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Abstract Simulating the dynamics of complex systems of initial value problems in chemistry
is becoming increasingly routine with increasing computer power. In the realm of chemical
kinetics, the High Irradiance Responses (HIRES) of Photomorphogenesis from Plant Physiology
stands as a significant challenge due to its intricate nature and the demand for precise numerical
solutions. Therefore, this study demonstrates the use of the ultraspherical wavelets basis to solve
the HIRES problem of fractional order. The utilization of ultraspherical wavelets allows for the
representation of functions with high precision, while the Caputo fractional derivative provides a
comprehensive framework for describing the non-local and memory-dependent aspects inherent
in chemical kinetics. The proposed approach is employed to numerically simulate a system of
stiff non-linear differential equations and has calculated several errors for nonlinear fractional
HIRES problem. Furthermore, the residual error analysis for this model is also computed. With
the use of wavelet transform, the nonlinear HIRES problem is solved, aiding in the understanding
of chemical reactions and their true behaviors. The effectiveness of the mentioned approach is
demonstrated by numerical simulation in terms of tables and figures, showcasing its potential to
advance the field of chemical kinetics modeling and simulation.

1 Introduction

In recent years, fractional calculus [1, 2], a branch of mathematical analysis has garnered sig-
nificant attention due to its profound implications across various scientific disciplines including
chemical kinetics. Traditional calculus deals with integer-order derivatives and integrals, which
describe instantaneous rates of change and cumulative effects, respectively. Many natural phe-
nomena exhibit non-local or memory-dependent behaviors that cannot be adequately described
using integer-order calculus [2]. Fractional calculus generalizes differentiation and integration to
non-integer orders, enabling the modeling of complex dynamics that involve fractional deriva-
tives and integrals. Among others, one of the most widely employed operators is the Caputo
fractional derivative [3]. It is a powerful mathematical tool that has found widespread applica-
tions in various areas. One of the primary benefits of the Caputo fractional derivative, compared
to other fractional definitions is its compatibility with the traditional initial conditions used in
the study of differential equations. Another important advantage is its improved numerical sta-
bility, particularly when dealing with noisy or irregular data. The Caputo definition tends to be
more robust to these challenges compared to other fractional derivative definitions, which can
be more susceptible to numerical instabilities. With these important remarks, the Caputo defi-
nitions have been employed in the simulations of models with physical importance. Fractional
differential equations have crucial roles in several disciplines. Due to their great importance,
they have been investigated by many researchers. For instance, Abd-Elhameed et al. [4, 5]
applied a Chebyshev approach to simulate the Sinh-Gordon equation and fractional Rayleigh-
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Stokes problem. In [6], Alharbi et al. implemented a shifted Fibonacci polynomials approach to
solve the fractional Burgers equation. Recently, Abd-Elhameed et al. [7] presented an effective
Fibonacci collocation scheme for solving the Fitzhugh-Nagumo equation. For more details, see
[8, 9, 10, 11, 12, 13] and the references therein.

Several physical models lead to the formation of stiff ordinary differential equations (ODEs).
These equations typically arise in biochemistry, control theory, fluid dynamics, chemical ki-
netics, etc. HIRES problem is one of the most important topics in chemical kinetics [14, 15]
that is related to the influence of plant morphogenesis by light. The challenge of addressing
HIRES problem in photomorphogenesis, wherein plants undergo physiological and develop-
mental changes in response to high levels of light irradiation, represents a complex yet crucial
aspect of understanding plant biology and optimizing agricultural practices [16, 17]. The signif-
icance of fractional calculus in chemical kinetics lies in its ability to provide more accurate and
realistic representations of kinetic processes. Traditional methods of solving chemical kinetics
equations often assume instantaneous reactions and spatial homogeneity, neglecting the effects
of spatial dispersion, memory, and long-range interactions. However, many real-world chemi-
cal reactions exhibit complex dynamics influenced by factors such as diffusion, heterogeneity,
and non-Markovian behavior. By incorporating fractional derivatives and integrals into kinetic
models, researchers can capture these intricate dynamics more effectively.

The chemical reaction process in HIRES problem has been formulated as a stiff system of
eight non-linear ODEs [18] which is expressed in the fractional form as

Dλ
0,ρϒ1 (ρ) = −β1ϒ1 (ρ) + β2ϒ2 (ρ) + β3ϒ3 (ρ) + β4,

Dλ
0,ρϒ2 (ρ) = β1ϒ1 (ρ)− β5ϒ2 (ρ) ,

Dλ
0,ρϒ3 (ρ) = −β6ϒ3 (ρ) + β2ϒ4 (ρ) + β7ϒ5 (ρ) ,

Dλ
0,ρϒ4 (ρ) = β3ϒ2 (ρ) + β8ϒ3 (ρ)− β9ϒ4 (ρ) ,

Dλ
0,ρϒ5 (ρ) = −β10ϒ5 (ρ) + β2ϒ6 (ρ) + β2ϒ7 (ρ) ,

Dλ
0,ρϒ6 (ρ) = −β11ϒ6 (ρ)ϒ8 (ρ) + β12ϒ4 (ρ) + β8ϒ5 (ρ)− β2ϒ6 (ρ) + β12ϒ7 (ρ) ,

Dλ
0,ρϒ7 (ρ) = β11ϒ6 (ρ)ϒ8 (ρ)− β13ϒ7 (ρ) ,

Dλ
0,ρϒ8 (ρ) = −β11ϒ6 (ρ)ϒ8 (ρ) + β13ϒ7 (ρ) ,

(1.1)

with initial values

(ϒ1 (0) ,ϒ2 (0) ,ϒ3 (0) ,ϒ4 (0) ,ϒ5 (0) ,ϒ6 (0) ,ϒ7 (0) ,ϒ8 (0)) = (a1, a2, a3, a4, a5, a6, a7, a8) .
(1.2)

