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Abstract In this article we have introduced the difference multiple sequence spaces using multiple order difference
operator A¥ on a seminormed space defined by Modulus function. We have made a comparative study on single sequence
spaces, double sequence spaces and triple sequence spaces using the difference operator A , A2 and A? respectively. We
have investigated and proved some new important relations relating to these sequence spaces. Some of their algebraic and
topological properties like solidness, symmetricity, convergence free etc. are also studied. Moreover we try to prove some
new inclusion relations which are related to above mentioned sequence spaces.

1 Introduction

The concept of difference sequence spaces was introduced by Kizmaz [19] for single sequences, for the sequence spaces
co(A) , c(A) and o (A) as follows:

Z(A) = {(zw) € W : (Azyw) € Z}, for Z = ¢y, c and o the spaces of convergent to zero, convergent and bounded
sequences, respectively,

where Ax = Az, = Tw — Ty for all w € N. The above spaces are Banach Spaces normed by llzly, =
|| + sup,, IAz, . This notion was generalized by Et. and Colok [23] as follows:

APx = (APxy,) = (AP 12y, — APy, 1), A% = x and they present the binomial representation as follows:

APz =3P (—1)? < ZZ,’ ) Tyyq forallw € N.

Many other researchers specially Et. and Esi. [22], Esi and Tripathy [4], Esi and Esi [3], Esi [2], Tripathy [12], Hazarika
and Esi [16] was extended the idea of Kizmaz [19]. The notion of difference sequence space was introduced by Tripathy and
Esi [13] as Ayz = (AvTw) = Tw — Tw+o forallw € Nand v € N be fixed. This topics was furthur studied by Tripathy
and Sarma [15] and they established difference double sequence spaces as follows: .

Z(A) = {(zvw) € W : (Azyw) € Z}, for Z = c2,c3,12,, the spaces of convergent, null and bounded double
sequences respectively, where ATy = Tov,w — Ty, w1 — Totl,w + Tosl,w+1 forallv,w € N.

At the preliminary level Sahiner et. al. [7] and Dutta et. al. [8] and many other researchers established the concept
of triple sequences in different notations. Statistical convergence of triple sequences was studied by Savas and Esi [18] on
probabilistic normed space. The same was studied by Esi [1] on topological groups. Recently in 2020 Saha et. al. [24]
established some interesting result on multiplier Ideal convergent triple sequence spaces of fuzzy fumbers.

On 2015 Debnath and Das [25] work on difference operator A? on triple sequence () as

Azzuvw = Tu,v,w *21u+1,u,w FLut2,0,w *zzu,vﬂ,w JF43Eu+1,v+1,w *2xu+2,v+l,w F 2y v+2,w *zw/u+l,v+2,w +
mu+2,v+2,w72xu,v,w+] +4xqy 41 w1 *zxu+2,v,w+l +41'11.,11+1,w+1 —8T 41 o+ l,w+1 +4$u+2,v+l Jw+1 72$u,v+2,w+1 +
AT 1,042,w+1 202,042, w1 T, 0, w2 — 2Tt 1 v, w2 TTut2,0,w+2 —2Tu, v+ 1, w2 4T 1 v+ 1 w+2 = 2T 42,0+ 1, w2+
T, 042,042 — 2Tyl v+2,w0+2 T Tut2,04+2,w+2-

When A? is replaced A the spaces studied by Debnath, Sarma and Das [26].

