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Abstract Lattices are ubiquitous in mathematics and computer science, with applications in
fields as diverse as order theory, algebra, logic, and computer programming. They provide a
formal framework for reasoning about relations and structures using special maps, making them
an essential tool in both theoretical and applied studies. This paper introduces the concept of
higher bi-derivation as a generalization of higher derivation on a lattice, and it explores some
essential properties for higher bi-derivation.

1 Introduction

The history of the lattice spans several disciplines, including for example mathematics and com-
puter science. Here’s a brief overview:

The notion of lattices in mathematics has its origins in antiquity, with early applications
found in geometry and crystallography. In geometry, a lattice is defined as a regular arrangement
of points or objects in space, often forming a repeating pattern. In crystallography, lattices sig-
nify the regular three-dimensional configuration of atoms or molecules within a crystal structure.

Lattices received significant attention in number theory, particularly through the work of
Gauss and his investigations of quadratic forms. Gauss introduced the concept of Gaussian inte-
gers, which form a two-dimensional lattice in the complex plane. Later mathematicians extended
these ideas to higher dimensions, leading to the study of lattices in n-dimensional Euclidean
space.

Lattices have also found applications in the domain of computer science, particularly in the
study of cryptography and computational complexity theory. In the field of cryptography, lattice-
based cryptography has emerged as a promising alternative to traditional cryptographic systems
based on number theory problems such as factoring and discrete logarithms. Lattice-based cryp-
tography provides security based on the difficulty of certain lattice problems, such as the shortest
vector problem (SVP) and the closest vector problem (CVP).

The triple (L, A, V') is a nonempty set L endowed with two operations A and V is called a lat-
tice if satisfies the following conditions: (i)xAx = z, xVz =z, (it)zAy = yAz, zVy = yVa,
(#ii) (xAy) Az = xA(yAz), (xVy)Vz =z V(yVz)and (i) (zAy) Ve =z, (xVy) Az = x for
all z,y, z € L. When the binary relation "<" which is defined by: x < yifandonlyifx Ay ==
and x Vy = y. Then (L, A, V, <) is called a poset and for any z,y € L, x Ay isthe g. 1. bof z,y
and z V y is the 1. u. b. of x, y [[8], Bikhoof 1940].

Lattices play an important role in many areas, including information retrieval (see [9], Carpineto
et al. 1996), information access control (see [17], Sandhu 1996), cryptanalysis (see [14], Durfee
2002), and information theory (see [7], Bell 2003). More recently, extensive research has been
conducted on the properties of lattices with significant contributions from numerous scholars in-
cluding (see [8], Birkhoof 1940, [1], Abbott 1969, [5], Balbes and Dwinger 1974, [9], Carpineto
and Romano 1996, [14], Durfee 2002, [7], Bell 2003, [13], Degang et al. 2006, [16], and Honda
and Grabisch 2006). In 1975, the notion of lattice derivation was introduced and developed by
Szasz (see reference [18]):
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Let L be a lattice and d : L — L be a function, then d is said to be a derivation on L if
d(zAy) = (xAd(y))V (d(z) Ay), he established the main properties of lattice derivations. Until
then, many researchers had studied derivations and generalizations of derivations on a lattice and
discussed some related properties ([15], Ferrari 2001, [12], Ceven and Oztiirk 2008, [19], Xin
et al. 2008, [10], Ceven 2009, [2], Alshehri 2010, [3], Asci et al. 2011, Chaudhry et al. 2011,
[4], Asci et al. 2013, [6], Balogun 2014, [11], Yilmaz Ceven, 2017). As a generalization of
derivation on a lattice, the notion of higher derivation of a lattice is first introduced by Yilmaz
Ceven in 2017, he investigates some related properties for the higher derivation on a lattice:

Let L be a lattice, I = {0,1,2,...,t} orI = N = {0,1,2,...} (with ¢ — oo in this case)
and D = {d,},.; be a family of mappings from L into L such that dy = idy. D is said
to be a higher derivation of length ¢ on L if for every n € I and z,y,z,w € L, we have:
dn(z ANy) = Vp—itj (di(x) A d;(y)) Motivated by the above studies, this paper introduces the
notion of higher bi-derivations of a lattice and explores some interesting results for higher bi-
derivations on a lattice.

