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Abstract Ostrowski’s type inequalities have been studied extensively in the last few decades
by various mathematicians, because they play a vital role in the developments of mathematical
inequalities. In this paper, we develop new inequalities through the utilization of a new identity
under the conditions ý′ ∈ L1, ý

′ ∈ L2, and ý′′ ∈ L2 for 0 < h ≤ 1. Furthermore, we provide
applications for cumulative distribution functions. Some mathematical models are also presented
at the end.

1 Introduction

Inequalities provide a versatile tool for dealing with uncertain or variable quantities and are
integral to many branches of mathematics. This subject has found applications in probabil-
ity, mathematical economics, game theory, control theory, variational methods, operations re-
search, and statistics. They allow mathematicians, scientists, and engineers to reason about
relationships, make informed decisions, and solve a wide range of problems. Overall, estima-
tion is a powerful tool that complements exact calculations and enhances your problem-solving
toolkit. Researchers [1, 2, 3, 4, 5, 6, 7, 8, 9] continue to explore and establish new inequal-
ities and refine existing ones to address emerging challenges and open problems across these
fields. Qayyum et al. [10, 11, 12] extended Ostrowski inequalities and offered a general-
ized form of Ostrowski-type inequalities of twice-differentiable mappings. A few researchers
[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] also worked on the new development in this
field.

2 Main Findings

Before we prove our primary findings, we have to prove the following lemma. Subsequently,
utilizing this lemma, we will generate our innovative results.

Lemma 2.1 Letf : [ς, τ ] → R be such that f
′

is absolutely continuous on [ς, τ ] .Define the
kernel P (υ, σ) as:

P (υ, σ) =


σ − hς; σ ∈ (ς, υ]

σ − hτ ; σ ∈ (υ, τ ]

(2.1)

∀υε
[
ς, ς+τ2

]
and 0 < h ≤ 1.

Proof:
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By applying integration by parts on (2.1), we get

τ∫
ς

P (υ, σ)f
′
(σ) dσ (2.2)

= h (τ − ς) f (υ) + (1− h) (τf (τ)− ςf (ς))−
τ∫
ς

f (σ) dσ.

Now, we’re going to use three different conditions.
2.1 Case For L∞ Norm

Theorem 2.1.1 Let f : [ς, τ ]→ R be differentiable mapping on (ς, τ) and f
′

: (ς, τ)→ R is
bounded i.e.,

∥∥∥f ′
∥∥∥
∞

= sup
σ∈(ς,τ)

∣∣∣f ′
(σ)
∣∣∣ <∞. Then:

∣∣∣∣∣∣f (υ) + 1− h
h (τ − ς)

(τf (τ)− ςf (ς))−
1

h (τ − ς)

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣ (2.3)

≤ τ − ς
h

[
1
4

(
h2 + (1− h)2 ς2 + τ 2

(τ − ς)2

)
+

(
υ − h ς+τ2

)2

(τ − ς)2

]∥∥∥f ′
∥∥∥
∞
.

∀ σ ∈ [ς, τ ] , υε
[
ς, ς+τ2

]
and 0 < h ≤ 1.

Proof: As we have by (2.2)∣∣∣∣∣∣f (υ) + 1− h
h (τ − ς)

(τf (τ)− ςf (ς))−
1

h (τ − ς)

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣
=

1
h (τ − ς)

∣∣∣∣∣∣
τ∫
ς

P (υ, σ)f
′
(σ) dσ

∣∣∣∣∣∣
≤ 1

h (τ − ς)

∥∥∥f ′
∥∥∥
∞

τ∫
ς

P (υ, σ)dσ

=
1

h (τ − ς)

∥∥∥f ′
∥∥∥
∞

 υ∫
ς

(σ − hς) dσ +

τ∫
υ

(σ − hτ) dσ


=

1
h (τ − ς)

∥∥∥f ′
∥∥∥
∞

×

[
(υ − hς)2

2
+

(υ − hτ)2

2
+

(ς − hς)2

2
+

(τ − hτ)2

2

]
.

Now, observe that

(υ − hς)2

2
+

(υ − hτ)2

2
=

(
υ − hς + τ

2

)2

+
1
4
h2 (τ − ς)2

and
(ς − hς)2

2
+

(τ − hτ)2

2
=

1
4
(1− h)2 (

ς2 + τ 2) .
By using above the equations we get the inequality (2.3).



