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Abstract Lattices are ubiquitous in mathematics and computer science, with applications in
fields as diverse as order theory, algebra, logic, and computer programming. They provide a
formal framework for reasoning about relations and structures using special maps, making them
an essential tool in both theoretical and applied studies. This paper introduces the concept of
higher bi-derivation as a generalization of higher derivation on a lattice, and it explores some
essential properties for higher bi-derivation.

1 Introduction

The history of the lattice spans several disciplines, including for example mathematics and com-
puter science. Here’s a brief overview:

The notion of lattices in mathematics has its origins in antiquity, with early applications
found in geometry and crystallography. In geometry, a lattice is defined as a regular arrangement
of points or objects in space, often forming a repeating pattern. In crystallography, lattices sig-
nify the regular three-dimensional configuration of atoms or molecules within a crystal structure.

Lattices received significant attention in number theory, particularly through the work of
Gauss and his investigations of quadratic forms. Gauss introduced the concept of Gaussian inte-
gers, which form a two-dimensional lattice in the complex plane. Later mathematicians extended
these ideas to higher dimensions, leading to the study of lattices in n-dimensional Euclidean
space.

Lattices have also found applications in the domain of computer science, particularly in the
study of cryptography and computational complexity theory. In the field of cryptography, lattice-
based cryptography has emerged as a promising alternative to traditional cryptographic systems
based on number theory problems such as factoring and discrete logarithms. Lattice-based cryp-
tography provides security based on the difficulty of certain lattice problems, such as the shortest
vector problem (SVP) and the closest vector problem (CVP).

The triple (L,∧, V ) is a nonempty set L endowed with two operations ∧ and V is called a lat-
tice if satisfies the following conditions: (i)x∧x = x, x∨x = x, (ii)x∧y = y∧x, x∨y = y∨x,
(iii)(x∧y)∧z = x∧(y∧z), (x∨y)∨z = x∨(y∨z) and (iv)(x∧y)∨x = x, (x∨y)∧x = x for
all x, y, z ∈ L. When the binary relation "≤" which is defined by: x ≤ y if and only if x∧ y = x
and x∨ y = y. Then (L,∧, V,≤) is called a poset and for any x, y ∈ L, x∧ y is the g. l. b of x, y
and x ∨ y is the l. u. b. of x, y [[8], Bikhoof 1940].

Lattices play an important role in many areas, including information retrieval (see [9], Carpineto
et al. 1996), information access control (see [17], Sandhu 1996), cryptanalysis (see [14], Durfee
2002), and information theory (see [7], Bell 2003). More recently, extensive research has been
conducted on the properties of lattices with significant contributions from numerous scholars in-
cluding (see [8], Birkhoof 1940, [1], Abbott 1969, [5], Balbes and Dwinger 1974, [9], Carpineto
and Romano 1996, [14], Durfee 2002, [7], Bell 2003, [13], Degang et al. 2006, [16], and Honda
and Grabisch 2006). In 1975, the notion of lattice derivation was introduced and developed by
Szász (see reference [18]):



862 Enaam Farhan1, Mazen Omran Karim2 and Abdelkarim Boua3

Let L be a lattice and d : L → L be a function, then d is said to be a derivation on L if
d(x∧y) = (x∧d(y))∨ (d(x)∧y), he established the main properties of lattice derivations. Until
then, many researchers had studied derivations and generalizations of derivations on a lattice and
discussed some related properties ([15], Ferrari 2001, [12], Çeven and Öztürk 2008, [19], Xin
et al. 2008, [10], Çeven 2009, [2], Alshehri 2010, [3], Aşci et al. 2011, Chaudhry et al. 2011,
[4], Aşci et al. 2013, [6], Balogun 2014, [11], Yilmaz Çeven, 2017). As a generalization of
derivation on a lattice, the notion of higher derivation of a lattice is first introduced by Yilmaz
Çeven in 2017, he investigates some related properties for the higher derivation on a lattice:

Let L be a lattice, I = {0, 1, 2, . . . , t} or I = N = {0, 1, 2, . . .} (with t → ∞ in this case)
and D = {dn}n∈I be a family of mappings from L into L such that d0 = idL. D is said
to be a higher derivation of length t on L if for every n ∈ I and x, y, z, w ∈ L, we have:
dn(x ∧ y) = ∨n=i+j (di(x) ∧ dj(y)) Motivated by the above studies, this paper introduces the
notion of higher bi-derivations of a lattice and explores some interesting results for higher bi-
derivations on a lattice.

