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Abstract A mathematical optimization technique for deriving control problems is an exten-
sion of variational calculus, thanks to the contributions of Richard Bellman and Lev Pontrya-
gin and his collaborators. Exact solutions for this type of problem are not generally available;
hence, it is necessary to obtain approximate solutions to solve them. The study of efficient numer-
ical algorithms to solve optimal control problems has attracted researchers in mathematical sci-
ences and engineering. In this paper, we propose two numerical methods for solving an optimal
control problem using the state parametrization technique. The aim is to provide an improved
technique, better than some existing techniques in the literature, using state parametrization and
Bernoulli polynomials. The state variable is approximated by Bernoulli or orthogonal Bernoulli
polynomials (OBPs), thus converting the problem into an optimization problem. The conver-
gence of these methods is investigated. To demonstrate the efficiency and applicability of these
algorithms, several numerical test examples are solved and compared with exact solutions. The
numerical results show satisfactory performance compared to existing techniques.

1 Introduction

Optimal control theory plays an essential role in the design of modern systems; one of its objec-
tives is the minimization of the cost of economic processes, the operation of physical and social
systems, and finding a control for a dynamical system within a certain time. It is useful in other
disciplines like engineering, finance, biology, etc. [6, 24, 27].

Optimal control problems are more complex to solve than standard optimization problems,
where the decision variables are scalars. The primary challenge lies in the unavailability of
analytical solutions for optimal control problems, necessitating the use of approximate solu-
tions. A lot of optimization problems have arisen naturally in many fields, like computer science,
industry, finance, management, production, etc. It is frequently necessary to minimize (or maxi-
mize) specific objectives within given restrictions. Some optimization problems involve optimal
control problems. Due to the scarcity of analytical solutions for optimal control problems, nu-
merical techniques have gained widespread adoption and garnered significant interest among
researchers. The parametrization technique is a notable method that has greatly facilitated the
solution of optimal control problems [16, 18, 29]. The direct minimization of the performance
index forms the basis for direct techniques in solving control problems. These techniques can
be implemented using either a discretization approach or a parametrization method, as refer-
enced in [7, 15, 19, 30]. This technique converts an optimal control problem into a nonlinear
optimization problem. In [11], Kafach et al. modified the algorithm given in [18] by choosing
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Chebyshev polynomials as the basis in the combination form of the state variable. In [12], a nu-
merical approach for solving an optimal control problem using Boubaker polynomials was used,
where the state and control variables are expanded in series by Boubaker polynomials. In [20],
Maleknejad et al. solved an optimal control problem of Volterra integral equations via trian-
gular functions. In [32], a numerical method is proposed for solving fractional optimal control
problems (FOCPs). The fractional derivative in the dynamical system is described in the Caputo
sense. The operational matrices of fractional Riemann–Liouville integration and multiplication
for Bernoulli polynomials are derived to solve the original problem. The Ritz spectral method
based on Bernoulli polynomials is applied and analyzed to solve a class of fractional optimal
control problems (FOCPs) with vector state and control using polynomial approximation [33].
In [34], a numerical study is presented to introduce a novel approach based on the operational
matrix of the Riemann-Liouville fractional integral of Bernoulli polynomials to solve a class of
fractional optimal control problems. Recently, there has been significant research investigating
the use of various numerical methods to solve optimal control problems [35, 36, 37, 38, 39, 40].

One objective of this work is to select appropriate basis functions to develop a numerical
method for solving the control problem, thereby achieving high accuracy. So, in this paper, we
will use Bernoulli and orthogonal Bernoulli polynomials (OBPs) as basis functions for approx-
imating the state variable. One of the advantages of using Bernoulli or OBPs is their rapid
convergence and high accuracy compared to previous methods. The main contribution lies in
simplifying the problem formulation by approximating state variables with polynomials, which
significantly reduces computational complexity compared to solving the original continuous-time
problem. Polynomial approximations offer flexibility in representing complex state trajectories,
enabling the method to handle a wide range of control problems. Higher-order polynomials
can enhance accuracy, closely approximating true state variables. These polynomial approxi-
mations leverage well-established mathematical and numerical techniques, facilitating rigorous
error analysis and solution refinement. Parametrization techniques are versatile, applicable to
both linear and nonlinear optimal control problems. The polynomial representation provides a
clear and interpretable form of the state trajectory, aiding in understanding and analyzing the
control problem. The finite-dimensional nature of parametrization allows efficient use of op-
timization algorithms, such as gradient-based or genetic algorithms, to find optimal solutions
effectively. Both Bernoulli and orthogonal Bernoulli polynomials offer highly accurate state
variable approximations, promoting precise solutions for optimal control problem. Orthogonal
polynomials often enhance convergence rates, ensuring a rapid approach to optimal solutions.
The method is straightforward to implement using standard numerical algorithms and software
tools, ensuring practical applicability.

This paper is organized as follows: In Section 2, we give some properties of Bernoulli and
OBPs polynomials. In Section 3, we present the mathematical formulation of the optimal control
problem, and we provide a brief introduction to the state parametrization technique. In Section 4,
numerical techniques for solving the optimal control problem using Bernoulli and OBPs are pre-
sented. In Section 5, the accuracy of the method is tested in terms of the absolute error between
the exact solution and the approximate solution. Some examples are included to demonstrate
the validity and efficiency of the proposed techniques. The numerical results are summarized in
tables and graphical forms. Finally, a brief conclusion is drawn in Section 6.

2 Bernoulli polynomials

This section is devoted to some properties of Bernoulli and OBPs.

Definition 2.1. We indicate by Bi(t) the Bernoulli polynomial of degree i, defined by the fol-
lowing formula [14]

i∑
k=0

(
i+ 1
k

)
Bk(t) = (i+ 1)ti, i = 0, 1, 2, · · · (2.1)

Some first Bernoulli polynomials are given as follows
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B0(t) = 1,
B1(t) = t− 1

2 ,

B2(t) = t2 − t+ 1
6 ,

B3(t) = t3 − 3
2 t

2 + 1
2 t,

B4(t) = t4 − 2t3 + t2 − 1
30 .