Here, Dλ
0,ρ denotes the fractional Caputo derivative of order λ ∈ (0, 1] , βs is a kinetic constant

for s = 1, 2, ..., 13 and aj is a constant value for j = 1, 2, ..., 8.
In order to demonstrate convergence in stiff chemical kinetics issues, Amat et al. [18] de-

scribed variational approach for numerical simulation of stiff differential equations. In [19],
Soomro et al. proposed a 3-point variable step block hybrid technique that makes use of La-
grange polynomials. Efficient time-stepping strategy for analyzing turbulent reactive flows under
stiff chemistry is developed by Wu et al. [20]. This technique may prove useful in comprehend-
ing intricate chemical processes. Skwame et al. [21] shown the potential of hybrid approaches
in resolving chemical kinetics difficulties by creating an equidistant one-step block hybrid tech-
nique that may be used to practical issues such the cooling of bodies. Trigonometrically two-step
hybrid techniques were presented by Ambrosio et al. [22] to solve second-order ODEs; these ap-
proaches might be modified for use in chemical kinetics simulations. Pushpam and Dhayabaran
[23] employed an approach based on Walsh series for solving nonlinear HIRES problem In [24],
Aslam et al. introduced Sumudu transform technique for solving HIRES problem under fractal
fractional derivative. These approaches provide viable means of enhancing the precision and
effectiveness of numerical solutions in chemical kinetics issues like HIRES, in conjunction with
developments in numerical techniques.

In recent years, the application of wavelet analysis has emerged as a promising approach to
unraveling the intricacies of HIRES problem. Wavelets [25, 26, 27, 28] permit for the exact
modelling of a wide range of functions and operators. As a result, wavelets play an impor-
tant role in several domains. The wavelet bases are still in its early stages, although it has
attracted attention for solving several types of differential equations with the method of Taylor
wavelets [29, 30], Legendre wavelets [31, 32], Gegenbauer wavelets [33], Bernstein wavelets
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[34], Mamadu-Njoseh wavelets [35], Muntz wavelets [36, 37], Chebyshev wavelets [38, 39] and
so on. Wavelets offer distinct advantages in analyzing the multi-scale and non-stationary nature
of plant responses to varying light intensities. By decomposing complex signals generated by
HIRES problem into different frequency components, wavelets enable researchers to identify
key features and patterns associated with specific physiological responses, such as stem elonga-
tion inhibition, leaf expansion, chlorophyll accumulation, and floral induction. Furthermore, the
adaptability of wavelets to capture both local and global information inherent in HIRES makes
them particularly suited for elucidating the hierarchical and interconnected regulatory networks
governing photomorphogenesis. In chemical kinetics, wavelet analysis has shown to be an in-
valuable technique for improving numerical solutions, especially when dealing with difficult
issues like the HIRES problem.

To the best of our knowledge, no works deal with the application of wavelets ultraspherical
wavelets (USWs) in solving nonlinear Hires problem of fractional order. Therefore, inspired
by the above literatures, this study illustrates an application of USWs with suitable collocation
grids for simulating HIRES problem under fractional Caputo derivative. Another motivation is
that the Legendre wavelets and Chebyshev wavelets can be deduced as particular cases of the
USWs. There are no substantial weaknesses appear in the suggested approach. However, this
approach functions well in a limited domain and handling a large number of wavelet basis could
lead to high computational cost. This study presents some following novelty to simulate the
fractional HIRES problem.

• By employing the proposed scheme, considered fractional nonlinear model is reduced into
a set of algebraic equations for less demanding calculations that can be simply solved by
Newton iterative method.

• The USWs are simple basis functions from a computational point of view; therefore,these
wavelets basis could be seen as an appropriate and convenient tool in this work for solving
the fractional HIRES problem.

The structure of this work is provided as follows: Section 2 consists of a brief definition of the
fractional operators, which will be employed in later sections, along with the proposed method-
ology. Section 3 presents the overview of Ultraspherical wavelets and function approximation.
Section 4 introduces the novel wavelets collocation scheme applied to solve the fractional HIRES
problem. Section 5 provides the error and convergence analysis for the model. In Section 6, the
computational simulation of the underlying model under different fractional order is given. The
conclusion of this study is outlined in Section 7.

2 Preliminaries

In this study, the following concepts of fractional operators are used.

2.1 Definition

If the function ϒ(ρ) is defined on (0,1], then the fractional Caputo differentiation of ϒ(ρ) with
order λ ∈ (0, 1] is given by [3]

Dλ
0,ρϒ(ρ) =

{
1

Γ(1 − λ)

∫ t

0
ϒ
′(τ)(ρ− τ)−λdτ, 0 < λ < 1 , (2.1)

where Γ (.) denotes the Gamma function. The Caputo fractional derivative is widely used in
fractional calculus to describe systems with memory and hereditary properties.

2.2 Definition

The fractional integral of ϒ(ρ) under order λ ∈ (0, 1] is provided as [3]

Iλ0,ρϒ(ρ) =
1

Γ(λ)

∫ t

0
(ρ− τ)λ−1

ϒ(τ)dτ, 0 < ρ. (2.2)
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The connection between the operators in Eqs. (2.1) and (2.2) for τ > 0 is

(
Iλ0,ρD

λ
0,ρ

)
ϒ(ρ) = ϒ(ρ)−

⌈τ⌉−1∑
j=0

ρj

Γ(j)
ϒ
(j)(0), 0 < ρ. (2.3)

3 Mathematical background of ultraspherical Wavelets and function
approximation

The ultraspherical wavelets (USWs) derived from ultraspherical polynomials can be constructed
to localize functions both in frequency and time domains. The USWs is denoted by ψγ

n,m (ρ)
and defined on [0, 1] as [40, 41, 42]

ψγ
n,m (ρ) =

{
2

k+1
2 µm,γ U

γ
m

(
2k+1ρ−2n+1

)
, n−1

2k ≤ ρ ≤ n
2k ,

0, elsewhere
(3.1)

where n = 1, 2, 3, ..., 2k; m = 0, 1, 2, ...M − 1; k is non-negative integer and

µm,γ = 2γ
Γ(γ)

√
m! (m+ γ)

2π Γ (m+ 2γ)
. (3.2)

Here, Uγ
m (ρ) is the ultraspherical polynomial defined on [−1, 1] having degree m and satisfies

the following recurrence relations [40, 41]

Uγ
0 (ρ) = 1,

Uγ
1 (ρ) = 2γρ,

Uγ
n+1 (ρ) =

2 (n+ γ) ρUγ
n (ρ)− (n− 1 + 2γ) Uγ

n−1 (ρ)

n+ 1
, n = 1, 2, ...