Later on Das [11] introduced and investigated the difference triple sequence spaces using the difference operator A3, on
the triple sequence (1w ) and defined as
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A3zuvw = Tu,v,w 731’u,v,w+1 +3xu,v,w+27$u,v,w+3 73-'Eu,v+1,w +9$u,’u+1,w+l 79zu,v+1,’w+2+3xu,v+l,w+3+
3xu,v+2,w - 9mu,v+2,w+l + 9xu,v+2,w+2 - 3mu,v+2,w+3 — Ty, v43,w T 3$u,v+3,w+] - 3Iu,v+3,w+2 + Ty, v43,w4+3 —
3Iu+l,v,w + 9$u+1,v,w+1 - 9xu+l,v,w+2 + 3xu+l,v,w+3 + 9xu+1,v+1,w - 27xu+l,v+1,w+l + 27xu+l,v+l,w+2 -
9Tt 1,0+1,w+3 — ITut1,v+2,w T 27Tut1,042,0+1 = 27Tt 1,042,w+2 T 9wt 1,042,0+3 F3Tut1,043,0 = ITut1,v43,w+1 1
9zu+1,'u+3,w+2_3zu+l,v+3,w+3+3$u+2,v,w _9zu+2,v,w+l+9xu+2,v,w+2_3$u+2,v,w+3_9zu+2,'u+l,w+27$u+2,v+l,w+l_
27Ty 42,04+ 1,w+2 9T 02,011,043 T9Tut 2,042, — 27T 012,042,041 727 T 12,042,042 = 9T ut 2,042,043 — 3w t2,0+3,w+
9$u+2,v+3,w+1 79xu+2,v+3,w+2+3mu+2,v+3,w+37$u+3,v,w+3xu+3,v,w+I *3xu+3,v,w+2+xu+3,v,w+3+3xu+3,v+l,w -
9xu+3,v+l,w+l +9xu+3,v+l,w+2 _3$u+3,v+l,w+3 _3xu+3,v+2,w +9xu+3,v+2,w+l _gxu+3,v+2,w+2 +3xu+3,v+2,w+3 +
Tut3,043,0 — ITutd,vi3,wtl + 3Tut3,043,w42 — Tutd,v+3,wt3-

Then studied some algebric and topological properties related to these spaces.

2 Definitions and Preliminaries

Throughout this article a single sequence is denoted by (x4, ), a double sequence by (Zw, w, ), a triple sequence by (Zw, wyw; )
and a multiple sequence by (xwlw2,,,w k) for a single infinite array of element x,,, € X, where w; € N, , a double infinite
array of elements T, w, € X forall w;,w> € N,, a triple infinite array of elements &, w,w; € X for all wy, ws, w3 € N
and a multiple infinite array of elements v w,...w, € X for all wi,ws,..,wy € N respectively. We consider ¢ as zero
element of X and denoted by § = (8,6, ....). and 6%, a multiple infinite array of 6’s for a single sequence space and multiple
sequence space respectively.

A double sequence (Zw,w, ) is said to be convergent to L in Pringsheim’s sense if for every € > 0, there exists N(e) € N
such that .

|Twwy, — L] < € whenever wy > N, wp > N and we write limw, ,w, —s oo Tw wy = L.

A multiple sequence (xwl wy...w k) is convergent to L in Pringsheim’s sense if for every € > 0, there exists N(e) € N
such that .

|Tw ws...wy, — L| < € whenever w; > N, wy > N,......... ,wi > N and we write
limay w,, ..., wi, — 00 Twyw,...wy, = L.
Note: A multiple sequence of order two or grather is convergent in Pringsheim’s sense may or may not be bounded.

It is clear from the next example.

Example 2.1. Consider the sequence (:Ew1 wy...wy,) defined by

wy, for all wy €N, wy=w;=...=wg =1,
Twjwy.... wy, = 1

P —— otherwise.

Then x4, w,....w, — 0 in Pringsheim’s sense but is unbounded.

Definition 2.2. A multiple sequence (z . wzmwk) is Cauchy sequence if for every € > 0, there exists N(¢) € N such that.

|Twiws...wy, — Tryr...m, | < € Whenever wy > 71 2> N, wp > 72 2> N awg > 1 > N

Definition 2.3. A multiple sequence (Zw,w,...w; ) is bounded if there exists M > 0, such that |Tw,w,...w, | < M for all
WLy Wy e ,wp € N

Definition 2.4. A multiple sequence (Zw,w,...w,,) is converge regularly if it is convergent in Pringsheim’s sense and in ad-
dition the following limits holds:

limw1—>oozw1wzmwk = szwy“wky (wp, w3, ..., wy, € N)
limwzﬂocxwlwzmwk = Lw1w3.<.w;€y (w17w3: oy WE € N)
limw;—)ooxwlwz...wk = Lw1w2w4...wk7 (w17w27w47 S WE € N)-
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limwk—>ooxwlw2.4.wk = Lwlwz...wk,l’ (wl»'w% oy We—1 € N)

Definition 2.5. A multiple sequence space E is solid if (0w ws....wy Tw ws....wy,) € £ whenever (ww,....w,) € E and
for all multiple sequences (w,w,....w;, ) of scalars with |w, w,....w,, | < 1, forall wy, wy, ..., wi € N.