2 Preliminaries

Definition 2.1. Let L be a lattice, I = {0,1,2,...,t}or I = N ={0,1,2,...} (witht — oo in
this case) and D = {d,,},,; be a family of mappings from L x L into L such that do(z, y) = zAy.
D is said to be a higher bi-derivation of length ¢t on L if forevery n € [ and z,y, z,w € L

Qe Ay 2 Aw) = Y (di(2,2) A dy(g,0)) @
n=i+j
From (2.1), we can get the following result
dp(x ANy, z Aw) = (do(z,2) ANdp(y,w)) V (di(2,2) ANdp—1(y,w)) V...
\/(dn(CE, Z) A dO(ya ’LU))

it is obvious that

di(z,z) Nd;(y,w) < d,(x Ay, z Aw), where n =i + j, (2.2)
and
d(2,y) = du(zAz,yAy)
= (do(z,y) ANdn(z,9)) V (di(2,y) Adni(2,9)) V...
V(dn(z,y) Ado(z,y)) (2.3)

If n is an even number, then

dn($7y) = (do(l’, y) A dn(x7y)) \ (dl (.T,y) A dnfl(xay)) V...V d% (337:1/)
Therefore,
If n is an odd number, we get

Definition 2.2. Let L be a lattice and D = {d,, },cs be a higher bi-derivation of length ¢ on L.
Define H = {hy, }ner a family of mappings from L into L such that h, (z) = d,(z, ), i.e. hy, is
the trace of d,, for every n € I, then H is called a trace of D.

For every n € I and =,y € L, we have hyo(z) = dy(z,x) = . It follows that hy = Thy, and
hi(zAy) = di(zAy,zAy)
= (do(z,x) Ndi(y,y)) v (di(z,x) Ado(y,y))
= (ho(z) Ahi(y) V (hi(2) Aho(y))
= (@A) V(@) Ay).
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Then, h; is a derivation on L

Y (i) A dy(.)

W (ha@) ARy (y)-

ho(zANy) = do(zAy,xzAy)

Therefore, H is a higher derivation of length ¢ on L.
Example 2.3. Let L = {0, a, b, 1} be a lattice with the following figure:
o1

o a

° 0

Let D = {dy, d;,d,d3} be a family of mappings from L x L into L. We define dy, d;, dy, d3 in
the following table

LxL |dy|d | dy| ds
00)lololo]o
©a|O0]0]0]o0
b 0]0]0]o0
01 |olololo
@0 |0]o]o]o
(a,a) | a | b | b | a
@b | bbb b
(a,1) | a | 0| b | a
0 |0]0]0]0
(ba) | b bbb
bb) | b | b b 0b
B1) | b 0|50
100 |olo]olo
(lLa) | a | 0| b | a
1,0) | b10]| o]0
O [1]0]b|a

Then it is easy to see that D is a higher bi-derivation of length 3 on L and H the trace of D is a
higher derivation of length 3 on L.

3 Main Results

Theorem 3.1. Let L be a lattice and D = {d,, }nc1 be a higher bi-derivation of length t on L,
then

i) dl < dna
i) d,(z,y) <do(z,y) forallz,y € L, n € I.
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Proof. i) From (2.5), we get
dl(ir?y) zdo(w7y)/\d1(ac,y). (31)

Which implies d; < dy. Similarly, from (2.5), we get

do(,y) = (do(z,y) A da(2,y)) V di(z, ). (3.2)
That is d; < d,.
Now, we assume that d; < d,, forn =3,4,...,k — 1, then

dk(xvy) = dk(x/\xvy/\y)

(dO(Ia y) A dk(fﬁ,y)) \ (dl (Ivy) A dk—] ($7y)) V...V (dk(I, y) A do(l’,y))
= (dO(xa y) A dk(‘ray)) \ dl (‘T7 y) V...V (dk(‘r7 y) A dO(m>y)

It follows that d; < di,sod; < d, foralln € I.
ii) Using i), we get

di(z,y) < do(z,y) (3.3)
and
di(z,y) < do(z,y) (3.4)
From (3.3) and (3.4), we get
di(z,y) < do(z,y) A do(z,y). (3.5)
But,
da(2,y) = (do(z, y) N da(w,y)) V di(z,y) (3.6)

From (3.5) and (3.6), we conclude dy(z,y) = do(z,y) A da(z,y), so da(z,y) < do(z, y).
Now, assume that d,,(z,y) < do(z,y) foralln = 3,4,...,k — 1, then

de(z,y) = (do(z,y) ANdi(z,9)) V (di(z,y) Ady—1(x,y)) V...V (di(z,y) A do(z,y))
< (do(z,y) Ndi(z,y)) V do(z,y)
= do(%y)
It follows that dy,(z,y) < do(z,y), thus d,,(z,y) < do(z,y) forall z,y € Land n € I. o

The following corollary is a direct result of Theorem 3.1(ii).