These ultraspherical polynomials are sequence of orthogonal polynomials under the weighted
function w (ρ) =

(
1 − ρ2

)γ− 1
2 .

Some of basis of USWs which are used in this study for k = 0, M = 3, γ = 1 is given as ψ10 (ρ)

ψ11 (ρ)

ψ12 (ρ)

 =


2√
π

4√
π
(2ρ− 1)

2√
π

(
16ρ2 − 16ρ+ 3

)
 .

The set of USWs is orthogonal on [0, 1] under weighted function wn,k (ρ) = w
(
2k+1ρ−2n+1

)
.

Now, the approximation of unknown function is given by series of USWs. By using the
concept of function approximation, any unknown function is easily calculated with considered
wavelet basis.

Let
{
ψγ

1,0 (ρ) , ..., ψ
γ
1,M−1 (ρ) , ψ

γ
2,0 (ρ) , ..., ψ

γ
2,M−1 (ρ) , ..., ψ

γ
2k−1,0 (ρ) , ..., ψ

γ
2k−1,(M−1) (ρ)

}
⊂ L2 [0, 1]

is the set of USWs,
S = Span

{
ψγ

1,0 (ρ) , ..., ψ
γ
1,M−1 (ρ) , ψ

γ
2,0 (ρ) , ..., ψ

γ
2,M−1 (ρ) , ..., ψ

γ
2k−1,0 (ρ) , ..., ψ

γ
2k−1,(M−1) (ρ)

}
,

& ϒ(ρ) ∈ L2 [0, 1] is an arbitrary element. Then ϒ(ρ) has a best approximation out of finite di-
mensional vector space S such as

∥ϒ(ρ)− ϒ0(ρ)∥ < ∥ϒ(ρ)− h(ρ)∥ ; ϒ0(ρ), h(ρ) ∈ S.

Any function ϒ(ρ) ∈ L2 [0, 1] can be formulated in a combination of USWs as

ϒ(ρ) ≃
∞∑
n=1

∞∑
m=0

en,mψ
γ
n,m(ρ), (3.3)
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where the wavelets coefficients en,m corresponding to ψγ
n,m(ρ) are obtained by

en,m =
〈
ϒ(ρ), ψγ

n,m

〉
wn,k(ρ)

=

∫ 1

0
ϒ(ρ)ψγ

n,m (ρ)wn,k (ρ) dρ.

For approximation purposes, the truncated version of Eq. (3.3) is written as

ϒ (ρ) ≃
2k−1∑
n=1

M−1∑
m=0

en,mψ
γ
n,m (ρ) . (3.4)

In vector form, Eq. (3.4) can be written as

ϒ (ρ) ≃ ET
µ̂×1Ψ

γ
µ̂×1(ρ), (3.5)

where E and Ψγ(ρ) are µ̂× 1 vectors given by

Eµ̂×1 =
[
e1,0, e1,1, ..., e1,M−1, e2,0, e2,1, ..., e2,M−1, ..., e2k−1,0, e2k−1,1, ..., e2k−1,M−1

]T
= [e1, e2, ...., eµ̂]

T
,

(3.6)

Ψ
γ
µ̂×1 (ρ) =

[
ψγ

1,0 (ρ) , ..., ψ
γ
1,M−1 (ρ) , ψ

γ
2,0 (ρ) , ..., ψ

γ
2,M−1 (ρ) , ..., ψ

γ
2k−1,0 (ρ) , ..., ψ

γ
2k−1,(M−1) (ρ)

]T
=
[
ψγ

1 , ψ
γ
2 , ..., ψ

γ
µ̂

]T
. (3.7)

During the computation steps, take 2k−1M = µ̂ which shows the total USWs basis.
The following section introduces the USWs scheme for evaluating the fractional order system

of the HIRES problem.

4 Numerical solution for Fractional HIREs Problem

The USWs approach is presented in the following steps to obtain the solutions of the model in
Eq. (1.1) with Eq. (1.2) as:

First, estimate the unknown functions Dλ
0,ρϒj (ρ) of Eq. (1.1) in a series of truncated USWs

using Eq. (3.5) as

Dλ
0,ρϒ1 (ρ) ≃ET

1 Ψ
γ
µ̂×1 (ρ) ,

Dλ
0,ρϒ2 (ρ) ≃ET

2 Ψ
γ
µ̂×1 (ρ) ,

Dλ
0,ρϒ3 (ρ) ≃ET

3 Ψ
γ
µ̂×1 (ρ) ,

Dλ
0,ρϒ4 (ρ) ≃ET

4 Ψ
γ
µ̂×1 (ρ) ,

Dλ
0,ρϒ5 (ρ) ≃ET

5 Ψ
γ
µ̂×1 (ρ) ,

Dλ
0,ρϒ6 (ρ) ≃ET

6 Ψ
γ
µ̂×1 (ρ) ,

Dλ
0,ρϒ7 (ρ) ≃ET

7 Ψ
γ
µ̂×1 (ρ) ,

Dλ
0,ρϒ8 (ρ) ≃ET

8 Ψ
γ
µ̂×1 (ρ) ,

(4.1)

where Ψ
γ
µ̂×1 (ρ) is provided in Eqs. (3.7) and (3.1) and wavelet coefficients vector Ej for j =

1, 2, ..., 8 is taken as Eq. (3.6).
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By utilizing Eq. (2.2) on Eq. (4.1), and use Eqs. (2.3) and (1.2), we obtain

(
Iλ0,ρD

λ
0,ρ

)
ϒ1 (ρ) ≃Iλ0,ρ

(
ET

1 Ψ
γ
µ̂×1 (ρ)