2 Preliminaries

Definition 2.1. Let L be a lattice, I = {0, 1, 2, . . . , t} or I = N = {0, 1, 2, . . .} (with t → ∞ in
this case) and D = {dn}n∈I be a family of mappings from L×L into L such that d0(x, y) = x∧y.
D is said to be a higher bi-derivation of length t on L if for every n ∈ I and x, y, z, w ∈ L

dn(x ∧ y, z ∧ w) = ∨
n=i+j

(di(x, z) ∧ dj(y, w)) (2.1)

From (2.1), we can get the following result

dn(x ∧ y, z ∧ w) = (d0(x, z) ∧ dn(y, w)) ∨ (d1(x, z) ∧ dn−1(y, w)) ∨ . . .

∨(dn(x, z) ∧ d0(y, w))

it is obvious that

di(x, z) ∧ dj(y, w) ≤ dn(x ∧ y, z ∧ w), where n = i+ j, (2.2)

and

dn(x, y) = dn(x ∧ x, y ∧ y)

= (d0(x, y) ∧ dn(x, y)) ∨ (d1(x, y) ∧ dn−1(x, y)) ∨ . . .

∨(dn(x, y) ∧ d0(x, y)) (2.3)

If n is an even number, then

dn(x, y) = (d0(x, y) ∧ dn(x, y)) ∨ (d1(x, y) ∧ dn−1(x, y)) ∨ . . . ∨ dn
2
(x, y)

Therefore,
dn

2
(x, y) ≤ dn(x, y) (2.4)

If n is an odd number, we get

dn(x, y) = (d0(x, y)∧dn(x, y))∨(d1(x, y)∧dn−1(x, y))∨. . .∨(dn−1
2
(x, y)∧(dn+1

2
(x, y)). (2.5)

Definition 2.2. Let L be a lattice and D = {dn}n∈I be a higher bi-derivation of length t on L.
Define H = {hn}n∈I a family of mappings from L into L such that hn(x) = dn(x, x), i.e. hn is
the trace of dn for every n ∈ I , then H is called a trace of D.

For every n ∈ I and x, y ∈ L, we have h0(x) = d0(x, x) = x. It follows that h0 = IhL and

h1(x ∧ y) = d1(x ∧ y, x ∧ y)

= (d0(x, x) ∧ d1(y, y)) ∨ (d1(x, x) ∧ d0(y, y))

= (h0(x) ∧ h1(y)) ∨ (h1(x) ∧ h0(y))

= (x ∧ h1(y)) ∨ (h1(x) ∧ y).
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Then, h1 is a derivation on L

hn(x ∧ y) = dn(x ∧ y, x ∧ y)

= ∨
n=i+j

(di(x, x) ∧ dj(y, y))

= ∨
n=i+j

(hi(x) ∧ hj(y)).

Therefore, H is a higher derivation of length t on L.

Example 2.3. Let L = {0, a, b, 1} be a lattice with the following figure:

Let D = {d0, d1, d2, d3} be a family of mappings from L × L into L. We define d0, d1, d2, d3 in
the following table

L× L d0 d1 d2 d3

(0, 0) 0 0 0 0
(0, a) 0 0 0 0
(0, b) 0 0 0 0
(0, 1) 0 0 0 0
(a, 0) 0 0 0 0
(a, a) a b b a

(a, b) b b b b

(a, 1) a 0 b a

(b, 0) 0 0 0 0
(b, a) b b b b

(b, b) b b b b

(b, 1) b 0 b b

(1, 0) 0 0 0 0
(1, a) a 0 b a

(1, b) b 0 b b

(1, 1) 1 0 b a

Then it is easy to see that D is a higher bi-derivation of length 3 on L and H the trace of D is a
higher derivation of length 3 on L.