804 Muawwaz, Maaz, Qayyum, Ahmad, Faiz, Mehmoob

Corollary 2.1.2 If we put υ = ς in (2.3), we get∣∣∣∣∣∣f (ς) + 1− h
h (τ − ς)

(τf (τ)− ςf (ς))−
1

h (τ − ς)

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣ (2.4)

≤ τ − ς
h

[
1
4

(
h2 + (1− h)2 ς2 + τ 2

(τ − ς)2

)
+

(
ς − h ς+τ2

)2

(τ − ς)2

]∥∥∥f ′
∥∥∥
∞
.

Corollary 2.1.3 If we put υ = τ in (2.3), we get∣∣∣∣∣∣f (τ) + 1− h
h (τ − ς)

(τf (τ)− ςf (ς))−
1

h (τ − ς)

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣ (2.5)

≤ τ − ς
h

[
1
4

(
h2 + (1− h)2 ς2 + τ 2

(τ − ς)2

)
+

(
τ − h ς+τ2

)2

(τ − ς)2

]∥∥∥f ′
∥∥∥
∞
.

Remark 2.1.4
If we put h = 1 in (2.3), we get∣∣∣∣∣∣f (υ)− 1

τ − ς

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣ ≤ (τ − ς)

[
1
4
+

(
υ − ς+τ

2

)2

(τ − ς)2

]∥∥∥f ′
∥∥∥
∞
,

which is the main Ostrowski inequality. Hence, for different values of h, we can obtain abundant
results.

2.2 Case For L1 Norm

Theorem 2.2.1 Let f : [ς, τ ]→ R be continuous on [ς, τ ] , single differentiable on (ς, τ) and
f

′ ∈ L1 (ς, τ) . Then:∣∣∣∣∣∣f (υ) + 1− h
h (τ − ς)

(τf (τ)− ςf (ς))−
1

h (τ − ς)

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣ (2.6)

≤

1
2
+

∣∣∣υ − (3h−2)ς+hτ
2

∣∣∣
h (τ − ς)

∥∥∥f ′
∥∥∥

1
.

∀ σ ∈ [ς, τ ] , υε
[
ς, ς+τ2

]
and 0 < h ≤ 1.

Proof: As we have by (2.2)∣∣∣∣∣∣f (υ) + 1− h
h (τ − ς)

(τf (τ)− ςf (ς))−
1

h (τ − ς)

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣
=

1
h (τ − ς)

∣∣∣∣∣∣
τ∫
ς

P (υ, σ)f
′
(σ) dσ

∣∣∣∣∣∣ .
=

1
h (τ − ς)

∣∣∣∣∣∣
υ∫
ς

(σ − hς) f
′
(σ) dσ +

τ∫
υ

(σ − hτ) f
′
(σ) dσ

∣∣∣∣∣∣ .
≤ 1
h (τ − ς)

 υ∫
ς

(σ − hς)
∣∣∣f ′

(σ)
∣∣∣ dσ +

τ∫
υ

(σ − hτ)
∣∣∣f ′

(σ)
∣∣∣ dσ

 .
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=
1

h (τ − ς)

(υ − hς) υ∫
ς

∣∣∣f ′
(σ)
∣∣∣ dσ + (hς − ς)

υ∫
ς

∣∣∣f ′
(σ)
∣∣∣ dσ

+(τ − hτ)
τ∫
υ

∣∣∣f ′
(σ)
∣∣∣ dσ + (hτ − υ)

τ∫
υ

∣∣∣f ′
(σ)
∣∣∣ dσ

 .

=
1

h (τ − ς)

(υ − hς) υ∫
ς

∣∣∣f ′
(σ)
∣∣∣ dσ + (hτ − υ)

τ∫
υ

∣∣∣f ′
(σ)
∣∣∣ dσ

+ς (h− 1)

υ∫
ς

∣∣∣f ′
(σ)
∣∣∣ dσ + τ (1− h)

τ∫
υ

∣∣∣f ′
(σ)
∣∣∣ dσ

 .

≤ 1
h (τ − ς)

[max {(υ − hς) , (τ − hυ)}+ max {ς (h− 1) , τ (1− h)}]

×

 υ∫
ς

∣∣∣f ′
(σ)
∣∣∣ dσ +

τ∫
υ

∣∣∣f ′
(σ)
∣∣∣ dσ

 .
Now, observe that

max {(υ − hς) , (hτ − υ)} = h
τ − ς

2
+

∣∣∣∣υ − hς + τ

2

∣∣∣∣
and

max {(hς − ς) , (τ − hτ)} = ς (h− 1) .

