then
λ(ω, ν)λ(Z(ω, ν),Z(ν, ω)) ≥ ζ(yρ, xρ)ζ(Z(yρ, xρ),Z(xρ, yρ)).

From (3.47) and (h3), we have

dT (Z(ω, ν), y) ≤ f(dT (Z(ω, ν), yρ+1)) + g(dT (ωρ+1, yρ+1)) + h(dT (ωρ+1, y))

= f(dT (Z(ω, ν),Z(yρ, xρ))) + g(dT (ωρ+1, yρ+1)) + h(dT (ωρ+1, y))

≤ f
(y

2
[dT (ω, yρ) + dT (xρ, ν)]

)
+ g(dT (ωρ+1, yρ+1)) + h(dT (ωρ+1, y))

< f
(y

2
[
ε

3
+
ε

3
]
)
+ g(

ε

3
) + h(

ε

3
)

< y
ε

3
+ 2

ε

3
< ε, for all y ∈ (0, 1) and ρ ∈ N.

Then dT (Z(ω, ν), y) = 0 ⇒ Z(ω, ν) = y. In a similar manner, we get Z(ν, ω) = x,
Z(x, y) = ν and Z(y, x) = ω. From (3.60), we have

dT (ω, y) = dT ( lim
ρ→∞

yρ, lim
ρ→∞

ωρ) = lim
ρ→∞

dT (ωρ, yρ) = 0,
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and
dT (x, ν) = dT ( lim

ρ→∞
νρ, lim

ρ→∞
xρ) = lim

ρ→∞
dT (xρ, νρ) = 0.

Therefore, ω = y and x = ν. Then (ω, ν) ∈ (Ξ × Π) ∩ (Π × Ξ) is a coupled fixed point of Z .

Uniqueness
Suppose that (ω∗, ν∗) ∈ (Ξ×Π)∩ (Π×Ξ) is another coupled fixed point of Z then by (h6), we
have

λ(ω, ν) ≥ ζ(ω∗, ν∗) and λ(ν, ω) ≥ ζ(ν∗, ω∗), (3.61)

and by (h1), we get {
λ(Z(ω, ν),Z(ν, ω)) ≥ ζ(Z(ω∗, ν∗),Z(ν∗, ω∗)),

λ(Z(ν, ω),Z(ω, ν)) ≥ ζ(Z(ν∗, ω∗),Z(ω∗, ν∗)).
(3.62)

From (3.61) and (3.62), we obtain{
λ(ω, ν)λ(Z(ω, ν),Z(ν, ω)) ≥ ζ(ω∗, ν∗)ζ(Z(ω∗, ν∗),Z(ν∗, ω∗)),

λ(ν, ω)λ(Z(ν, ω),Z(ω, ν)) ≥ ζ(ν∗, ω∗)ζ(Z(ν∗, ω∗),Z(ω∗, ν∗)).
(3.63)

Using (3.63) and applying (3.47), we get

dT (ω, ω
∗) = dT (Z(ω, ν),Z(ω∗, ν∗))

≤ y

2
[dT (ω, ω

∗) + dT (ν
∗, ν)],

and

dT (ν, ν
∗) = dT (Z(ν, ω),Z(ν∗, ω∗))

≤ y

2
[dT (ν, ν

∗) + dT (ω
∗, ω)].

Then, dT (ω, ω∗)+dT (ν, ν∗) ≤ y[dT (ω, ω∗)+dT (ν, ν∗)]. Since y ∈ (0, 1), we have dT (ω, ω∗)+
dT (ν, ν∗) = 0. Thus, ω = ω∗ and ν = ν∗. Hence, (ω, ν) ∈ (Ξ × Π) ∩ (Π × Ξ) is a unique
coupled fixed point of Z .

4 Application

This section is dedicated to applying Theorem (3.22) to discuss the existence and uniqueness
solutions of coupled ordinary differential equations. But before that, we present the following
example.