)
,(

Iλ0,ρD
λ
0,ρ

)
ϒ2 (ρ) ≃Iλ0,ρ

(
ET

2 Ψ
γ
µ̂×1 (ρ)

)
,(

Iλ0,ρD
λ
0,ρ

)
ϒ3 (ρ) ≃Iλ0,ρ

(
ET

3 Ψ
γ
µ̂×1 (ρ)

)
,(

Iλ0,ρD
λ
0,ρ

)
ϒ4 (ρ) ≃Iλ0,ρ

(
ET

4 Ψ
γ
µ̂×1 (ρ)

)
,(

Iλ0,ρD
λ
0,ρ

)
ϒ5 (ρ) ≃Iλ0,ρ

(
ET

5 Ψ
γ
µ̂×1 (ρ)

)
,(

Iλ0,ρD
λ
0,ρ

)
ϒ6 (ρ) ≃Iλ0,ρ

(
ET

6 Ψ
γ
µ̂×1 (ρ)

)
,(

Iλ0,ρD
λ
0,ρ

)
ϒ7 (ρ) ≃Iλ0,ρ

(
ET

7 Ψ
γ
µ̂×1 (ρ)

)
,(

Iλ0,ρD
λ
0,ρ

)
ϒ8 (ρ) ≃Iλ0,ρ

(
ET

8 Ψ
γ
µ̂×1 (ρ)

)
.

This implies the following form

ϒ1 (ρ) ≃ϒ1 (0) +ET
1

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)
,

ϒ2 (ρ) ≃ϒ2 (0) +ET
2

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)
,

ϒ3 (ρ) ≃ϒ3 (0) +ET
3

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)
,

ϒ4 (ρ) ≃ϒ4 (0) +ET
4

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)
,

ϒ5 (ρ) ≃ϒ5 (0) +ET
5

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)
,

ϒ6 (ρ) ≃ϒ6 (0) +ET
6

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)
,

ϒ7 (ρ) ≃ϒ7 (0) +ET
7

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)
,

ϒ8 (ρ) ≃ϒ8 (0) +ET
8

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)
,

(4.2)

where Iλ0,ρΨ
γ
µ̂×1 (ρ) is computed by direct integrating the known wavelet function Ψ

γ
µ̂×1 (ρ) for

different µ̂.
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Substituting Eqs. (4.1) and (4.2) in the given system of Eq. (1.1), we get

ET
1 Ψ

γ
µ̂×1 (ρ) =− β1

[
ϒ1 (0) +ET

1

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
+ β2

[
ϒ2 (0) +ET

2

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
+β3

[
ϒ3 (0) +ET

3

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
+ β4,

ET
2 Ψ

γ
µ̂×1 (ρ) =β1

[
ϒ1 (0) +ET

1

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
− β5

[
ϒ2 (0) +ET

2

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
,

ET
3 Ψ

γ
µ̂×1 (ρ) =− β6

[
ϒ3 (0) +ET

3

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
+ β2

[
ϒ4 (0) +ET

4

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
+β7

[
ϒ5 (0) +ET

5

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
,

ET
4 Ψ

γ
µ̂×1 (ρ) =β3

[
ϒ2 (0) +ET

2

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
+ β8

[
ϒ3 (0) +ET

3

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
−β9

[
ϒ4 (0) +ET

4

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
,

ET
5 Ψ

γ
µ̂×1 (ρ) =− β10

[
ϒ5 (0) +ET

5

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
+ β2

[
ϒ6 (0) +ET

6

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
+β2

[
ϒ7 (0) +ET

7

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
,

ET
6 Ψ

γ
µ̂×1 (ρ) =− β11

[
ϒ6 (0) +ET

6

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)] [
ϒ8 (0.0057) +ET

8

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
+β12

[
ϒ4 (0) +ET

4

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
+ β8

[
ϒ5 (0) +ET

5

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
−β2

[
ϒ6 (0) +ET

6

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
+ β12

[
ϒ7 (0) +ET

7

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
,

ET
7 Ψ

γ
µ̂×1 (ρ) =β11

[
ϒ6 (0) +ET

6

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)] [
ϒ8 (0.0057) +ET

8

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
−β13

[
ϒ7 (0) +ET

7

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
,

ET
8 Ψ

γ
µ̂×1 (ρ) =− β11

[
ϒ6 (0) +ET

6

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)] [
ϒ8 (0.0057) +ET

8

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
+β13

[
ϒ7 (0) +ET

7

(
Iλ0,ρΨ

γ
µ̂×1 (ρ)

)]
,

(4.3)

By collocating Eq. (4.3) at suitable collocation grids ρi, a set of µ̂ non-linear algebraic
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equations is obtained as

ET
1 Ψ

γ
µ̂×1 (ρi) =− β1

[
ϒ1 (0) +ET

1

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
+ β2

[
ϒ2 (0) +ET

2

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
+β3

[
ϒ3 (0) +ET

3

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
+ β4,

ET
2 Ψ

γ
µ̂×1 (ρi) =β1

[
ϒ1 (0) +ET

1

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
− β5

[
ϒ2 (0) +ET

2

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
,

ET
3 Ψ

γ
µ̂×1 (ρi) =− β6

[
ϒ3 (0) +ET

3

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
+ β2

[
ϒ4 (0) +ET

4

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
+β7

[
ϒ5 (0) +ET

5

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
,

ET
4 Ψ

γ
µ̂×1 (ρi) =β3

[
ϒ2 (0) +ET

2

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
+ β8

[
ϒ3 (0) +ET

3

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
−β9

[
ϒ4 (0) +ET

4

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
,

ET
5 Ψ

γ
µ̂×1 (ρi) =− β10

[
ϒ5 (0) +ET

5

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
+ β2

[
ϒ6 (0) +ET

6

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
+β2

[
ϒ7 (0) +ET

7

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
,

ET
6 Ψ

γ
µ̂×1 (ρi) =− β11

[
ϒ6 (0) +ET

6

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)] [
ϒ8 (0.0057) +ET

8

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
+β12

[
ϒ4 (0) +ET

4

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
+ β8

[
ϒ5 (0) +ET

5

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
−β2

[
ϒ6 (0) +ET

6

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
+ β12

[
ϒ7 (0) +ET

7

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
,

ET
7 Ψ

γ
µ̂×1 (ρi) =β11

[
ϒ6 (0) +ET

6

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)] [
ϒ8 (0.0057) +ET

8

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
−β13

[
ϒ7 (0) +ET

7

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
,

ET
8 Ψ

γ
µ̂×1 (ρi) =− β11

[
ϒ6 (0) +ET

6

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)] [
ϒ8 (0.0057) +ET

8

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
+β13

[
ϒ7 (0) +ET

7

(
Iλ0,ρΨ

γ
µ̂×1 (ρi)