Definition 2.6. A multiple sequence space E is convergence free if (Yww,....w;, ) € E , whenever (Tww,....w k) € F and
Twjwy.... wy, = 0 implies Ywiw,y... wg, = 0.

Definition 2.7. A multiple sequence space E is symmetric if (Zww,....w;,) € E implies ($7r(w1)7r(w2)....7r(wk)) € L,
where 7(wy, wy, ...., wy) are permutation of N x N.... x N.

Definition 2.8. A multiple sequence space E is monotone if it contains the canonical pre-images of all its step spaces.

Definition 2.9. A multiple sequence space E is sequence algebra if (zww,....wy, )s (Ywiw,....wy, )€ E implies (Tw,w,....wy*
ywlwz.“.wk) SR

Definition 2.10. [20] A function f : [0, 00) — [0, co) is Modulus function if it fulfilled the following four conditions:
(1) f(z) =0ifand only if x = 0.
Q2 fle+y) < f(x)+ f(y) forallez > 0and y > 0.
(3) f is increasing.
(4) f is continuous from the right at 0.

A modulus function may not be bounded. For example, f(x) = zP, for 0 < p < 1 is unbounded.

Now we introduced the following difference multiple sequence spaces using multiple order difference operator AF on a
seminormed space (X, q) over the field C of complex numbers with the semi normed g defined by Modulus function f as
follows:

Cg(ﬁ Akvq)={(xw|w2“”wk) € wk : f (q (Akxw|w2...4wk)) = 0} ;
c*(f, Akv‘]):{(wwlwzﬂﬁwk) cwk: f (q (Akxwlwz_mwk - L)) — 0, for some LeX } ,

sup

ll;o(szkvq):{(xwlw2.4.4wk) S wk : f (q (Akzwlwz..“wk)) < OO}

A multiple sequence (Zuw,w,....w; ) € FF(f, A%, @) if (Tw w,....w),) € cF(f, A*, g) if the following limit holds:

Wi, W2, .oy W

Then there exist Lw2w3...wks Lw1w3...wks Lw1w2w4...wky----a Lwlwz...wi,lwiﬂ...wky----a Lwlwz...wk,I € X such
that

limw1—>oof (q (Ak-zwlwzmwk - Lw2w3“,wk)) =0, (w27w37 —, W € N)
limw2—>oof (q (Akxwlwzmwk - Lw]w3...wk)) =0, (wl,w3, e Wi € N)
limw;—)oof (q (Akxwlwg...wk - Lw]w2w4...wk)) =0, (’11)1711)2,’11)47 sy Wl € N)

limwk__n)of (q (Akwwlwzu.wk - Lw1w24.4wk,])) =0, (w17w27 vy W—1 € N)
We also define
KR (8%, @)={ (Pwyw) € W8 F (4 (B Twyusy)) =0 as maz (wr,ws, i) = 00},

FB(f, AR, q)=cF (£, A%, q) N1k (f,A*, q) and cFB (f, AR, q)=ck (£, A%, q) N IE (f,AF, ).
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Where w® denote the set of all multiple sequence of real numbers.

The class of multiple sequences denotes the multiple k*" order difference sequence spaces defined over a seminormed
space for k > 2 are as follows:

c(’)“(f, AF ., q) is null in Pringsheim’s sense, c*(f,A¥, q) is convergent in Pringsheim’s sense, 1%, (f,A¥, g) is bounded
in Pringsheim’s sense, c*T(f, A*, q) is regularly convergent, c(’,“R( f, A%, q) is regularly null, c*B (f, A*, q) is bounded and
convergent and c’gB (f, AF, q) is bounded null .

3 Main Result
k lk CkR C(I)cR CkB

Theorem 3.1. The multiple sequence classes Z(f, Ak q) for Z = cg e I%, and c(’)“B are linear spaces.

Proof. We prove it for I%_(f, A¥, q). The others can be treated similarly.