(2.2)

Some properties of Bernoulli polynomials are given in [2]

• B′
i(t) = iBi−1(t), i ≥ 1,

• Bi(t+ 1)−Bi(t) = iti−1, i ≥ 1,

• Bi(t) =
∑i

h=0 ∁
i
hBh(0)ti−h, i ≥ 1,

•
∫ 1

0 Bi(t)dt = 0, i ≥ 1,

•
∫ 1

0 Bi(t)Bj(t)dt = (−1)i+j i!j!
(i+j)!Bi+j(0).

Bernoulli polynomilas are not orthogonal, so we apply the Gram–Schmidt orthonormaliza-
tion process on sets of Bernoulli polynomials of various degree to obtain the explicit representa-
tion of OBPs.

2.1 Orthogonal Bernoulli polynomials

We denote these polynomials by ϕi(t), they are given in the following definition

Definition 2.2. [21] On the interval [0, 1], the OBPs are given by:

ϕi(t) =
√

2i+ 1
i∑

k=0

(−1)k
(
i

k

)(
2i− k

i− k

)
ti−k, i = 0, 1, 2, · · · (2.3)

For example, we have
ϕ0(t) = 1,
ϕ1(t) =

√
3(2t− 1),

ϕ2(t) =
√

5(6t2 − 6t+ 1),
ϕ3(t) =

√
7(20t3 − 30t2 + 12t− 1),

The orthogonality property is given by∫ 1

0
ϕi(t)ϕj(t)dt = δi,j , i, j = 0, 1, 2, · · · (2.4)

3 Optimal Control Problem Overview

Optimal control deals with finding a control policy for a dynamic system to optimize a perfor-
mance criterion. This involves determining the control functions that will drive the system’s
state to achieve the desired objective while satisfying the dynamic equations and constraints.
The evolution of the system dynamics is governed by the following differential equations

Ẋ(t) = F (t,X(t), U(t)), (3.1)

where X(t) is the state vector, U(t) is the control vector, and t is time. The equation (3.1) is
called the equation of motion or trajectory, on a fixed interval [t0, t1] with boundary conditions
X(t0) = x0, X(t1) = x1. The performance criterion is expressed as a cost (or reward) func-
tional, usually to be minimized:

J(U) =

∫ t1

t0

L(t,X(t), U(t))dt+ h(t1, X(t1)).



NUMERICAL SOLUTION OF OCP AND OBP. 81

3.1 Problem statement and state parametrization

According to the method presented, ordinary differential equation (3.1) needs to be rewritten as
follows:

U(s) = f(s,X(s), Ẋ(s)), (3.2)

subject to the boundary conditions

X(t0) = x0, X(t1) = x1,

where the function f is assumed to be continuously differentiable, the vectors X(.) : [t0, t1] −→
R and U(.) : [t0, t1] −→ R given in equation (3.2) are called the optimal trajectory and optimal
control, respectively. The aim here is to find an optimal control U(t) such that the cost functional
J in the following equation (3.3) is minimum

J =

∫ t1

t0

L(s,X(s), U(s))ds. (3.3)

The numerical approach is based on expanding the state variable in terms of Bernoulli polyno-
mials or OBPs, which reduces the optimal problem to a system of algebraic equations. Bernoulli
polynomials are given in the interval [0, 1] so we transform the interval [t0, t1] into the interval
[0, 1] as follows

s = (t1 − t0)t+ t0.

then the problem in eqs.(3.2)-(3.3) is replaced by the following problem

U(t) = f((t1 − t0)t+ t0, X(t), Ẋ(t)), (3.4)

with initial conditions
X(0) = x0, X(1) = x1, (3.5)

and minimizing the cost functional described by

J(X(t)) = (t1 − t0)

∫ 1

0
L((t1 − t0)t+ t0, X(t), U(t))dt. (3.6)

The principle idea of state parametrisation is to approximate only the state variable of the system
by a sequence of given functions with unknown parameters, as :

Xn(s) =
n∑

i=0

aiΦi(s), n = 1, 2, · · ·, (3.7)

It can be applied to many base functions. Using this approach, the optimal control problem is
transformed into a mathematical optimization problem [1],[30].

The Weierstrass approximation theorem serves as the foundation for the convergence of the
parametrization technique [7, 10, 12, 31].

4 Numerical techniques for solving optimal problem

In this section, we employ the state parameterization method to achieve better numerical solu-
tions for the optimal control problem. One advantage of this method, compared to others, is that
it involves fewer unknowns than the state parameterization control approach. Let Qn be a subset
of Q, consisting of all polynomials of degree at most n. In [18], the approximate solution is
considered as eq.(3.7), using 1, s, s2, · · · , sn as a basis for Qn. This is not a good choice for nu-
merical accuracy. In [11], they use the Chebyshev polynomials as a basis for Qn, this is a good
choice but we can improve more than this by taking the Bernoulli or the Orthogonal Bernoulli
polynomials as a basis for Qn.
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4.1 The Bernoulli approximation

Let taking the Bernoulli polynomials as a basis for Qn. The state variable is expanded in a series
as follow

X1(t) =
2∑

i=0

aiBi(t), (4.1)

from the initial conditions, we have

a0 =
x1 + x0

2
− a2

6
, a1 = x1 − x0, (4.2)

replacing (4.2) into Eq.(4.1), we obtain

X1(t) =

(
x1 + x0

2
− a2

6

)
B0(t) + (x1 − x0)B1(t) + a2B2(t),

after, we can get the control U(t) from Eq.(3.4). Then

J(a2) = (t1 − t0)

∫ 1

0
L((t1 − t0)t+ t0, X(t), U(t))dt,

Let β ∈ R such that J(β) is the minimum of J(a2), so J(β) is the solution of the control problem
in Eq.(3.4)-(3.6). Also, we can get the values of the state and control variables. In the next
iteration, X2(t) is given as shown below

X2(t) = X1(t) +
3∑

i=1

aiBi(t), (4.3)

from the boundary conditions, we have

a2 = a1 = 0, (4.4)

we replace (4.4) into Eq.(4.3), we get

X2(t) = X1(t) + a3B3(t).