By using the above equations, we get the inequality (2.6).

Corollary 2.2.2
If we put υ = ς in (2.6), we get∣∣∣∣∣∣f (ς) + 1− h

h (τ − ς)
(τf (τ)− ςf (ς))−

1
h (τ − ς)

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣ (2.7)

≤

1
2
+

∣∣∣hτ−(4−3h)ς
2

∣∣∣
h (τ − ς)

∥∥∥f ′
∥∥∥

1
.

Corollary 2.2.3 If we put υ = τ in (2.6), we get∣∣∣∣∣∣f (τ) + 1− h
h (τ − ς)

(τf (τ)− ςf (ς))−
1

h (τ − ς)

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣ (2.8)

≤

1
2
+

∣∣∣ (2−h)τ+(2−3h)ς
2

∣∣∣
h (τ − ς)

∥∥∥f ′
∥∥∥

1
.

Remark 2.2.4 If we put h = 1 in (2.6), we get∣∣∣∣∣∣f (υ)− 1
τ − ς

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣ ≤
[

1
2
+

∣∣υ − ς+τ
2

∣∣
τ − ς

]∥∥∥f ′
∥∥∥

1
.
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2.3.Case For Lp Norm

Theorem 2.3.1
Let f : [ς, τ ]→ R be continuous on [ς, τ ] , single differentiable on (ς, τ) and f

′ ∈ Lp (ς, τ) .
Then: ∣∣∣∣∣∣f (υ) + 1− h

h (τ − ς)
(τf (τ)− ςf (ς))−

1
h (τ − ς)

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣ (2.9)

≤ 1
h (τ − ς)

[
(υ − hς)q+1 + (hτ − υ)q+1 + (τ q+1 − ςq+1)(1− h)q+1

q + 1

] 1
q ∥∥∥f ′

∥∥∥
p
.

∀ σ ∈ [ς, τ ] , υε
[
ς, ς+τ2

]
and 0 < h ≤ 1.

Proof: As we have by (2.2)∣∣∣∣∣∣f (υ) + 1− h
h (τ − ς)

(τf (τ)− ςf (ς))−
1

h (τ − ς)

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣
=

1
h (τ − ς)

∣∣∣∣∣∣
τ∫
ς

P (υ, σ)f
′
(σ) dσ

∣∣∣∣∣∣ .

≤ 1
h (τ − ς)

 τ∫
ς

P q(υ, σ)dσ

 1
q ∥∥∥f ′

∥∥∥
p
.

=
1

h (τ − ς)

 υ∫
ς

(σ − hς)qdσ +

τ∫
υ

(σ − hτ)qdσ

 1
q ∥∥∥f ′

∥∥∥
p
.

Now, observe that
υ∫
ς

(σ − hς)qdσ +

τ∫
υ

(σ − hτ)qdσ

=
(υ − hς)q+1

q + 1
+

(hτ − υ)q+1

q + 1
+

(hς − ς)q+1

q + 1
+

(τ − hτ)q+1

q + 1
.

By using the above equations, we get the inequality (2.9).

Corollary 2.3.2 If we put υ = ς in (2.9), we get∣∣∣∣∣∣f (ς) + 1− h
h (τ − ς)

(τf (τ)− ςf (ς))−
1

h (τ − ς)

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣ (2.10)

≤ 1
h (τ − ς)

[
(hτ − ς)q+1 + τ q+1(1− h)q+1

q + 1

] 1
q ∥∥∥f ′

∥∥∥
p
.

Corollary 2.3.3 If we put υ = τ in (2.9), we get∣∣∣∣∣∣f (τ) + 1− h
h (τ − ς)

(τf (τ)− ςf (ς))−
1

h (τ − ς)

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣ (2.11)

≤ 1
h (τ − ς)

[
(τ − hς)q+1 − ςq+1(1− h)q+1

q + 1

] 1
q ∥∥∥f ′

∥∥∥
p
.
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Remark 2.3.4
If we put h = 1 in (2.9), we get∣∣∣∣∣∣f (υ)− 1

τ − ς

τ∫
ς

f (σ) dσ

∣∣∣∣∣∣ ≤ 1
τ − ς

[
(υ − ς)q+1 + (τ − υ)q+1

q + 1

] 1
q ∥∥∥f ′

∥∥∥
p
.

3 An Application to Cumulative Distribution Function

Consider a random variable denoted by υ, which is defined over a bounded interval [ς, τ ] . This
random variable is characterized by a probability density functionf : [ς, τ ] → [0, 1] . Addition-
ally, it possesses a cumulative distributive function, commonly referred to as the cumulative
distribution function.