Let £ = (Twjwy...wp,)» ¥ = Ywjw...wr) € 15, (f, AF, q). We have

sup &
WY, Wy eeeny Wi Fla (A zwwy..awy) } < 00,
3.1
sup k
W, WY, ey Wi Fa (A% ywiws.wy) } < oo
(3.2
Let o, B be scalars then we have by using inequalities (3.1) and (3.2) we have
sup
010 I {q (AFazw wy...wp, + AR BYw w,...wp ) }
sup sup
< W, W, ey W f{q (O{Akwwlwz.“4wk)}+ WL, Wy eeeey W f{q (BAkywlwz....wk)}
sup k sup k
<a W, Wy eeeny W f{q (A zwIwz.”.wk)} +B W, W, e, Wi f{q (A yw|w2...4wk)} < oo.
Therefore ax + By € 15 (f, AF, q).
Thus 15, (f, A*, q) is a linear space.
O

Theorem 3.2. The multiple sequence classes Z(f,A*,q) for Z = c(’f, ckotk PR, c(’}’R, ckB

spaces, semi normed by

and c(’fB are semi normed

Su;
g(ivw]wz....wk): wy, W) P wp, f{q(Akiw]wz....wk)}.
) EREERS]

Proof. Since g is a seminormed, it is clear that g(0%) = 0 and g(—(Tw,wy....wy ) = 9(Twiwy....wy ) forall (Tw,w,....wy,) €
FR(f, A%, q).

Let A € C we have

sup
I @Twiwy...wy,)) = W, W,y eeeny Wi f{q (AAkmw]wz.mwk)}
sup
SN ()

= I)‘l g(ﬂ’»’wlwzu“wk)-
Now let

T = (Twywy..wg ) Y = (Ywywy...cwy,) € S (f,AF, q), then we have

sup

g(ﬂ?u;]wz.mwk) = W, W, ey Wi f{q (Akmwlwz..“wk)},
sup

g(’ywlwz....wk) = Wy, Wy ey W f{q (Akywlw2.4.4wk)}

and we have
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sup
W Wy ey W f {q (Ak(xwlwzm.wk +yw1w2.mwk))}
sup k sup k
< .
= W, wy, e W f {q (A xwlwzn..wk)} + W1, Wy ey W f{q (A yw1w2.4.4wk)}

Now we have

g((-’l‘wlwz..“wk) + (yw1w2.4.4wk))

= ’Lul,wjfl.z.)..,’wk f{q (Ak(xwlwz..”wk +yw|’w2....wk))}
sup sup
= W, Wy ey W S{a (B 2ww,.w) } + W, W2, ey W I (A o)}

g(xwywz....wk) + g(yw]wz....wk)~

Therefore g is a seminorm.

Theorem 3.3. Z(f,A*~1 q) C Z(f,A*,q) for Z = c(’f, ck ik cRR, ch, ckB,c(’)ﬂB and the inclusions are strict.

Proof. We prove this theorem fork = 3 and considering the sequence space cg( f,A%,q) C cg( 1,3, q) and the result for
others can be established similarly.

Let (Tw,wyws) € cg(f7 A2, q), then we have

f (q (A3xw1w2w3 - L)) — 0, as wy, wp, w3 — 00
(3.3)

3 _ 2 — 2 2 2 2
and Aw wyw; = A (ATwjwyw;) = ATw;,wy,ws — ATy, wi+1 — A Twywy 1,05 + ATy 41,w5+1 —
2 2 2 2
A Tw+1,wy, w3 +A Tw;+1,wy,w3+1 +A Twp+1,wy+1,w3 — A Tw+1,wy+1,w3+1 +L-L+L—-L+L—-L+L-L.

Now from the continuity condition of f and from equation (3.3) we have

lim
wy, Wy, W3 — 00 f (q (A3xw1wzw3 - L))

lim
— 2 2 2 2
- Wy, Wa, w3 — 00 f{q(A Twy,wy, w3 — A Twp,wy,wi+1 — A Twy,wy+1,w3 +A Lwy,wy+1,w3+1

— ATy 41,0y, w3 F AP Tao 41,09, w341 F A2 Taoy 41,00041,003 — A2Ta 41,9 +1,ws+1 + L—L+L—L+L—L+L—L)}

N wl,w;i;z Seo d (@ (A@wy wp w0y — L)) - w],w;i;z e (q (ABy, w0p 0541 — L))

- wlywzl,i;r; oo f (@ (A%w) w4105 = L))+ wl7wzl7iz oo (g (A% wy 1,311 — L))

- wlywzfi;z — 00 (@ (8 2wpstpw, = L))+ wl,wzl,i;r; — 00 I (2 (82w, 41,05w541 — L))

* o F (@ (B2, 41,0y +1,05 — L)) tim T (a4 (B2, 11,00p 11,0541 — L))

wi, Wy, w3 —» 00 wi, w2, w3 — 00

=0.
This shows that (w,wyw;) € cg(f, A q).