Example 4.1. Let Ξ = C([0, 1],R) = {ω : [0, 1] → R | ω is continuous} and Π = C([0, 1],R) =
{ν : [0, 1] → R | ν is continuous}. Define dT : Ξ × Π → [0,∞) by

dT (ω, ν) = sup
t∈[0,1]

|ω(t)− ν(t)|2 for all ω ∈ Ξ and ν ∈ Π, (4.1)

and f, g, h : [0,∞) → [0,∞) by

f(u) = e2u − 1, g(u) = 2u and h(u) = 2u, u ≥ 0.

Then, (Ξ,Π, dT ) is a complete T CBMS with non-constant control functions f, g and h.

Proof. Note that (dT1 ) and (dT2 ) are straightforward to confirm, we will focus on proving (dT3 ).
For all ω, ω1 ∈ Ξ and ν, ν1 ∈ Π, we have

|ω(t)− ν(t)|2 = |ω(t)− ν1(t) + ν1(t)− ω1(t) + ω1(t)− ν(t)|2

≤ 2|ω(t)− ν1(t)|2 + 2|ω1(t)− ν1(t)|2 + 2|ω1(t)− ν(t)|2

≤
(
e2|ω(t)−ν1(t)|2 − 1

)
+ 2|ω1(t)− ν1(t)|2 + 2|ω1(t)− ν(t)|2.
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Taking supremum on both sides of the above inequality, we obtain

sup
t∈[0,1]

|ω(t)−ν(t)|2 ≤

(
e

2 sup
t∈[0,1]

|ω(t)−ν1(t)|2

− 1

)
+2 sup

t∈[0,1]
|ω1(t)−ν1(t)|2+2 sup

t∈[0,1]
|ω1(t)−ν(t)|2.

Thus,
dT (ω, ν) ≤ f(dT (ω, ν1)) + g(dT (ω1, ν1)) + h(dT (ω1, ν)).

So, (Ξ,Π, dT ) is a T CBMS with non-constant control functions f, g and h. It is not difficult to
show completeness of (Ξ,Π, dT ).

Suppose we have the following coupled ordinary differential equations:

−d2ω
dt2 = ξ(t, ω(t), ν(t)), t ∈ I = [0, 1],

−d2ν
dt2 = ξ(t, ν(t), ω(t)),

ω(0) = ν(0) = 0, ω′(1) = ν′(1) = 0,

(4.2)

where ξ : [0, 1] × Ξ × Π → R is a continuous function. Problem (4.2) can be written as an
integral equation in the form

ω(t) =

∫ 1

0
G(t, s)ξ (s, ω(s), ν(s)) ds, ∀ t ∈ [0, 1], (4.3)

where G : [0, 1]× [0, 1] → R is a Green’s function associated to (4.2) and given explicitly as

G(t, s) =


t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.

Then, ∫ 1

0
(G(t, s))2ds =

t2(1 − t)2

3
and sup

t∈[0,1]

∫ 1

0
(G(t, s))2ds =

1
48
.

Theorem 4.2. Let (Ξ,Π, dT ) is a complete T CBMS given in Example (4.1) and define the
mapping Z : (Ξ × Π) ∪ (Π × Ξ) → Ξ ∪ Π by

Z(ω, ν)(t) =

∫ 1

0
G(t, s)ξ (s, ω(s), ν(s)) ds, ∀ t ∈ [0, 1]. (4.4)

Assume that the following conditions hold:

(i) ξ : [0, 1] × Ξ × Π → R is a continuous function such that for all t ∈ [0, 1] and ω, x ∈ Ξ ,
ν, y ∈ Π,

|ξ (t, ω, ν)− ξ (t, y, x)|2 ≤ |ω − y|2 + |x− ν|2 .

(ii) For all ω, x ∈ Ξ and ν, y ∈ Π,∫ 1

0
G(t, s)ξ (s, ω(s), ν(s)) ds ≥

∫ 1

0
G(t, s)ξ (s, y(s), x(s)) ds.

Then, the differential equation (4.2) has a unique solution.
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Proof. It is known that the coupled fixed point of Z is equivalent to the solution of Problem
(4.2). So we will show that Z has a unique coupled fixed point.