Corollary 3.2. Let L be a lattice and D = {d,, }ner be a higher bi-derivation of length t on L,
then d,,(z,y) < z and d,(z,y) <y forall x,y,€ Landn € I.

Theorem 3.3. Let L be a lattice and D = {d,, }
then

(i) If L has a least element 0, then d,,(0,x) = d,,(2,0) = 0 forall x € L.

(ii) If L has greatest element 1, then d,,(1,1) = 1 forall x € L, n € I if and only if d,,(z,y) =
x ANy forall x € L.

(i) Ifz ANy <d,(1,1)forall x € L, then d,,(x,y) = x Ay forall z € L.

ner be a higher bi-derivation of length t on L,

(iv) If L has the least element O and the greatest element 1, then d,(1,1) = 0 if and only if
dn(z,y) =0forall x € L.

Proof. (i) By definition of D, we have dy(0,z) =0 A x =0 forall z € L and

di(0,z2) = d(0N0,zAZ)
= (do(0,2) Ad;(0,2)) =0,
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it follows that

d2(0,z) dy(ON0,z A )
(do(0,2) A d2(0,)) V (di(0,2) A dy(0,))
= 0VvoO0

= 0 forall z € L.
Now, we assume that d,,(0,z) = 0 forn = 3,4,... k — 1, then

di(0,z) = dp(OANO,zAx)
= (do(0,2) Ady(0,2)) V (d1(0,2) Adr—1(0,2)) V...V (dp(0,2) A do(0,z))
Ovov...vO0
= O forall z € L.

It follows that d,,(0,2) = O for all x € L, n € I. Similarly, we can prove d,,(z,0) = 0 for all
zel,nel.

(ii) Let d,,(1,1) = 1 for all n € I, by a simple calculation and application of Theorem 3.1(ii),
we find that

dp(z,y) = do(zAlyAl)
(do(z,y) Ndn(1,1)) V (di(z,y) Adr_1(1,1))
= (do(z,y) ANV (di(z,y) A1)V ...V (dn(z,y) A1)
do(z,y) Vdi(z,y) V... Vdp(z,y)
= do(z,y)
= zAyforall z,ye Lnel.

The converse part is clear.
(iii) We have

dp(z,y) <do(z,y) =2 Ay <d,(1,1) forall z,y € L,n € I.

do(z,y) = do(zAlyAl)
= (d0($7y) A dn(17 1)) N (dl(x7y) A dnfl(lv 1)) V...V (dn(Qj?y) A d0(17 1))
= a Ay forall z,ye Linel.
(iv) Letd,(1,1) =0 forall n € I, then

dn(z,y) =dn(z A1,y A1)
= (do(z,y) N, (1,1)) V (di(z,y) Adp—1(1,1)) V...V (dn(z,y) Ado(1,1))
= (do(z,y) NO) V (di(2,y) ANO) V...V (dn(z,y) AO)
=0vOVv...v0=0 forall z,ye L,n e I.

The converse part is clear. O

Theorem 3.4. Let L be a lattice and D = {d,, }nc1 be a higher bi-derivation of length t on L,
then

() dp(z,2) Ndp(y,w) <dn(zANy,z Aw)forall z,y,z,w € Landn € I.

(ii) Forx < zandy < w, then

dn(z,y) < dn(z,w) & dy(z Az, y Aw) =dp(z,y) Ndp(z,w) forall z,y, z,w € Lyn € I.
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(iii) If L is a distributive lattice, for x < z and y < w, then

dp(z,y) < dp(z,w) & dp(zV 2,y Vw) = dy(z,y) Vd,(2z,w) forall z,y, z,w € Lyn € I.

Proof. (i) From (2.2), we get
do(x, 2) Ndp(y, w) < dp(x Ay, 2z Aw). 3.7)
By Theorem 3.1 (ii), we have d,,(z, z) < dy(z, z), so
dn(z,2) A dp(y,w) < do(x, 2) Ady(y, w) (3.8)
From (3.7) and (3.8), we conclude
dp(z,2) Ndp(y,w) < dp(z ANy, z Aw)forall z,y,z,w € L,n € I.