)]
,

(4.4)

where appropriate collocation grids ρi is provided by

ρi =

(
2i− 1

2µ̂

)
; i = 1, 2, ..., µ̂. (4.5)

Now, solve the set of algebraic equations formed in Eq. (4.4) by well-suitable iterative
method, we can readily determine the unknown wavelet coefficient vectors ET

1 , ET
2 , ET

3 , ET
4 ,

ET
5 , ET

6 , ET
7 & ET

8 .
Using the value of obtained coefficient vector in Eq. (4.2), we determine the wavelets ap-

proximate solution of ϒ1(ρ) , ϒ2(ρ) , ϒ3(ρ) ,ϒ4(ρ) , ϒ5(ρ) , ϒ6(ρ),ϒ7(ρ) & ϒ8(ρ).
Procedure completed.

Remark: The collocation points given in Eq. (4.5) are usually implemented in most of the
numerical methods due to their better performance from the computational point of view for
obtaining the approximate solution of the models. Also, these collocation points correspond
to equally spaced grids, which are straightforward to implement and distribute over the interval.
This simplicity can make the formulation and computation easier. That is the reason for selecting
these collocation points. Selecting the zeros of ultraspherical polynomials or any other orthog-
onal polynomials can improve the accuracy of numerical algorithms in approximation methods
and numerical integration. The zeros of orthogonal polynomials yield significant results with
lower errors as compared to using arbitrary spaced points.

The algorithm for the described scheme is given in Figure 1.
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Approximate the unknown function ( )0, jD

   as Eq. (13) and obtain the 

approximated forms of the model in Eq. (15). 

 

Define the collocation point i

2i 1
ˆ; i 1,2,...,

ˆ2

 −
 = =  

 
 as Eq. (17). 

 
Extract the system of nonlinear equations in Eq. (16) using Step 4. 

 

Solve the equations achieved in Step 5 and evaluate the vectors 
jE .  

 

INPUT: ( )0 s jk ;M ; , , 0 ;1 s 13, 1 j 8+          

OUTPUT: 1 2 3 4 5 6 7 8( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ).                 

STEP2

1 

STEP3

1 

STEP4

1 

STEP5

1 

STEP6

1 

STEP1

1 

            Define the USWs ( )   through Eq. (11) and (6). 

 
       Introduce 2k-1 M unknown vectors jE  as Eq. (11). 

 

Figure 1: Algorithm for the described scheme.

5 Error and Convergence analysis

The accuracy of the implemented approach is evaluated by analyzing several error functions:
max and min residual error (RE), and L2 residual error.

• Since the exact solution is not available for this model, so the reliability of the suggested
approach is examined by the residual error function EREF (ρ) as follows

EREF (ρ) =
∣∣Dλ

0,ρϒj (ρ)− f (ϒj (ρ) , ρ)
∣∣ .

• The maximum RE is estimated as

Max RE = max
0≤ρ≤1

(EREF (ρ)) .

• The minimum RE is computed by

Min RE = min
0≤ρ≤1

(EREF (ρ)) .

• The L2 residual error is obtained as

L2 =
2

√∫ 1

0
(EREF (ρ))

2
dρ.

By using these error formulas, we can examine the accuracy of the suggested method for frac-
tional nonlinear HIRES problem.

The fundamental findings corresponding to the approximation of Ultraspherical polynomials
serve as the foundation for exploring the convergence of USWs approximations.

Theorem 1: For any function ϒ(ρ) ∈ L2[0, 1], let the USWs expansion

2k−1−1∑
n=0

M−1∑
m=0

en,mψ
γ
n,m(ρ) =

m̂∑
j=0

ejψ
γ
j (ρ) = ET

Ψ
γ(ρ)
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of the function ϒ(ρ), then the error estimate is obtained as∥∥∥∥∥∥ϒ(ρ)−
m̂∑
j=0

ejψ
γ
j (ρ)

∥∥∥∥∥∥
2

≤ Ω(1 + γ)2(M + γ)

(M − 3)7/224k ,

Also,

lim
m̂→∞

∥∥∥∥∥∥ϒ(ρ)−
m̂∑
j=0

ejψ
γ
j (ρ)

∥∥∥∥∥∥
2

= 0,

where m̂ = 2k−1M and Ω = maxρ∈[0,1]
∣∣ϒn+1(ρ)

∣∣.
Proof: For proof, see [43].

6 Numerical Results

In this section, we present the results from the numerical experiments conducted using the ap-
proach described in Section 4. This method is employed for fractional HIRES problems to
demonstrate the efficiency of the proposed method. The considered model is simulated by tak-
ing the following values of parameters involved in Eq. (1.1) according to [18] which is given in
Table 1.

Table 1: Values of parameters involved in the model.

β1 β2 β3 β4 β5 β6 β7

1.7 0.43 8.32 0.0007 8.75 10.03 0.035
β8 β9 β10 β11 β12 β13

1.71 1.12 1.745 280 0.69 1.81

The initial values associated with Eq. (1.1) is given by

(ϒ1 (0) , ϒ2 (0) ,ϒ3 (0) ,ϒ4 (0) ,ϒ5 (0) ,ϒ6 (0) ,ϒ7 (0) ,ϒ8 (0)) = (1, 0, 0, 0, 0, 0, 0, 0.0057) .