F (υ) = Pr (υ ≤ υ) =
∫ υ

ς

F (σ) dσ, (3.1)

F (τ) = Pr (υ ≤ τ) =
∫ τ

ς

F (u)du = 1. (3.2)

Theorem 3.1 Under the supposition outlined in Theorem 1, we can establish the subsequent
inequality, which remains holds.∣∣∣∣ τ − E (υ)

h (τ − ς)
− ϕ (υ)−

1− h
h (τ − ς)

(τϕ (τ)− ςϕ (ς))

∣∣∣∣ (3.3)

≤ τ − ς
h

[
1
4

(
h2 + (1− h)2 ς2 + τ 2

(τ − ς)2

)
+

(
υ − h ς+τ2

)2

(τ − ς)2

]∥∥∥F ′
∥∥∥
∞

∀ σ ∈ [ς, τ ] , υε
[
ς, ς+τ2

]
and 0 < h ≤ 1. Where E (υ) is the expectation of υ.

Proof: By (2.3), on choosing f = ϕ and using the fact

E(υ) =

∫ τ

ς

σdF (σ) = τ −
∫ τ

ς

F (σ) dσ.

We obtain (3.3).

Corollary 3.2
If we put υ = ς in (3.3), we get∣∣∣∣ τ − E (υ)

h (τ − ς)
− ϕ (ς)−

1− h
h (τ − ς)

(τϕ (τ)− ςϕ (ς))

∣∣∣∣ (3.4)

≤ τ − ς
h

[
1
4

(
h2 + (1− h)2 ς2 + τ 2

(τ − ς)2

)
+

(
ς − h ς+τ2

)2

(τ − ς)2

]∥∥∥F ′
∥∥∥
∞
.

Corollary 3.3 If we put υ = τ in (3.3), we get∣∣∣∣ τ − E (υ)

h (τ − ς)
− ϕ (τ)−

1− h
h (τ − ς)

(τϕ (τ)− ςϕ (ς))

∣∣∣∣ (3.5)

≤ τ − ς
h

[
1
4

(
h2 + (1− h)2 ς2 + τ 2

(τ − ς)2

)
+

(
τ − h ς+τ2

)2

(τ − ς)2

]∥∥∥F ′
∥∥∥
∞
.

Remark 3.4
If we put h = 1 in (3.3), we get∣∣∣∣τ − E (υ)

τ − ς
− ϕ (υ)

∣∣∣∣ ≤ (τ − ς)

[
1
4
+

(
υ − ς+τ

2

)2

(τ − ς)2

]∥∥∥F ′
∥∥∥
∞
.
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Theorem 3.5 Under the supposition outlined in Theorem 2, we can establish the subsequent
inequality, which remains holds.∣∣∣∣ τ − E (υ)

h (τ − ς)
− ϕ (υ)−

1− h
h (τ − ς)

(τϕ (τ)− ςϕ (ς))

∣∣∣∣ (3.6)

≤
[

1
2
+

υ − ς+τ
2

h (τ − ς)
+
ς (h− 1)
h (τ − ς)

] ∥∥∥F ′
∥∥∥

1
.

∀ σ ∈ [ς, τ ] , υε
[
ς, ς+τ2

]
and 0 < h ≤ 1. Where E (υ) is the expectation of υ.

Proof: By using (2.6) and the same condition that we use in above theorem, we get the re-
quired inequality (3.6).

Corollary 3.6 If we put υ = ς in (3.6), we get∣∣∣∣ τ − E (υ)

h (τ − ς)
− ϕ (ς)−

1− h
h (τ − ς)

(τϕ (τ)− ςϕ (ς))

∣∣∣∣ (3.7)

≤
[
h− 1
h

(
1
2
− ς

τ − ς

)]∥∥∥F ′
∥∥∥

1
.

Corollary 3.7 If we put υ = τ in (3.6), we get∣∣∣∣ τ − E (υ)

h (τ − ς)
− ϕ (τ)−

1− h
h (τ − ς)

(τϕ (τ)− ςϕ (ς))

∣∣∣∣ (3.8)

≤
[
h− 1
h

(
1
2
− τ

τ − ς

)]∥∥∥F ′
∥∥∥

1
.

Remark 3.8
If we put h = 1 in (3.6), we get∣∣∣∣τ − E (υ)

τ − ς
− ϕ (υ)

∣∣∣∣ ≤ [1
2
+
υ − ς+τ

2
τ − ς

] ∥∥∥F ′
∥∥∥

1
.