To show the inclusions are strict we assume the next example.

Example 3.4. Let X = C, f(z) = z and ¢(z) = |z| the triple sequence (Zw,w,w,) defined by
(Twjwyws) = w1 + wy +ws — 2, for all wy, wy, w3z € N.
Now

ATy wywy = (W1 +wy +w3 —2) = 3(w) +wy +w3 — 1) +3(w; +wr+ws) — (wi +wy+ws+ 1) = 3(w; +w) +w3 —
1)+ 9(wy +wy +wz) — 9wy +wsy + w3 + 1) +3(w; +ws + w3 +2) + 3(w; + wy +w3) —9(wy +wy +ws + 1) +9(wy +
wy + w3z +2) —3(w +wy+wsz —3) — (w1 +wr + w3 + 1) +3(w; +wy +wsz +2) —3(wy +wy+ w3z +3) + (w) +wy +ws +
4) =3(w; +wy +ws — 1)+ 9(w; +wy +ws3) — Y w; +war +ws + 1) +3(w; +wz +ws +2) +9(w; +ws + w3 — 27 (w; +
wy +w3 + 1)+27(w1 +w2+w3+2)—9(w1 +wy +ws3 +3) —9(11}1 +wy +w3+ 1)+27(w1 +wy +w3 +2)—27(w1 +wy+
w3 +3) +9(wi +wz +ws +4) +3(w; +wy + w3 +2) — 9w +wz +ws +3) +9(w +wy +w3 +4) = 3(w; +wp +ws +
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5) 43wy +wy +w3) = 9wy +wz +w3 +1) +9(w +wa +ws +2) —3(wy +wz +w3z +3) —Y(wy +wy +wsz +1) +27 (w; +

wy + w3z +2) —27(w; +wy + w3 +3) +9(w +wy +wsz +4) +9(wy +wp +ws +2) — 27 (wy +wp + w3 +3) +27(w; +ws +

w3 +4) —9(w; +wy + w3 +5) — 3(wy +wr + w3 +3) + 9w +war +ws +4) —9(w +wr +wsz +5) +3(wy +wr +ws +

6)—(w1+w2+w3+1)+3(w1+w2+w3+2)—3(w1+w2+w3+3)+(w1+w2+w3+4)+3(w1+w2+w3+2)—9(w1+

wy w3 +3) +9(wi +wz + w3 +4) = 3(w +wy +ws +5) —3(wi +wy +w; +3) +9(w +wy +ws +4) —Y(wy +ws +

w3+5)+3(w; +wy + w3 +6) + (w) +wy +ws +4) —3(wy +wy + w3 +35) +3(wy +wy + w3 +6) — (wy +wy +wz+7) = 0.
We have A3@ ., wyw, = 0, for all wy, wy, w3 € N.

Therefore (Zw,wyw;) € cg(f, A3, q) but (Tw,wyw;) & cg(f, A% q).

Result 3.1.
(i) c(’)“(f, AF | q) C ¢F(f,A*, q) and the inclusion is strict. .
(i) c*B(f, A%, q) C c*(f, A, q) and the inclusion is strict.

(iii) cFE(f, A%, q) C FB(f, A*, q) and the inclusion is strict.
Proof. This inclusions being strict follows from the following examples:

Example 3.5. To prove result (i) . Let X = C, f(z) = :c% and g(x) = || the sequence (Tw,w,....w,, ) defined by
(Twjwy....wy, )= %(—5)“’1*“)2*““*“”6_' , for all wy, ws, ...., w; € N.
Then (Tw,w,....ws,) € ck(f7 Ak, q) but the sequence (Tw,w,....w;,) € c(’f(f, Ak,q).

Hence the inclusion is strict.

Example 3.6. For result (ii), Let X = C, f(z) = 7 and q(x) = |x| the sequence (Zw,w,....w,, ) defined by

wlz, if wp =1 for all  wy, w3z, ....,wg €N,
(mw]wzuuwk) = wa, if w] =Wy = ... = Wk,
wiwy....w, otherwise.

Then (Tw;w,....ws,) € c’“(f7 Ak,q), but the sequence (Tw,w,....w;, ) € ckR(f, Ak,q).

Hence the inclusion is strict.

Result (iii) can be proved by using similar example.

Theorem 3.7. Z(f, A*=! q) C 15 (f,AF,q) for Z = cFE, cé“R, ckB,cé“B and the inclusions are strict.