3 Main Results

Theorem 3.1. Let L be a lattice and D = {dn}n∈I be a higher bi-derivation of length t on L,
then

i) d1 ≤ dn,

ii) dn(x, y) ≤ d0(x, y) for all x, y ∈ L, n ∈ I .
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Proof. i) From (2.5), we get

d1(x, y) = d0(x, y) ∧ d1(x, y). (3.1)

Which implies d1 ≤ d0. Similarly, from (2.5), we get

d2(x, y) = (d0(x, y) ∧ d2(x, y)) ∨ d1(x, y). (3.2)

That is d1 ≤ d2.
Now, we assume that d1 ≤ dn for n = 3, 4, . . . , k − 1, then

dk(x, y) = dk(x ∧ x, y ∧ y)

= (d0(x, y) ∧ dk(x, y)) ∨ (d1(x, y) ∧ dk−1(x, y)) ∨ . . . ∨ (dk(x, y) ∧ d0(x, y))

= (d0(x, y) ∧ dk(x, y)) ∨ d1(x, y) ∨ . . . ∨ (dk(x, y) ∧ d0(x, y).

It follows that d1 ≤ dk, so d1 ≤ dn for all n ∈ I .
ii) Using i), we get

d1(x, y) ≤ d0(x, y) (3.3)

and
d1(x, y) ≤ d2(x, y) (3.4)

From (3.3) and (3.4), we get

d1(x, y) ≤ d0(x, y) ∧ d2(x, y). (3.5)

But,
d2(x, y) = (d0(x, y) ∧ d2(x, y)) ∨ d1(x, y) (3.6)

From (3.5) and (3.6), we conclude d2(x, y) = d0(x, y) ∧ d2(x, y), so d2(x, y) ≤ d0(x, y).
Now, assume that dn(x, y) ≤ d0(x, y) for all n = 3, 4, . . . , k − 1, then

dk(x, y) = (d0(x, y) ∧ dk(x, y)) ∨ (d1(x, y) ∧ dk−1(x, y)) ∨ . . . ∨ (dk(x, y) ∧ d0(x, y))

≤ (d0(x, y) ∧ dk(x, y)) ∨ d0(x, y)

= d0(x, y)

It follows that dk(x, y) ≤ d0(x, y), thus dn(x, y) ≤ d0(x, y) for all x, y ∈ L and n ∈ I .

The following corollary is a direct result of Theorem 3.1(ii).

Corollary 3.2. Let L be a lattice and D = {dn}n∈I be a higher bi-derivation of length t on L,
then dn(x, y) ≤ x and dn(x, y) ≤ y for all x, y,∈ L and n ∈ I .

Theorem 3.3. Let L be a lattice and D = {dn}n∈I be a higher bi-derivation of length t on L,
then

(i) If L has a least element 0, then dn(0, x) = dn(x, 0) = 0 for all x ∈ L.

(ii) If L has greatest element 1, then dn(1, 1) = 1 for all x ∈ L, n ∈ I if and only if dn(x, y) =
x ∧ y for all x ∈ L.

(iii) If x ∧ y ≤ dn(1, 1) for all x ∈ L, then dn(x, y) = x ∧ y for all x ∈ L.

(iv) If L has the least element 0 and the greatest element 1, then dn(1, 1) = 0 if and only if
dn(x, y) = 0 for all x ∈ L.

Proof. (i) By definition of D, we have d0(0, x) = 0 ∧ x = 0 for all x ∈ L and

d1(0, x) = d1(0 ∧ 0, x ∧ x)

= (d0(0, x) ∧ d1(0, x)) = 0,
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it follows that

d2(0, x) = d2(0 ∧ 0, x ∧ x)

= (d0(0, x) ∧ d2(0, x)) ∨ (d1(0, x) ∧ d1(0, x))

= 0 ∨ 0

= 0 for all x ∈ L.

Now, we assume that dn(0, x) = 0 for n = 3, 4, . . . , k − 1, then

dk(0, x) = dk(0 ∧ 0, x ∧ x)

= (d0(0, x) ∧ dk(0, x)) ∨ (d1(0, x) ∧ dk−1(0, x)) ∨ . . . ∨ (dk(0, x) ∧ d0(0, x))

= 0 ∨ 0 ∨ . . . ∨ 0

= 0 for all x ∈ L.