Theorem 3.9
Under the supposition outlined in Theorem 3, we can establish the subsequent inequality,

which remains holds.∣∣∣∣ τ − E (υ)

h (τ − ς)
− ϕ (υ)−

1− h
h (τ − ς)

(τϕ (τ)− ςϕ (ς))

∣∣∣∣ (3.9)

≤ 1
h (τ − ς)

[
(υ − hς)q+1 + (hτ − υ)q+1 + (τ q+1 − ςq+1)(1− h)q+1

q + 1

] 1
q ∥∥∥F ′

∥∥∥
p
.

∀ σ ∈ [ς, τ ] , υε
[
ς, ς+τ2

]
and 0 < h ≤ 1. Where E (υ) is the expectation of υ.

Proof: By using (2.9) and the same condition that we use in theorem 4, we get the required
inequality (3.9).

Corollary 3.10 If we put υ = ς in (3.9), we get∣∣∣∣ τ − E (υ)

h (τ − ς)
− ϕ (ς)−

1− h
h (τ − ς)

(τϕ (τ)− ςϕ (ς))

∣∣∣∣ (3.10)

≤ 1
h (τ − ς)

[
(hτ − ς)q+1 + τ q+1(1− h)q+1

q + 1

] 1
q ∥∥∥F ′

∥∥∥
p
.
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Corollary 3.11 If we put υ = τ in (3.9), we get∣∣∣∣ τ − E (υ)

h (τ − ς)
− ϕ (τ)−

1− h
h (τ − ς)

(τϕ (τ)− ςϕ (ς))

∣∣∣∣ (3.11)

≤ 1
h (τ − ς)

[
(τ − hς)q+1 − ςq+1(1− h)q+1

q + 1

] 1
q ∥∥∥F ′

∥∥∥
p
.

Remark 3.12
If we put h = 1 in (3.9), we get

∣∣∣∣τ − E (υ)

τ − ς
− ϕ (υ)

∣∣∣∣ ≤ 1
τ − ς

[
(υ − ς)q+1 + (τ − υ)q+1

q + 1

] 1
q ∥∥∥F ′

∥∥∥
p
.

4 Graphical Illustration

4.1 Example

If we suppose f (υ) = sin (υ) also put h = 1
2 , ς = 0, τ = 10 in (2.3) where the left hand side

gives error of an approximation of the integral of the function f (υ) and the right hand side tells
about the error bound, the behavior of this has been shown graphically in following figure.

Figure 1.

4.2 Example

If we suppose f (υ) = sin (υ) also put h = 1
2 , ς = 0, τ = 10 in (2.6) where the left hand side

gives error of an approximation of the integral of the function f (υ) and the right hand side tells
about the error bound, the behavior of this has been shown graphically in following figure.

Figure 2.
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4.3 Example

If we suppose f (υ) = sin (υ) also put h = 1
2 , ς = 0, τ = 10 in (2.9) where the left hand side

gives error of an approximation of the integral of the function f (υ) and the right hand side tells
about the error bound, the behavior of this has been shown graphically in following figure.

Figure 3.

4.4 Example

If we suppose f (υ) = sin (υ) also put h = 1
2 , ς = 0, τ = 10 in (3.3) where the left hand side

gives error of an approximation of the integral of the function f (υ) and the right hand side tells
about the error bound, the behavior of this has been shown graphically in following figure.

Figure 4.

4.5 Example

If we suppose f (υ) = sin (υ) also put h = 1
2 , ς = 0, τ = 10 in (3.6) where the left hand side

gives error of an approximation of the integral of the function f (υ) and the right hand side tells
about the error bound, the behavior of this has been shown graphically in following figure.

Figure 5.
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4.6 Example

If we suppose f (υ) = sin (υ) also put h = 1
2 , ς = 0, τ = 10 in (3.9) where the left hand side

gives error of an approximation of the integral of the function f (υ) and the right hand side tells
about the error bound, the behavior of this has been shown graphically in following figure.

Figure 6.

5 Conclusion remarks

In this paper, we establish novel Ostrowski-type inequalities through the utilization of a newly
derived identity. Furthermore, we explore applications of these inequalities within the context
of cumulative distribution functions. To illustrate our findings, we presented several graphical
representations. The significance of our work lies in its potential to be extended to functions of
bounded variation and applied across other domains, offering a foundation for further research
and development in these areas.
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