We solve the considered model for µ̂ = 2, 3 by the mentioned approach. Since the analytical
solution of this model is not available in any order, therefore we calculate the residual error for
the solution of the model. The estimated residual errors in the solutions ϒj(ρ) of the model for
different fractional order λ are listed in Tables 2-9 with max RE, min RE and L2 residual error.
From Tables 2-9, it is observed that the error decreases as the wavelet basis or collocation points
increase. The graphical interpretation of approximated solutions and its corresponding residual
errors is depicted in Figures 2-9 for different fractional order λ and µ̂ = 3.

The impact of fractional order can be easily noticeable when simulating eight compartments
having a concentration of chemical reaction described by stiff differential equations. As the
fractional order decreases, the concentration ϒj(ρ) for j = 1, 2, ...6 and ϒ8(ρ) of the chemical
species begin to decrease and the concentration ϒ7(ρ) of the chemical species begins to increase
as the fractional order decreases. It is also crucial for solving nonlinear problems, which are
frequently encountered by researchers in kinetics chemistry.

Table 2: Estimated errors for the model at µ̂ = 2, λ = 1.

ρ ϒ1(ρ) ϒ2(ρ) ϒ3(ρ) ϒ4(ρ) ϒ5(ρ) ϒ6(ρ) ϒ7(ρ) ϒ8(ρ)

0.2 3.2 × 10−2 1.7 × 10−0 5.2 × 10−5 1.4 × 10−2 1.1 × 10−3 1.2 × 10−2 5.4 × 10−3 5.4 × 10−3

0.4 6.2 × 10−2 1.6 × 10−0 9.9 × 10−5 2.7 × 10−2 2.2 × 10−3 3.8 × 10−2 2.4 × 10−2 2.4 × 10−2

0.6 6.2 × 10−2 1.6 × 10−0 9.9 × 10−5 2.7 × 10−2 2.2 × 10−3 5.7 × 10−2 4.3 × 10−2 4.3 × 10−2

0.8 3.2 × 10−2 1.7 × 10−0 5.2 × 10−5 1.4 × 10−2 1.1 × 10−3 4.3 × 10−2 3.6 × 10−2 3.6 × 10−2

1.0 2.2 × 10−1 1.8 × 10−0 3.5 × 10−4 9.9 × 10−2 7.9 × 10−3 4.0 × 10−1 3.5 × 10−1 3.5 × 10−1

Max RE 2.2 × 10−1 1.8 × 10−0 3.5 × 10−4 9.9 × 10−2 7.9 × 10−3 4.0 × 10−1 3.5 × 10−1 3.5 × 10−1

Min RE 4.1×10−11 1.6 × 10−0 6.2×10−14 1.8×10−11 1.4×10−12 1.1×10−12 2.1×10−10 2.1×10−10

L2 error 9.2 × 10−2 1.7 × 10−0 1.4 × 10−4 4.1 × 10−2 3.2 × 10−3 1.0 × 10−1 8.8 × 10−2 8.8 × 10−2



Ultraspherical wavelets approach to solve nonlinear fractional HIRES 889

Table 3: Estimated errors for the model at µ̂ = 3, λ = 1.

ρ ϒ1(ρ) ϒ2(ρ) ϒ3(ρ) ϒ4(ρ) ϒ5(ρ) ϒ6(ρ) ϒ7(ρ) ϒ8(ρ)

0.2 4.8 × 10−3 1.6 × 10−0 4.2 × 10−4 5.8 × 10−3 3.7 × 10−5 2.2 × 10−2 1.9 × 10−2 1.9 × 10−2

0.4 7.7 × 10−3 1.6 × 10−0 6.7 × 10−4 9.3 × 10−3 6.0 × 10−5 6.8 × 10−2 6.4 × 10−2 6.4 × 10−2

0.6 7.7 × 10−3 1.7 × 10−0 6.7 × 10−4 9.3 × 10−3 6.0 × 10−5 1.0 × 10−1 9.5 × 10−2 9.5 × 10−2

0.8 4.8 × 10−3 1.7 × 10−0 4.2 × 10−4 5.8 × 10−3 3.7 × 10−5 7.1 × 10−2 6.8 × 10−2 6.8 × 10−2

1.0 5.2 × 10−2 1.5 × 10−0 4.6 × 10−3 6.4 × 10−2 4.1 × 10−4 6.5 × 10−1 6.2 × 10−1 6.2 × 10−1

Max RE 5.2 × 10−2 1.8 × 10−0 4.6 × 10−3 6.4 × 10−2 4.1 × 10−4 6.5 × 10−1 6.2 × 10−1 6.2 × 10−1

Min RE 0.0 × 10−0 1.5 × 10−0 6.9×10−18 1.1×10−16 5.2×10−18 4.2×10−12 7.5×10−12 7.5×10−12

L2 error 1.6 × 10−2 1.7 × 10−0 1.4 × 10−3 2.0 × 10−2 1.3 × 10−4 1.6 × 10−1 1.5 × 10−1 1.5 × 10−1

Table 4: Estimated errors for the model at µ̂ = 2, λ = 0.9.