Note that, Z is covariant. Let λ : Ξ × Π → [0,∞) and ζ : Π × Ξ → [0,∞) be two mapping
defined by

λ(ω(t), ν(t)) = eω(t) and ζ(y(t), x(t)) = ey(t).

Let ω, x ∈ Ξ and ν, y ∈ Π such that

λ(ω(t), ν(t)) ≥ ζ(y(t), x(t)). (4.5)

Then,
λ(Z(ω, ν)(t),Z(ν, ω)(t)) = eZ(ω,ν)(t) = e

∫ 1
0 G(t,s)ξ(s,ω(s),ν(s))ds

and
ζ(Z(y, x)(t),Z(x, y)(t)) = eZ(y,x)(t) = e

∫ 1
0 G(t,s)ξ(s,y(s),x(s))ds.

From condition (ii), we get

λ(Z(ω, ν)(t),Z(ν, ω)(t)) ≥ ζ(Z(y, x)(t),Z(x, y)(t)). (4.6)

Hence, Z is a coupled covariant λ-admissible mapping with respect to ζ.

Now, we prove that Z is a coupled covariant (λ, ζ)-contraction. From (4.5) and (4.6), we get

λ(ω(t), ν(t))λ(Z(ω, ν)(t),Z(ν, ω)(t)) ≥ ζ(y(t), x(t))ζ(Z(y, x)(t),Z(x, y)(t)).

Applying (3.47), we have

dT (Z(ω, ν),Z(y, x)) = sup
t∈[0,1]

|Z(ω, ν)(t)−Z(y, x)(t)|2

= sup
t∈[0,1]

∣∣∣∣∣
∫ 1

0
G(t, s)ξ (s, ω(s), ν(s)) ds−

∫ 1

0
G(t, s)ξ (s, y(s), x(s)) ds

∣∣∣∣∣
2

≤ sup
t∈[0,1]

∫ 1

0
(G(t, s))2 |ξ (s, ω(s), ν(s))− ξ (s, y(s), x(s))|2 ds

≤ sup
t∈[0,1]

(∫ 1

0
(G(t, s))2ds

)[
sup

t∈[0,1]
|ω(t)− y(t)|2 + sup

t∈[0,1]
|x(t)− ν(t)|2

]

=

(
1

48

)[
sup

t∈[0,1]
|ω(t)− y(t)|2 + sup

t∈[0,1]
|x(t)− ν(t)|2

]

=

(
1
48

)
[dT (ω, y) + dT (x, ν)] .

Let y = 1
48 ∈ (0, 1) then Z is a coupled covariant (λ, ζ)-contraction and all conditions of

Theorem (3.22) are satisfied and hence Z has unique coupled fixed point (ω, ν) ∈ (Ξ × Π) ∩
(Π × Ξ) such that Z(ω, ν) = ω and Z(ν, ω) = ν, which is a unique solution to the differential
equation (4.2).

5 Conclusions

In this paper, we introduced the concept of a triple-composed bipolar metric space. We also
presented the concept of λ-admissible mapping with respect to ζ for single-valued covariant and
contravariant mappings in the context of a triple-composed bipolar metric space. Leveraging
this framework, we introduced the notions of covariant (λ, ζ)-contraction, contravariant (λ, ζ)-
contraction, and contravariant (λ, ζ)-rational contraction, thereby establishing new fixed point
results. Furthermore, we introduced coupled covariant (λ, ζ)-contraction to demonstrate cou-
pled fixed points in the setting of a triple-composed bipolar metric space. These results were
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then applied to confirm the existence and uniqueness of solutions for coupled ordinary differen-
tial equations. Our contributions extend and enrich the existing literature and provide a novel
perspective on verifying the existence and uniqueness of solutions, particularly in the context of
second-order differential equations.
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