It follows that dn(0, x) = 0 for all x ∈ L, n ∈ I . Similarly, we can prove dn(x, 0) = 0 for all
x ∈ L, n ∈ I .
(ii) Let dn(1, 1) = 1 for all n ∈ I , by a simple calculation and application of Theorem 3.1(ii),
we find that

dn(x, y) = dn(x ∧ 1, y ∧ 1)

= (d0(x, y) ∧ dn(1, 1)) ∨ (d1(x, y) ∧ dn−1(1, 1)) ∨ . . . ∨ (dn(x, y) ∧ d0(1, 1))

= (d0(x, y) ∧ 1) ∨ (d1(x, y) ∧ 1) ∨ . . . ∨ (dn(x, y) ∧ 1)

= d0(x, y) ∨ d1(x, y) ∨ . . . ∨ dn(x, y)

= d0(x, y)

= x ∧ y for all x, y ∈ L, n ∈ I.

The converse part is clear.
(iii) We have

dn(x, y) ≤ d0(x, y) = x ∧ y ≤ dn(1, 1) for all x, y ∈ L, n ∈ I.

dn(x, y) = dn(x ∧ 1, y ∧ 1)

= (d0(x, y) ∧ dn(1, 1)) ∨ (d1(x, y) ∧ dn−1(1, 1)) ∨ . . . ∨ (dn(x, y) ∧ d0(1, 1))

= x ∧ y for all x, y ∈ L, n ∈ I.

(iv) Let dn(1, 1) = 0 for all n ∈ I, then

dn(x, y) = dn(x ∧ 1, y ∧ 1)

= (d0(x, y) ∧ dn(1, 1)) ∨ (d1(x, y) ∧ dn−1(1, 1)) ∨ . . . ∨ (dn(x, y) ∧ d0(1, 1))

= (d0(x, y) ∧ 0) ∨ (d1(x, y) ∧ 0) ∨ . . . ∨ (dn(x, y) ∧ 0)

= 0 ∨ 0 ∨ . . . ∨ 0 = 0 for all x, y ∈ L, n ∈ I.

The converse part is clear.

Theorem 3.4. Let L be a lattice and D = {dn}n∈I be a higher bi-derivation of length t on L,
then

(i) dn(x, z) ∧ dn(y, w) ≤ dn(x ∧ y, z ∧ w) for all x, y, z, w ∈ L and n ∈ I.

(ii) For x ≤ z and y ≤ w, then

dn(x, y) ≤ dn(z, w) ⇔ dn(x∧ z, y ∧w) = dn(x, y)∧ dn(z, w) for all x, y, z, w ∈ L, n ∈ I.
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(iii) If L is a distributive lattice, for x ≤ z and y ≤ w, then

dn(x, y) ≤ dn(z, w) ⇔ dn(x∨ z, y ∨w) = dn(x, y)∨ dn(z, w) for all x, y, z, w ∈ L, n ∈ I.

Proof. (i) From (2.2), we get

d0(x, z) ∧ dn(y, w) ≤ dn(x ∧ y, z ∧ w). (3.7)

By Theorem 3.1 (ii), we have dn(x, z) ≤ d0(x, z), so

dn(x, z) ∧ dn(y, w) ≤ d0(x, z) ∧ dn(y, w) (3.8)

From (3.7) and (3.8), we conclude

dn(x, z) ∧ dn(y, w) ≤ dn(x ∧ y, z ∧ w) for all x, y, z, w ∈ L, n ∈ I.

(ii) ⇒) Suppose that, if x ≤ z and y ≤ w, then dn(x, y) ≤ dn(z, w). Since x ∧ z ≤ x and
y ∧ w ≤ y, by hypothesis we find that

dn(x ∧ z, y ∧ w) ≤ dn(x, y) (3.9)

Also, x ∧ z ≤ z and y ∧ w ≤ w, so

dn(x ∧ z, y ∧ w) ≤ dn(z, w). (3.10)

From (3.9) and (3.10) we arrive at
dn(x ∧ z, y ∧ w) ≤ dn(x, y) ∧ dn(z, w), together with the result of (i) we obtain

dn(x ∧ z, y ∧ w) = dn(x, y) ∧ dn(z, w) for all x, y, z, w ∈ L and n ∈ I.

⇐) Suppose that x ≤ z, y ≤ w and

dn(x ∧ z, y ∧ w) = dn(x, y) ∧ dn(z, w) for all x, y, z, w ∈ L, n ∈ I.