ρ ϒ1(ρ) ϒ2(ρ) ϒ3(ρ) ϒ4(ρ) ϒ5(ρ) ϒ6(ρ) ϒ7(ρ) ϒ8(ρ)

0.2 3.8 × 10−2 1.7 × 10−0 3.7 × 10−4 2.8 × 10−1 1.1 × 10−3 1.4 × 10−2 8.7 × 10−3 7.5 × 10−3

0.4 6.9 × 10−2 1.6 × 10−0 6.4 × 10−4 4.7 × 10−1 2.1 × 10−3 4.8 × 10−2 3.7 × 10−2 3.9 × 10−2

0.6 6.6 × 10−2 1.6 × 10−0 6.0 × 10−4 6.1 × 10−1 2.1 × 10−3 7.5 × 10−2 6.3 × 10−2 6.7 × 10−2

0.8 3.4 × 10−2 1.7 × 10−0 3.0 × 10−4 6.9 × 10−1 1.1 × 10−3 5.6 × 10−2 5.0 × 10−2 4.7 × 10−2

1.0 2.2 × 10−1 1.8 × 10−0 1.9 × 10−3 7.2 × 10−1 7.5 × 10−3 5.2 × 10−1 4.8 × 10−1 4.8 × 10−1

Max RE 3.1 × 10−1 1.8 × 10−0 3.3 × 10−3 7.2 × 10−1 8.2 × 10−3 5.2 × 10−1 4.8 × 10−1 4.8 × 10−1

Min RE 3.9×10−11 1.6 × 10−0 3.3×10−13 1.3×10−12 1.3×10−12 6.8×10−12 1.6×10−11 1.6×10−11

L2 error 1.0 × 10−1 1.7 × 10−0 1.0 × 10−3 5.3 × 10−1 3.2 × 10−3 1.3 × 10−1 1.2 × 10−1 1.2 × 10−1

Table 5: Estimated errors for the model at µ̂ = 3, λ = 0.9.

ρ ϒ1(ρ) ϒ2(ρ) ϒ3(ρ) ϒ4(ρ) ϒ5(ρ) ϒ6(ρ) ϒ7(ρ) ϒ8(ρ)

0.2 8.5 × 10−3 1.6 × 10−0 2.7 × 10−4 1.4 × 10−3 1.1 × 10−4 1.6 × 10−2 1.3 × 10−2 1.3 × 10−2

0.4 1.2 × 10−2 1.6 × 10−0 4.4 × 10−4 2.7 × 10−3 1.7 × 10−4 4.9 × 10−2 4.5 × 10−2 4.5 × 10−2

0.6 1.1 × 10−2 1.7 × 10−0 4.4 × 10−4 3.0 × 10−3 1.6 × 10−4 7.6 × 10−2 7.2 × 10−2 7.2 × 10−2

0.8 6.8 × 10−3 1.7 × 10−0 2.7 × 10−4 1.9 × 10−3 9.8 × 10−5 6.4 × 10−2 6.1 × 10−2 6.1 × 10−2

1.0 7.2 × 10−2 1.5 × 10−0 2.9 × 10−3 2.2 × 10−2 1.0 × 10−3 8.4 × 10−1 8.1 × 10−1 8.1 × 10−1

Max RE 1.3 × 10−1 1.8 × 10−0 2.8 × 10−3 2.2 × 10−2 1.5 × 10−3 8.4 × 10−1 8.1 × 10−1 8.1 × 10−1

Min RE 1.4×10−12 1.5 × 10−0 4.8×10−15 4.0×10−12 1.5×10−14 4.4×10−12 1.0×10−11 1.0×10−11

L2 error 3.0 × 10−2 1.7 × 10−0 9.4 × 10−4 5.3 × 10−3 3.9 × 10−4 1.7 × 10−1 1.7 × 10−1 1.7 × 10−1

Table 6: Estimated errors for the model at µ̂ = 2, λ = 0.7.

ρ ϒ1(ρ) ϒ2(ρ) ϒ3(ρ) ϒ4(ρ) ϒ5(ρ) ϒ6(ρ) ϒ7(ρ) ϒ8(ρ)

0.2 4.4 × 10−2 1.7 × 10−0 7.9 × 10−4 3.5 × 10−1 8.8 × 10−4 4.3 × 10−2 4.5 × 10−0 3.2 × 10−2

0.4 7.2 × 10−2 1.6 × 10−0 1.2 × 10−3 5.0 × 10−1 1.6 × 10−3 1.6 × 10−1 2.6 × 10−0 1.8 × 10−1

0.6 6.5 × 10−2 1.6 × 10−0 1.1 × 10−3 5.8 × 10−1 1.5 × 10−3 2.6 × 10−1 9.6 × 10−1 2.8 × 10−1

0.8 1.0 × 10−1 1.7 × 10−0 5.4 × 10−4 6.1 × 10−1 8.0 × 10−4 1.9 × 10−1 2.1 × 10−1 1.6 × 10−1

1.0 2.0 × 10−1 1.7 × 10−0 3.4 × 10−3 5.8 × 10−1 5.3 × 10−3 1.7 × 10−0 2.9 × 10−1 1.7 × 10−0

Max RE 4.9 × 10−1 1.8 × 10−0 9.2 × 10−3 6.1 × 10−1 5.9 × 10−3 1.7 × 10−0 6.1 × 10−0 1.7 × 10−0

Min RE 3.2×10−11 1.6 × 10−0 5.5×10−13 7.5×10−10 9.5×10−13 6.1×10−11 7.2×10−11 3.2×10−11

L2 error 1.2 × 10−1 1.7 × 10−0 2.2 × 10−3 5.1 × 10−1 2.3 × 10−3 4.5 × 10−1 3.0 × 10−0 4.4 × 10−1

Table 7: Estimated errors for the model at µ̂ = 3, λ = 0.7.

ρ ϒ1(ρ) ϒ2(ρ) ϒ3(ρ) ϒ4(ρ) ϒ5(ρ) ϒ6(ρ) ϒ7(ρ) ϒ8(ρ)

0.2 1.4 × 10−2 1.6 × 10−0 5.9 × 10−5 6.2 × 10−3 2.7 × 10−4 2.1 × 10−2 1.9 × 10−2 1.9 × 10−2

0.4 1.8 × 10−2 1.6 × 10−0 3.9 × 10−5 7.6 × 10−3 3.9 × 10−4 6.3 × 10−2 6.0 × 10−2 6.0 × 10−2

0.6 1.5 × 10−2 1.7 × 10−0 1.3 × 10−5 6.3 × 10−3 3.6 × 10−4 9.0 × 10−2 8.7 × 10−2 8.7 × 10−2

0.8 9.0 × 10−3 1.7 × 10−0 1.5 × 10−0 3.4 × 10−3 2.1 × 10−4 7.1 × 10−2 6.9 × 10−2 6.9 × 10−2

1.0 9.1 × 10−2 1.6 × 10−0 8.8 × 10−5 3.4 × 10−2 2.2 × 10−3 9.1 × 10−1 8.9 × 10−1 8.9 × 10−1

Max RE 3.3 × 10−1 1.8 × 10−0 3.3 × 10−3 1.6 × 10−1 3.8 × 10−3 9.1 × 10−1 8.9 × 10−1 8.9 × 10−1

Min RE 4.4×10−12 1.6 × 10−0 4.9×10−14 2.3×10−12 5.2×10−14 6.3×10−13 1.8 × 10−9 1.8 × 10−9

L2 error 5.6 × 10−2 1.7 × 10−0 4.2 × 10−4 2.6 × 10−2 9.3 × 10−4 1.9 × 10−1 1.9 × 10−1 1.9 × 10−1
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Table 8: Estimated errors for the model at µ̂ = 2, λ = 0.5.