Proof. The proof of the theorem is easy thus omitted.
O

Result 3.2. The classes of sequences Z( f, Ak q) for Z = ck, cé“, l’;o and c(’)“R are symmetric for k = 1 but the spaces

Z(f, Ak, q) for Z = c(’f, ck, c('fR, ckE c(]fB,ckB and l’go are not symmetric for k > 2.

Proof. The first part of this theorem is easy so omitted we prove it for k > 2.

The proof is followed by the following examples:

Example 3.8. Let X = C, f(z) = x, () = |x| and we consider for k = 3 the sequence (£, w,w;) defined by

1, if w; is even for all wy,wz €N,

2 _
wiw2ws 2, otherwise.

Clearly the sequence (Tw,w,ws )€ Z(f, A3, q), for Z = cg, e, CSR, AR, ch and 358

Consider a rearrange sequence (Yuw, wyws ) Of (Tw,wywsy ) defined by

[ if witwy+ws is odd,
Ywwyws 2, otherwise.
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Here (yw, wyws )¢ Z(f, A3, q), for Z = cO, 3 CSR, B, ch and 38

Hence Z(f, A3, q), for Z = co, I ch, SR, ch and B are not symmetric.

Example 3.9. Let X = C, f(z) = x, q(z) = |x|. We consider the triple sequence (&, w,w,) defined by
Tw wywy = Wiwrws, for all wy, wy, w3 € N.
Clearly the sequence (Tw,w,w; )€l (f, A%, q).
We consider a rearranged sequence (Yuw, wyw; ) Of (Tw,w,ws ) defined by

wlz, if wy; =1 for all wy,w3 €N,
Ywiwywy = w3, if w] = wy = w3,
wiwyws, otherwise.

Then the sequence (Yuw,wyws) & Lo (f5 A%, q).

Hence I3 ((f, A%, q)?) are not symmetric.

O

Result 3.3. The classes of sequences Z(f, A¥, q) for Z = c(’f and l’;o are solid for k = 1 but the spaces Z(f, A, q) for
Z =cl,ck kB, kR kB and kB are not solid for k > 2.

Proof. The first part of this theorem is easy so omitted we prove it for k > 2 .

The proof is followed by the following example:

Example 3.10. Let X = C, f(z) = 3 , q(x) = |z| and we consider for k = 3 the sequence (Zw,w,w;) defined by
Tw wowy = —2, for all w; , Wy, w3 €EN.

Clearly the sequence (Zw,wyw; )€ Z(f, A 3.q), for Z = co, a3, c3R 3R,c(3)B

and 38
Consider the sequence of scalars defined by cvw,wyw; = (=)™ TW2tWs3 for all wy, wy, w3 EN.

Then the sequence (Otw, wyw; Tw,wyw; ) takes the following form

Qo wywy Tw wywy = —2.(=1)witw2tws for all wy, wy, w3EN.
Here (Quw;wyws Tw;wyw Z( A3 forZ = ¢ cz c3R 3R 3Banpd 3B
1waw3z Twjwyws; »4d)s 0> 0 » €

Hence Z(f, A3, q), for Z = co, e ch, B, ch and 3B are not solid.

O

Result 3.4. The classes of sequences Z( f, Ak q) for Z = cg, ck, c(’)“R, ckR c(’fB, ckB and l’;o are not convergence free
for all values of k.

Proof. The proof is followed by the following example:
1
Example 3.11. Let X = C, f(x) = z3, q(x) = || and we consider for k = 3 the sequence (Zw,w,w;) defined by

. _ 0, if w =1, for all wy,ws €N,
Wi 2, otherwise.

Clearly the sequence (Zw,wws )€ Z(f, A3, q), for Z = c(’f,ck ckR kR kB c*B and l’;o.
Let the sequence (Yw, w,w,) be defined by

_ 0, if w s odd for all wy, w3 €N,
Yuwaws wiwyws, otherwise.

Clearly (yw,wyw;)E Z(f,A%,q), for Z = c, cF, chF ckF ckB ckB and ik .
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Hence Z(f, A3, q), for Z = cg, ck, c{)"R, ckE cé“B, c*B and l]go are not convergence free.

O

Theorem 3.12. The classes of sequences Z( f, Ak, q) for Z = c(’)“ ek c(’)“R, ckR c(’fB, c*B and llgo are sequence algebra for
all values of k.

Proof. 1t is obvious:
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