(ii) =) Suppose that, if z < z and y < w, then d,,(z,y) < d,(z,w). Since z A z < z and
y Aw <y, by hypothesis we find that

dn(z A 2,y ANw) < dp(2,y) (3.9
Also,z Az < zand y A w < w, SO
dp(z A 2,y Aw) < dp(z,w). (3.10)

From (3.9) and (3.10) we arrive at
dp(z A 2,y ANw) < dp(z,y) A dn(2,w), together with the result of (i) we obtain

dp(z A z,y ANw) = dp(z,y) Ady(z,w) forall z,y,z,w € L andn € I.
<) Suppose that z < z, y < w and
dp(z AN z,y Aw) = dp(z,y) Ady(z,w) forall z,y,z,w e L,n € 1.
Then

dp(z,y) = du(zAz,y Aw)
dn(2,y) A dn(z,w),

which means that d,, (z,y) < d,,(z,w).
(iii) =) Suppose that, if x < z and y < w for all z,y,z,w € L,n € I, then d,(z,y) < dn(z,w).
Sincex <zVz,z<zVzandy <yVw,w <yVw,byhypothesis we obtain

dp(z,y) <dp(zV 2,y Vw) and d,(z,w) < d,(zV 2,y Vw),

SO
dn(z,y) Vdp(z,w) < dp(xV z,yVw) forall z,y,z,w € Lyn €1 (3.11)

On the other hand, by using (2.2) we get

do(z,y) Ndp(zV z,yVw) <d,(xA(zVz),yA(yVw)) =d,(z,y) forall z,y,z,w € Lyn € I
(3.12)
and,

do(z,w)Ndp(zVz,yVw) <dp(zA(zV2),wA(yVw)) =d,(z,w) forall z,y,z,w € L,n € I
(3.13)

From (3.12) and (3.13), we obtain
(do(z,y) Ndp(xzV 2,y Vw)) V (do(z,w) Ndp(xV 2,y Vw)) < dp(z,y) Vdn(z,w). (3.14)

Since L is a distributive lattice, (3.14) can be rewritten as

((do(z,y) V do(z,w)) ANdp(zV 2,y Vw)) < dp(z,y) Vdp(z,w). (3.135)
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From Theorem 3.1 (ii), we get d,(z,y) V dn(z,w) < do(z,y) V do(z,w), and using (3.11) and
(3.15), we conclude that

dp(zV z,yVw) <dp(z,y) Vdy(z,w) forall z,y,z,we L,nel (3.16)

By (3.11) and (3.16), we get the required result.
<) Suppose that x < z, y < w and

dp(zV z,yVw) =dy(z,y) Vdy(z,w) forall z,y,z,w e L,n € I.
SincezVz=zandy Vw = w, we get

dn(z,w) = dy(zV2z,yVuw)
= () V (e w),

s0 dp(z,y) < dn(z,w) forall z,y,z,w € Landn € I. O

Theorem 3.5. Let L be a lattice and D = {d,, }n.c1 be a higher derivation of length t on L,
(i) If A be an ideal of L, then d,,(A x L) C A foralln € I.

(i) fA={a€L:dy(a,z) =a forall x € L,n € I}, and d,, satisfies the condition for x < z
and y < w, then d,,(z,y) < dn(z,w), then A is an ideal of L.

Proof. (i) Let (a,z) € A x L, we know that d,,(a,z) < a, buta € A, so d,(a,z) € A for all

acA,xel,nel.

(i) If a € A and z € L, then dy(a,z) = a. Since dy(a,z) = a A z, we obtain a A z = a for all

xz € L,thatis,a < zxforallz € L.Letz € L anda € A suchthat x < a,thenz = a,i.e. x € A.
Leta,b € A, thend,(a,z) = aand d, (b, z) = b, by corollary 3.2, we get d,,(aVb,z) < aVb.
We have a < aVband b < aVb,sod,(a,z) < dy(aVbzx)and d,(b,z) < dy(aV b, z),

it follows that a V b = d,,(a,z) V dy (b, z) < d,(a V b,z), s0 d,(a V b,x) = a V b. Therefore,

a Vb € A, which completes the proof. O
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