ρ ϒ1(ρ) ϒ2(ρ) ϒ3(ρ) ϒ4(ρ) ϒ5(ρ) ϒ6(ρ) ϒ7(ρ) ϒ8(ρ)

0.2 4.1 × 10−2 1.7 × 10−0 8.6 × 10−4 4.0 × 10−1 3.0 × 10−0 1.2 × 10−1 1.1 × 10−2 1.0 × 10−2

0.4 6.1 × 10−2 1.6 × 10−0 1.2 × 10−3 5.1 × 10−1 1.6 × 10−4 2.1 × 10−1 3.1 × 10−2 3.8 × 10−2

0.6 5.2 × 10−2 1.6 × 10−0 1.1 × 10−3 5.4 × 10−1 2.3 × 10−4 2.7 × 10−1 3.9 × 10−2 4.8 × 10−2

0.8 2.4 × 10−2 1.7 × 10−0 5.1 × 10−4 5.4 × 10−1 1.4 × 10−4 2.4 × 10−1 2.5 × 10−2 1.5 × 10−2

1.0 1.5 × 10−1 1.7 × 10−0 3.1 × 10−3 5.0 × 10−1 1.0 × 10−3 1.1 × 10−1 1.9 × 10−1 1.9 × 10−1

Max RE 6.6 × 10−1 1.8 × 10−0 1.3 × 10−2 4.0 × 10−1 5.4 × 10−3 2.0 × 10−1 1.9 × 10−1 1.9 × 10−1

Min RE 2.2×10−11 1.6 × 10−0 4.6×10−13 1.4×10−11 6.3×10−13 8.7×10−11 1.1×10−12 1.1×10−12

L2 error 1.2 × 10−1 1.7 × 10−0 2.6 × 10−3 7.8 × 10−2 6.3 × 10−4 6.3 × 10−2 5.6 × 10−2 5.6 × 10−2

Table 9: Estimated errors for the model at µ̂ = 3, λ = 0.5.

ρ ϒ1(ρ) ϒ2(ρ) ϒ3(ρ) ϒ4(ρ) ϒ5(ρ) ϒ6(ρ) ϒ7(ρ) ϒ8(ρ)

0.2 1.5 × 10−2 1.6 × 10−0 2.6 × 10−4 9.2 × 10−3 5.9 × 10−5 4.2 × 10−3 5.0 × 10−3 5.0 × 10−3

0.4 1.8 × 10−2 1.6 × 10−0 2.9 × 10−4 1.0 × 10−2 1.1 × 10−4 1.5 × 10−2 1.6 × 10−2 1.6 × 10−2

0.6 1.5 × 10−2 1.7 × 10−0 2.3 × 10−4 8.9 × 10−3 1.1 × 10−4 2.2 × 10−2 2.2 × 10−2 2.2 × 10−2

0.8 8.2 × 10−3 1.7 × 10−0 1.2 × 10−4 4.8 × 10−3 7.1 × 10−5 1.6 × 10−2 1.6 × 10−2 1.6 × 10−2

1.0 8.0 × 10−2 1.6 × 10−0 1.1 × 10−3 4.7 × 10−2 7.7 × 10−4 2.0 × 10−1 2.0 × 10−1 2.0 × 10−1

Max RE 5.4 × 10−1 1.8 × 10−0 1.0 × 10−2 3.2 × 10−1 7.7 × 10−4 2.0 × 10−1 2.0 × 10−1 2.0 × 10−1

Min RE 6.0×10−12 1.6 × 10−0 5.4×10−13 3.6×10−12 1.2×10−13 2.0×10−12 4.7 × 10−5 4.7 × 10−5

L2 error 7.2 × 10−2 1.7 × 10−0 1.3 × 10−3 4.3 × 10−2 2.1 × 10−3 4.4 × 10−2 4.4 × 10−2 4.4 × 10−2
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Figure 2: Behavior of ϒ1(ρ) with fractional derivative.
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Figure 3: Behavior of ϒ2(ρ) with fractional derivative.
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Figure 4: Behavior of ϒ3(ρ) with fractional derivative.
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Figure 5: Behavior of ϒ4(ρ) with fractional derivative.
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Figure 6: Behavior of ϒ5(ρ) with fractional derivative.
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Figure 7: Behavior of ϒ6(ρ) with fractional derivative.
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Figure 8: Behavior of ϒ7(ρ) with fractional derivative.
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Figure 9: Behavior of ϒ8(ρ) with fractional derivative.
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7 Conclusion

The integration of USWs with the Caputo fractional derivative provides a robust numerical
framework for solving a fractional nonlinear HIRES problem arising in chemical kinetics. This
approach combines the localization and approximation power of wavelets with the flexibility of
fractional calculus, offering a promising method for dealing with stiff systems. The solutions
have been achieved efficiently within a limited timeframe, demonstrating the actual behavior of
chemical kinetics problems. This work shows several dynamical behaviors in terms of graphs
for any arbitrary order. With these graphical representations, we can see that arbitrary order
derivatives significantly affect fractional HIRES problem. Therefore, we believe that the present
study will shed light on future investigations and applications of the complex Caputo fractional
system.
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