From (3.4) we can obtain U(t). We do the same as the first iteration we obtain J as a function
of a3 by using Eq.(3.6) :

J(a3) = (t1 − t0)

∫ 1

0
L((t1 − t0)t+ t0, X(t), U(t))dt,

if β ∈ R such that J(β) is the minimum of J(a3), so J(β) is the solution of the optimal problem
in Eq.(3.4)-(3.6). Now from the 3rd iteration the approximation of the control U(t) and the state
X(t) and the performance index J becomes a functions with two unknowns. In this case, we will
minimize the function J with respect to two variables, for example in the (n+1)th iteration such
that n > 1. The approximate solution is given by

Xn+1(t) = Xn(t) +
n+2∑
i=n

aiBi(t),

by using boundary conditions, we obtain{
anBn(0) + an+1Bn+1(0) + an+2Bn+2(0) = 0,
anBn(1) + an+1Bn+1(1) + an+2Bn+2(1) = 0.

(4.5)

Using Bernoulli polynomial properties, we have

Bi(0) = Bi(1) ∀i > 1,

so the system (4.5) is only one equation with three unknowns, therefore, we have two cases
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• n is even number :
Bn(0) ̸= 0, Bn+1(0) = 0 and Bn+2(0) ̸= 0, so the system (4.5) become

anBn(0) + an+2Bn+2(0) = 0.

Then

an = −an+2Bn+2(0)
Bn(0)

• n is odd number :
Bn(0) = 0 , Bn+1(0) ̸= 0 and Bn+2(0) = 0, so the system (4.5) become

an+1 = 0,

and the other unknowns an and an+2 rest unknowns untill we found them when we search
the minimum of the performance index fonction J .
Algorithm 1: State parametrization by using Bernoulli polynomilas. Find an optimal
value for J(.).
Step 1 : Taking an ε > 0.
Step 2 : for n = 1, we calculate

X1(t) =

(
x1 + x0

2
− a2

6

)
B0(t) + (x1 − x0)B1(t) + a2B2(t),

and then, find β1 ∈ Argmin{J(a) : a ∈ R} and let h1 = J(β1)
Step 3 . Iteration n+ 1:

– if n+ 1 is an odd number: then calculate :

Xn+1(t) = Xn(t)−
an+2Bn+2(0)

Bn(0)
Bn(t) + an+1Bn+1(t) + an+2Bn+2(t).

– if n+ 1 is even number, then calculate :

Xn+1(t) = Xn(t) + anBn(t) + an+2Bn+2(t).

Step 4 . Calculate :
βn+1 = (β1

n+1, β
2
n+1) ∈ Argmin{J(a, b) : a, b ∈ R} and set : hn+1 = J(βn+1).

Step 5. if |hn+1 − hn| < ε, then stop, else return to the step 3.

4.2 The OBPs approximation

Here, we take the OBPs as a basis for Qn.
First, the state variable is expanded as follow :

X1(t) =
2∑

i=0

aiϕi(t), (4.6)

by taking the initial conditions, we get

a0 =
x1 + x0

2
−
√

5a2, a1 =
x1 − x0

2
√

3
, (4.7)

substituting relation (4.7) into Eq.(4.6), we get

X1(t) =

(
x1 + x0

2
−
√

5a2

)
ϕ0(t) +

(
x1 − x0

2
√

3

)
ϕ1(t) + a2ϕ2(t).

After we found the state so we can get the control U(t) from Eq.(3.4).Then, the function J depend
on the parameter a2 by using Eq. (3.6) :

J(a2) = (t1 − t0)

∫ 1

0
L((t1 − t0)t+ t0, X(t), U(t))dt.
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Let β ∈ R such that J(β) is the minimum of J(a2), so J(β) is the solution of the optimal control
problem in Eq.(3.4)-(3.6). After, X2(t) is given as follow

X2(t) = X1(t) +
3∑

i=1

aiϕi(t). (4.8)

Fom the boundary conditions, we have

a2 = 0, a1 = −
√

7√
3
a3. (4.9)

Replacing (4.9) into Eq.(4.8) we get

X2(t) = X1(t) + a3ϕ3(t)−
√

7√
3
a3ϕ1(t),

and from (3.4), we can obtain U(t). We do the same as the first iteration then J is a function
which depend on a3 by Eq.(3.6) :

J(a3) = (t1 − t0)

∫ 1

0
L((t1 − t0)t+ t0, X(t), U(t))dt,

if β ∈ R such that J(β) is the minimum of J(a3), then the functional J(β) is the solution of the
optimal control problem given in Eq.(3.4)-(3.6). We can obtain the state and control variables
from the value of β approximately.
We continuiting this procedure, to obtain the (n+ 1)th approximation of solution as follow

Xn+1(t) = Xn(t) +
n+2∑
i=n

aiϕi(t). (4.10)

By taking the boundary conditions, we obtain the following system{
anϕn(0) + an+1ϕn+1(0) + an+2ϕn+2(0) = 0,
anϕn(1) + an+1ϕn+1(1) + an+2ϕn+2(1) = 0.

(4.11)

The solutions of this system are as follows

an =
ϕn+2(0)ϕn+1(1)− ϕn+2(1)ϕn+1(0)
ϕn(1)ϕn+1(0)− ϕn(0)ϕn+1(1)

an+2, (4.12)

and

an+1 =
ϕn+2(0)ϕn(1)− ϕn+2(1)ϕn(0)
ϕn(0)ϕn+1(1)− ϕn(1)ϕn+1(0)

an+2. (4.13)

Lemma 4.1. The denominator in equation (4.13), is not zero, it means

ϕn(0)ϕn+1(1)− ϕn(1)ϕn+1(0) ̸= 0.