Then

dn(x, y) = dn(x ∧ z, y ∧ w)

= dn(x, y) ∧ dn(z, w),

which means that dn(x, y) ≤ dn(z, w).
(iii) ⇒) Suppose that, if x ≤ z and y ≤ w for all x, y, z, w ∈ L, n ∈ I , then dn(x, y) ≤ dn(z, w).
Since x ≤ x ∨ z, z ≤ x ∨ z and y ≤ y ∨ w, w ≤ y ∨ w, by hypothesis we obtain

dn(x, y) ≤ dn(x ∨ z, y ∨ w) and dn(z, w) ≤ dn(x ∨ z, y ∨ w),

so
dn(x, y) ∨ dn(z, w) ≤ dn(x ∨ z, y ∨ w) for all x, y, z, w ∈ L, n ∈ I (3.11)

On the other hand, by using (2.2) we get

d0(x, y)∧ dn(x∨ z, y∨w) ≤ dn(x∧ (x∨ z), y∧ (y∨w)) = dn(x, y) for all x, y, z, w ∈ L, n ∈ I
(3.12)

and,

d0(z, w)∧dn(x∨z, y∨w) ≤ dn(z∧ (x∨z), w∧ (y∨w)) = dn(z, w) for all x, y, z, w ∈ L, n ∈ I
(3.13)

From (3.12) and (3.13), we obtain

(d0(x, y) ∧ dn(x ∨ z, y ∨ w)) ∨ (d0(z, w) ∧ dn(x ∨ z, y ∨ w)) ≤ dn(x, y) ∨ dn(z, w). (3.14)

Since L is a distributive lattice, (3.14) can be rewritten as

((d0(x, y) ∨ d0(z, w)) ∧ dn(x ∨ z, y ∨ w)) ≤ dn(x, y) ∨ dn(z, w). (3.15)
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From Theorem 3.1 (ii), we get dn(x, y) ∨ dn(z, w) ≤ d0(x, y) ∨ d0(z, w), and using (3.11) and
(3.15), we conclude that

dn(x ∨ z, y ∨ w) ≤ dn(x, y) ∨ dn(z, w) for all x, y, z, w ∈ L, n ∈ I (3.16)

By (3.11) and (3.16), we get the required result.
⇐) Suppose that x ≤ z, y ≤ w and

dn(x ∨ z, y ∨ w) = dn(x, y) ∨ dn(z, w) for all x, y, z, w ∈ L, n ∈ I.

Since x ∨ z = z and y ∨ w = w, we get

dn(z, w) = dn(x ∨ z, y ∨ w)

= dn(x, y) ∨ dn(z, w),

so dn(x, y) ≤ dn(z, w) for all x, y, z, w ∈ L and n ∈ I.

Theorem 3.5. Let L be a lattice and D = {dn}n∈I be a higher derivation of length t on L,

(i) If A be an ideal of L, then dn(A× L) ⊆ A for all n ∈ I .

(ii) If A = {a ∈ L : dn(a, x) = a for all x ∈ L, n ∈ I}, and dn satisfies the condition for x ≤ z
and y ≤ w, then dn(x, y) ≤ dn(z, w), then A is an ideal of L.

Proof. (i) Let (a, x) ∈ A × L, we know that dn(a, x) ≤ a, but a ∈ A, so dn(a, x) ∈ A for all
a ∈ A, x ∈ L, n ∈ I .
(ii) If a ∈ A and x ∈ L, then d0(a, x) = a. Since d0(a, x) = a ∧ x, we obtain a ∧ x = a for all
x ∈ L, that is, a ≤ x for all x ∈ L. Let x ∈ L and a ∈ A such that x ≤ a, then x = a, i.e. x ∈ A.

Let a, b ∈ A, then dn(a, x) = a and dn(b, x) = b, by corollary 3.2, we get dn(a∨b, x) ≤ a∨b.
We have a ≤ a ∨ b and b ≤ a ∨ b, so dn(a, x) ≤ dn(a ∨ b, x) and dn(b, x) ≤ dn(a ∨ b, x),

it follows that a ∨ b = dn(a, x) ∨ dn(b, x) ≤ dn(a ∨ b, x), so dn(a ∨ b, x) = a ∨ b. Therefore,
a ∨ b ∈ A, which completes the proof.

Acknowledgment: I would like to express my profound gratitude to the editor and reviewer
for their efforts and valuable suggestions, which have greatly contributed to improving this work.
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