Proof. We have from the definition of OBPs
ϕn(0) =

√
2n+ 1(−1)n , ϕn+1(0) =

√
2n+ 3(−1)n+1 and we have

ϕn(1) =
√

2n+ 1
n∑

k=0

(−1)k
(
n

k

)(
2n− k

n− k

)
,

and

ϕn+1(1) =
√

2n+ 3
n+1∑
h=0

(−1)k
(
n+ 1
k

)(
2n+ 2 − k

n− k

)
.

By replaycing these relations into the denominator equation we obtain

ϕn(0)ϕn+1(1)− ϕn(1)ϕn+1(0) ̸= 0.
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So, Eqs. (4.10),(4.12) and (4.13) gives the solution of state variable as follows

Xn+1(t) = Xn + an+2ϕn+2(t) +
ϕn+2(0)ϕn(1)− ϕn+2(1)ϕn(0)
ϕn(0)ϕn+1(1)− ϕn(1)ϕn+1(0)

an+2ϕn+1

+
ϕn+2(0)ϕn+1(1)− ϕn+2(1)ϕn+1(0)
ϕn(1)ϕn+1(0)− ϕn(0)ϕn+1(1)

an+2ϕn, (4.14)

and from (3.4), we can obtain U(t). Then, the functional J is a function of an+2 by Eq.(3.6) :

J(an+2) = (t1 − t0)

∫ 1

0
L((t1 − t0)t+ t0, X(t), U(t))dt,

if β ∈ R such that J(β) is the minimum of J(an+2), so J(β) is the solution of the optimal con-
trol problem in Eq.(3.4)-(3.6). Also, the values of the state and control variables can be given
approximately. Then the following algorithm summarize the principle of state parametrisation
by applying orthogonal Bernoulli polynomials.

Algorithm 2. State parametrisation by using OBPs. Finding an optimal value for J(.).
Step 1. Taking ε > 0.
Step 2. Take n = 1 and then calculate

X1(t) =

(
x1 + x0

2
−
√

5a2

)
ϕ0(t) +

(
x1 − x0

2
√

3

)
ϕ1(t) + a2ϕ2(t),

then calculate β1 ∈ Argmin{J(a) : a ∈ R} and set h1 = J(β1).
Step 3. Iteration n+ 1, calculate :

Xn+1(t) = Xn + an+2ϕn+2(t) +
ϕn+2(0)ϕn(1)− ϕn+2(1)ϕn(0)
ϕn(0)ϕn+1(1)− ϕn(1)ϕn+1(0)

an+2ϕn+1

+
ϕn+2(0)ϕn+1(1)− ϕn+2(1)ϕn+1(0)
ϕn(1)ϕn+1(0)− ϕn(0)ϕn+1(1)

an+2ϕn.

Step 4. Calculate
βn+1 ∈ Argmin{J(a) : a ∈ R} and set hn+1 = J(βn+1).
Step 5. If |hn+1 − hn| < ε, then stop, else return to the 3rd step.

4.3 The convergence of the algorithms

Theorem 4.2. If the functional J has a first continuous derivatives, then lim
n→∞

hn = γ, where
γ = infQJ .

Proof. We denote the class of Bernoulli polynomials in t of degree n by Q́n.
We have hn = minan∈R J(an), then hn = J(βn) such that βn ∈ Argmin{J(an) : an ∈ R}.
Let, Pn(t) ∈ Argmin{J(P (t)) : P (t) ∈ Q́n}, then J(Pn(t)) = minP (t)∈Q́n

J(P (t)). So we
have

minP (t)∈Q́n+1
J(P (t)) ≤ minP (t)∈Q́n

J(P (t)),

then hn+1 ≤ hn, by using Weierstrass theorem of approximation, we get

lim
n→∞

hn = minP (t)∈QJ(P (t)).

The proof is acheived.

In the next section, some numerical problems are provided to show the accuracy of the pre-
sented scheme by applying the algorithms 1 and 2.
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5 Numerical experiments

This section investigates the obtained results of the proposed approaches on some test prob-
lems. We can confirm that the approximation by Bernoulli and OBPs polynomials via state
parametrization converge rapidly than Chebyshev approximation [11] and mehne approxima-
tion [18].

Example 5.1. In this problem, the objective is to minimize the function

J =

∫ 1

0
(u(t)2 + x(t)2)dt, t ∈ [0, 1], (5.1)

with the system state equation
u(t) = Ẋ(t), (5.2)

with boundary conditions

X(0) = 0, X(1) =
1
2
.

The analytical solution is given by [25]

X(t) =
e(et − e−t)

2(e2 − 1)
, U(t) =

e(et + e−t)

2(e2 − 1)
. (5.3)

Applying algorithm 1, by using step 2, the first approximation of state is

X1(t) = (
1
2
− a2)t+ a2t

2, (5.4)

from Eq.(5.2), we have

U1(t) = (
1
2
− a2) + 2a2t. (5.5)

Then, replacing Eqs.(5.4) and (5.5) into Eq.(5.1), we get

J =
11
30

a2
2 −

1
12

a2 +
1
3
.

Then β = 5
44 minimize J , hence J(β) = 347

1056 . Replacing β in Eqs. (5.4),(5.5), For the first
iteration, we find the approximate state and control as follows

X1(t) =
5

44
t2 +

17
44

t,

and
U1(t) =

5
22

t+
17
44

.

The state in the second iteration is approximated as follows

X2(t) = X1(t) +
3∑

i=1

aiBi(t).

So, we obtain the approximations of state and control as follows
For the second iteration, we get

X2(t) =
7

86
t3 − 4

473
t2 +

202
473

t,

and
U2(t) =

21
86

t2 − 8
473

t+
202
473

,

For the third iteration, we have

X3(t) =
75

8008
t4 +

10789
172172

t3 +
479

172172
t2 +

146411
344344

t,
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and

U3(t) =
75

2002
t3 +

32367
172172

t2 +
479

86086
t+

146411
344344

,

The results of all iterations are shown in Table 1, it is obvious that the errors of the proposed
method by Bernoulli polynomials is 9.388e−9 using algorithm 1 and 2, our errors are less than
the error obtained by [11] (method 3), and also the error of [18] (method 4).
In Figures 1-4 for the 3rd iteration, it can be seen tha the approximate solution agree well with
exact solution rather than the results obtained in [11] (method 3). The exact performance func-
tion is J = 0.328258821374833.
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Figure 1. Solution of the 3rd iteration by al-
gorithm 1 and 2 compared with analytical so-
lution and state variable of method 3 for ex-
ample 1.
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Figure 2. Solution of the 3rd iteration by al-
gorithm 1 and 2 compared with analytical so-
lution and state variable of method 3 for ex-
ample 1.
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Figure 3. Control of the 3rd iteration by algo-
rithm 1 and 2 compared with the exact control
and control of method 3 for example 1.
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Figure 4. Control of the 3rd iteration by algo-
rithm 1 and 2 compared with the exact control
and control of method 3 for example 1.

Example 5.2. Problem given by El-Gindy et al.[5]. We need to minimize the function

J =
1
2

∫ 1

0
(U(t)2 +X(t)2)dt, t ∈ [0, 1], (5.6)

such that
U(t) = Ẋ(t) +X(t), (5.7)

and
X(0) = 1, X(1) = 0.2819695348.
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Table 1. The optimal cost function J for Example 1.
iteration algorithm1 Error CPU algorithm2 Error CPU

1 0.328598484848484 3.396e−4 0.1421 0.328598484848484 3.396e−4 0.2398
2 0.328259337561663 5.161e−7 0.3040 0.328259337561663 5.161e−7 0.4140
3 0.328258830763266 9.388e−9 0.5183 0.328258830763266 9.388e−9 0.5494

iteration method 3 Error method 4 Error
1 0.328598484848485 3.3e−4 0.333333333333333 5.0e−3

2 0.328259337561663 5.2e−7 0.328598484848485 3.3e−4

3 0.328258836761008 1.5e−8 0.3284769571 2.1e−4

The analytical solution is

X(t) = Ae
√

2t + (1 −A)e−
√

2t,

U(t) = A(
√

2 + 1)e
√

2t − (1 −A)(
√

2 − 1)e−
√

2t,

where

A =
2
√

2 − 3
−(e

√
2)2 + 2

√
2 − 3

,

by using step 2 in algorithm 1, the first approximation of state is

X1(t) = a2t
2 − (0.7180304652 + a2)t+ 1 (5.8)

from Eq.(5.7), we have

U1(t) = a2t
2 − (0.7180304652 − a2)t+ 0.281969535 − a2, (5.9)

replacing Eqs,(5.8),(5.9) into Eq.(5.6) gives

J(a2) =
a2

2
5

− 240561563301067
1125899906842624

a2 +
59745022825827256619431649473
23768448754279301278063185008

,

the value which minimize J is β = 1202807816505335
2251799813685248 , then J(β) = 0.194298641535045. By

replacing this β in(5.8) and (5.9), we obtain the approximations of state and control for the first
iteration as follows

X1(t) =
1202807816505335
2251799813685248

t2 − 2819668684263027
2251799813685248

t+ 1,

and

U1(t) =
1202807816505335
2251799813685248

t2 − 414053051252357
2251799813685248

t− 567868870577779
2251799813685248

.

The state in the second iteration is given by

X2(t) = X1(t) +
3∑

i=1

aiBi(t).

So the approximations of state and control are given as follows
for the second iteration, we get

X2(t) = − 2829506518575961
12384898975268864

t3 +
2714925692160821
3096224743817216

t2 +
16922931022734629
12384898975268864

t+ 1,

and

U2(t) =− 2829506518575961
12384898975268864

t3 +
2371183212915401
12384898975268864

t2 +
4796474514551939
12384898975268864

t

− 4538032047465765
12384898975268864

,
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For the third iteration, we have

X3(t) =
18042117247580025
207165582859042816

t4 − 458777889432368687
1139410705724735488

t3 +
1118170628549210293
1139410705724735488

t2

− 3153511966127847791
2278821411449470976

t+ 1,

The results of the 3rd iteration are shown in Figures 5-8, It can be observed that the results
from the approximate solution agree with the exact solution instead of method [11].
The optimal cost function J obtained by different approximations in this example is shown in
Table 2, its clear that the error of the proposed method by Bernoulli polynomials is 1.555e−7,
which is less than the errors obtained by [11] (method 3), and also the errors of [18] (method 4).
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Figure 5. Solution of the 3rd iteration by al-
gorithm 1 and 2 compared with analytical so-
lution and state variable of method 3 for ex-
ample 2.
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Figure 6. Solution of the 3rd iteration by al-
gorithm 1 and 2 compared with analytical so-
lution and state variable of method 3 for ex-
ample 2.
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Figure 7. Control of the 3rd iteration by algo-
rithm 1 and 2 compared with the exact control
and control of method 3 for example 2.

0.44 0.4405 0.441 0.4415 0.442 0.4425 0.443 0.4435

−0.1738

−0.1738

−0.1738

−0.1738

−0.1737

−0.1737

−0.1737

−0.1737

−0.1737

 

 

Exact control 

Bernoulli approximation 

Chebyshev approximation

Orthogonal Bernoulli approximation 

Figure 8. Control of the 3rd iteration by algo-
rithm 1 and 2 compared with the exact control
and control of method 3 for example 2.

Example 5.3. [23]. The objective is to minimize the function

J =
1
2

∫ 1

0
(U(t)2 + 2X(t)2)dt, t ∈ [0, 1], (5.10)

such that

U(t) = Ẋ(t)− X(t)

2
, (5.11)
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Table 2. The optimal cost function J for Example 2.
iteration algorithm1 Error CPU algorithm2 Error CPU

1 0.194298641535044 1.389e−3 0.1798 0.194298641535044 1.389e−3 0.2591
2 0.192931605837056 2.230e−5 0.3663 0.192931605837056 2.230e−5 0.5798
3 0.192909453626909 1.555e−7 0.7397 0.192909453626909 1.555e−7 0.8089

iteration method 3 Error method 4 Error
1 0.194298641535045 1.4e−3 0.2513627360 5.8e−2

2 0.192931605837057 2.2e−5 0.194298641535045 1.4e−3

3 0.192909776177919 4.7e−7 0.193828723 9.1e−4

and
X(0) = 1, X(1) = 0.6087724857125.

The exact solutions are as follows

X(t) =
2e3t + e3

e
3t
2 (2 + e3)

,

U(t) =
2(e3t − e3)

e
3t
2 (2 + e3)

,

by using step 2 in the algorithm 1, the first approximation of state is

X1(t) = a2t
2 −

(
3523864175128603
9007199254740992

+ a2

)
t+ 1, (5.12)

from Eq.(5.11), we have

U1(t) =
3523864175128603
18014398509481984

t− a2 +
5a2

2
t− a2

2
t2 − 32109855209996395

36028797018963968
(5.13)

replacing Eqs,(5.8) and (5.9) into Eq.(5.10), we get

J(a2) =
(49a2

2)

240
− (10867900750765035a2)

36028797018963968
+

2534216421980399375537723424545291
2596148429267413814265248164610048

.

The value which minimize J is β = 163018511261475525
220676381741154304 , then J(β) = 0.86472880937314398. By

replacing this β in (5.8) and (5.9), we have the approximation of state and control in the first
iteration as

X1(t) =
163018511261475525
220676381741154304

t2 − 498706367104252597
441352763482308608

t+ 1,

and

U1(t) = −163018511261475525
441352763482308608

t2 +
1802854457196056797
882705526964617216

t− 2877530995381627555
1765411053929234432

.

So, we obtain the approximations of state and control as follows
For the second iteration, we have

X2(t) = − 74001147677700663
531424756029718528

t3+
49350537366330221361
52079626090912415744

t2−62473407554509138933
52079626090912415744

t+1,

and

U2(t) =
74001147677700663

1062849512059437056
t3 − 92863212200818211205

104159252181824831488
t2 +

259875557019830024377
104159252181824831488

t

− 177026441199930690719
104159252181824831488

,
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For the third iteration, we get

X3(t) =
2445277668922132875

18095463302774652928
t4 − 437211070617312311217

1067632334863704522752
t3 +

2369623349938913090901
2135264669727409045504

t2

− 2619118262721437032103
2135264669727409045504

t+ 1,

In Figures 9-12, the results obtained by Bernoulli polynomial are more much better than [11]
(method 3).
The optimal cost function J obtained by different approximations in this example is shown in
Table 3. This table represents the optimal cost function J obtained by different approximations,
notice that in the 3rd iteration, the error of the proposed method by Bernoulli polynomials is
9.687e−8, which is less than the errors obtained by [11] (method 3), and also the errors of [18]
(method 4). The exact value of performance index is J = 0.8641644977691128031011.
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Figure 9. Solution of the 3rd iteration by al-
gorithm 1 and 2 compared with analytical so-
lution and state variable of method 3 for ex-
ample 3.
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Figure 10. Solution of the 3rd iteration by al-
gorithm 1 and 2 compared with analytical so-
lution and state variable of method 3 for ex-
ample 3.
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Figure 11. Control of the 3rd iteration by al-
gorithm 1 and 2 compared with the exact con-
trol and control of method 3 for example 3.
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Figure 12. Control of the 3rd iteration by al-
gorithm 1 and 2 compared with the exact con-
trol and control of method 3 for example 3.

Example 5.4. [22] The following example addresses the minimization of

J =

∫ 1

0
(X(t)− 1

2
U(t)2)dt, t ∈ [0, 1], (5.14)

such that
U(t) = Ẋ(t) +X(t), (5.15)
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Table 3. The optimal cost function J for Example 3.
iteration algorithm1 Error CPU algorithm2 Error CPU

1 0.86472880937314398 5.643e−4 0.2166 0.86472880937314398 5.643e−4 0.2512
2 0.86421807235090015 5.357e−5 0.3344 0.86421807235090015 5.357e−5 0.4001
3 0.86416459464473442 9.687e−8 0.5792 0.86416459464473442 9.687e−8 0.7637

iteration method 3 Error method 4 Error
1 0.86472880937314305 5.6e−4 0.97614465853004614 1.1e−1

2 0.864218072350900413 5.3e−5 0.8647288093731429 5.6e−4

3 0.86416540914490367 9.1e−7 0.86455496234826413 3.9e−4

and
X(0) = 0, X(1) =

1
2
(1 − 1

e
)2.

The analytical solution is given as follow

X(t) = 1 − 1
2
et−1 + (

1
2e

− 1)e−t,

U(t) = 1 − et−1.

By using step 2 in the algorithm 1, the first approximation of state is

X1(t) = a2t
2 + (

1
2
(1 − 1

e
)2 − a2)t. (5.16)

From Eq.(5.15), we have

U1(t) = a2t
2 + (

1
2
(1 − 1

e
)2 + a2)t+

1
2
(1 − 1

e
)2 − a2, (5.17)

replacing Eqs,(5.16) and (5.17) into Eq.(5.14), we obtain

J(a2) = −
(11a2

2)

60
− (1351238864942579a2)

9007199254740992
+

7685118370615543
144115188075855872

,

then β = −20268582974138685
49539595901075456 minimize the functional J , then J(β) = 0.084015260058600. By

replacing this β in (5.16) and (5.17), we obtain the approximation of state and control for the
first iteration as

X1(t) =
241328077520635115
396316767208603648

t− 162148663793109465
396316767208603648

t2,

and

U1(t) =
241328077520635115
396316767208603648

− 162148663793109465
396316767208603648

t2 − 82969250065583815
396316767208603648

t.

The state in the second iteration is as follows

X2(t) = X1(t) +
3∑

i=1

aiBi(t).

So we obtain

X2(t) =
25193449822394525
774619135907725312

t3 − 487736024202670395
1065101311873122304

t2 +
1331779410179206215
2130202623746244608

t,

and

U2(t) =
25193449822394525

774619135907725312
t3 − 3070504349482343835

8520810494984978432
t2 − 619164686631475365

2130202623746244608
t

+
1331779410179206215
2130202623746244608

.
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For the third iteration, we have

X3(t) = − 2432229956896641975
72129651631965863936

t4 +
155023174690989443975
1550787510087266074624

t3 − 772895184127021458075
1550787510087266074624

t2

+
1959987998850235370025
3101575020174532149248

t.

Figures 13-16 show the results of the 3rd iteration, the approximate solution in these figures
agree with exact solution compared with the results obtained in [11]. The optimal cost functions
J obtained by different approximations in this example are shown in Table 4. In the 3rd iteration
the error of the proposed method by Bernoulli polynomials is 1.128e−9, which is less than the
errors obtained by [11] (method 3), and also the errors of [18] (method 4). The exact value of
performance index is J = 0.08404562036228915255025925.
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Figure 13. Solution of the 3rd iteration by al-
gorithm 1 and 2 compared with analytical so-
lution and state variable of method 3 for ex-
ample 4.
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Figure 14. Solution of the 3rd iteration by al-
gorithm 1 and 2 compared with analytical so-
lution and state variable of method 3 for ex-
ample 4.
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Figure 15. Control of the 3rd iteration by al-
gorithm 1 and 2 compared with the exact con-
trol and control of method 3 for example 4.
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Figure 16. Control of the 3rd iteration by al-
gorithm 1 and 2 compared with the exact con-
trol and control of method 3 for example 4.

Example 5.5. Let consider the problem [17]

min
U(t)

∫ 1

0
(U(t)2 + (2 −X(t))2)dt, t ∈ [0, 1], (5.18)

such that
U(t) = Ẋ(t) + 0.25

√
X(t), (5.19)

and
X(0) = 0, X(1) = 2.
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Table 4. The optimal cost function J for Example 4.
iteration algorithm1 Error CPU algorithm2 Error CPU

1 0.08401526005860089 3.036e−5 0.1948 0.08401526005860088 3.036e−5 0.3098
2 0.084042334406979243 3.285e−6 0.3779 0.084042334406979238 3.285e−6 0.4515
3 0.084045619233479093 1.128e−9 0.6088 0.084045619233479088 1.128e−9 0.6901

iteration method 3 Error method 4 Error
1 0.0840152600586009081 3.04e−5 0.05332622101 3.0e−2

2 0.0840423344069792326 3.28e−6 0.084015260058600 3.28e−5

3 0.0840455805896822398 4.0e−8 0.08402496180 2.0e−5

The analytical solution is

Xex(t) =
et+1 + 63et − 63e−t+2 − e−t+1 + 63e2 − 63

32(e2 − 1)
,

Uex(t) =
et+1 + 63et + 63e−t+2 + e−t+1

32(e2 − 1)
+ 0.25

√
Xex(t)

The first approximation of state using the algorithm one is given by

X1(t) = a2t2 + (2 − a2)t (5.20)

From Eq.(5.19), we have

U1(t) = 2a2t+ (2 − a2) + 0.25
√
a2t2 + (2 − a2)t, (5.21)

replacing Eqs,(5.20) and (5.21) into Eq.(5.18), we obtain

J(a2) =
11
30

a2
2 +

31
96

a2 +
2
√

2
3

+
259
48

,

then β = −155
352 minimize the functional J . By replacing this β in (5.20) and (5.21), we obtain the

approximation of state and control for the first iteration as

X1(t) =
859
352

t− 155
352

t2,

and

U1(t) =
859
352

− 155
176

t+ 0.25

√
859
352

t− 155
352

t2.

The state in the second iteration is as follows

X2(t) = X1(t) +
3∑

i=1

aiBi(t).

So we obtain
X2(t) =

14
43

t3 − 14057
15136

t2 +
39401
15136

t,

and

U2(t) =
42
43

t2 − 14057
7568

t+
39401
15136

+ 0.25

√
14
43

t3 − 14057
15136

t2 +
39401
15136

t.

For the third iteration we have

X3(t) = − 2325
64064

t4 +
548423

1377376
t3 − 334793

344344
t2 +

7190977
2754752

t.

and

U3(t) = − 2325
16016

t3 +
1645269
1377376

t2 − 334793
172172

t+
7190977
2754752

+ 0.25
√
X3(t)
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Figure 17 shows the first three iterations of state variables, using algorithm one.
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Figure 17. The first three iterations of state variable by algorithm 1 for Example 5.

Figure 18 shows the results of the 3rd iteration, the approximate solution in these figures
agree well with the exact solution.
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Figure 18. State variable and control of the 3rd iteration by algorithm 1 compared with the exact
solutions for Example 5.

Example 5.6. [12] Consider the following problem of minimization

J =
1
2

∫ 2

0
U(s)2ds, s ∈ [0, 2], (5.22)

such that
U(s) = Ẋ(s) + Ẍ(s), (5.23)

and
X(0) = 0, Ẋ(0) = 0, X(2) = 5, Ẋ(2) = 2. (5.24)

The exact solution is

X(t) = −6.103 + 7.289s+ 6.696e−s − 0.593es,

U(t) = 7.289 − 1.186es.

To use the Bernoulli polynomials, we have to change the interval [0, 2] into [0, 1], so we intro-
duce the following transformation s = 2t. The optimal control problem in (5.22)-(5.24) can be
achieved as follows
minimize:

J =

∫ 1

0
U(t)2dt, t ∈ [0, 1], (5.25)
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subject to

U(t) =
1
2
Ẋ(t) +

1
4
Ẍ(t), (5.26)

with
X(0) = 0, Ẋ(0) = 0, X(1) = 5, Ẋ(1) = 4. (5.27)

The first approximation of X(.) is given by

X1(t) =
4∑

i=0

aiBi(t), (5.28)

using boundary conditions (5.27), we obtain
a0 − a1

2 + a2
6 − a4

30 = 0,
a0 +

a1
2 + a2

6 − a4
30 = 5,

a1 − a2 +
a3
2 = 0,

a1 + a2 +
a3
2 = 4.

(5.29)

The solution of this system is given as

a0 =
13
6

+
a4

30
,

a1 = 5,

a2 = 2,

a3 = −6. (5.30)

Substituting Eq (5.30) into (5.28) yields

X1(t) =
a4

30
+ 11t2 − 6t3 + a4(t

4 − 2t3 + t2 − 1
30

). (5.31)

From Eq (5.26), we have

U1(t) = 2t+
a4

4
(12t2 − 12t+ 2) +

a4

2
(4t3 − 6t2 + 2t)− 9t2 +

11
2
, (5.32)

substituting Eq (5.32) into (5.22), we obtain J as a function of a4 :

J(a4) =
23

420
a2

4 −
a4

15
+

1007
60

,

the value which minimize J is β = 14
23 , then J(β) = 7711

460 . By replacing this β in(5.31) and
(5.32), and using the transformation t = s

2 , we obtain the approximation of state and control for
the first iteration as :

X1(s) =
7

184
s4 − 83

92
s3 +

267
92

s2,

and
U1(s) =

7
46

s3 − 9
4
s2 +

9
23

s+
267
46

.

The state in the second iteration is written as follows

X2(t) = X1(t) +
5∑

i=1

aiBi(t). (5.33)

So we obtain
X2(s) =

−27
752

s5 +
3763
17296

s4 − 5143
4324

s3 +
6585
2162

s2,

and
U2(t) =

−135
752

s4 +
7

46
s3 − 45

47
s2 − 2259

2162
s+

6585
1081

.
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For the third iteration, we have

X3(s) =
539

436080
s6 − 295961

6831920
s5 +

318991
1366384

s4 − 1233367
1024788

s3 +
1302347
426995

s2,

and
U3(s) =

539
72680

s5 − 135
752

s4 +
245

3634
s3 − 138197

170798
s2 − 957447

853990
s+

2604694
426995

.

The results of the 3rd iteration are shown in Figures 19-22.
The optimal cost function J obtained by different approximations by the algorithm 1, algorithm
2, method of [11] (method 3) and method of [12] (method 5) are shown in Table 5. The exact
value of performance index is J = 16.74543859355000425312.
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3
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Exact solution 

Bernoulli approximation 

Chebyshev approximation 

Orthogonal Bernoulli approximation 

Figure 19. Solution of the 3rd iteration by al-
gorithm 1 and 2 compared with analytical so-
lution and state of method 3 for example 6.
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Exact solution 

Bernoulli approximation 

Chebyshev approximation 
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Figure 20. Solution of the 3rd iteration by al-
gorithm 1 and 2 compared with analytical so-
lution and state of method 3 for example 6.
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Figure 21. Control of the 3rd iteration by al-
gorithm 1 and 2 compared with the exact con-
trol and control of method 3 for example 6.
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Exact control

Bernoulli approximation

Chebyshev approximation 

Orthogonal Bernoulli approximation 

Figure 22. Control of the 3rd iteration by al-
gorithm 1 and 2 compared with the exact con-
trol and control of method 3 for example 6.

From all the numerical tests, we can conclude the following

• The approximation using Bernoulli polynomials and OBP yields similar results. However,
the Bernoulli polynomial approximation requires less CPU time compared to OBP.

• The numerical results obtained using the proposed technique are superior to those in refer-
ences [11, 18].

• The proposed algorithms demonstrate rapid error reduction with each successive iteration.

• In Example 5.5, the numerical solution of the state and control variables obtained by the
proposed method closely approximates the exact solution by the third iteration and can be
further improved with at least five iterations.
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Table 5. The optimal cost function J for Example 5.
iteration algorithm1 Error CPU algorithm2 Error CPU

1 16.763043478260869 1.76e−2 0.3065 16.763043478260869 1.764e−2 0.4577
2 16.75073344786573 5.29e−3 0.4487 16.75073344786573 5.29e−3 0.5497
3 16.750725258968070 5.28e−3 0.6996 16.750725258968070 5.28e−3 0.7808

iteration method 3 Error method 5 Error
1 16.763043478260869 1.76e−2 16.76304348 1.8e−2

2 16.75073344786573 5.29e−3 16.75073345 5.3e−3

3 16.7507252837036058 5.28e−3 16.75072526 5.2e−3

6 Conclusion

This study employed a parametrization technique using Bernoulli and orthogonal Bernoulli poly-
nomials to approximate the state variable and solve optimal control problems with boundary
conditions. These polynomials transformed the control problem into an optimization problem.
In computational experiments, the proposed method was tested on problems involving finding
the state variable and optimal control at various steps. The results demonstrated high precision,
confirming the efficiency of the proposed algorithms and illustrating superior performance com-
pared to other techniques in the literature [8, 11, 18, 28, 30]. The two approaches had lower
computational costs than control parametrization, with a small number of Bernoulli or OBP
polynomials. Both approximations yielded similar numerical results for the first three iterations.
Rapid convergence from one iteration to the next was also observed. However, for nonlinear
constraints, the convergence accuracy was slightly less than for linear constraints in optimal
control problems. The convergence of the two algorithms was thoroughly investigated, show-
ing their applicability to both constrained and unconstrained optimal control problems. Future
research will focus on using this approach to solve game control problems.
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