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Abstract Let (G,+) be a finite group written additively with identity 0, but not necessarily
abelian, and let X be a finite, nonempty set. Let φ : G → X be a fixed function with φ(0) = x0.
Then M0(X,G) = {f : X → G | f(x0) = 0} is a right zero-symmetric nearring under pointwise
addition and multiplication defined by f1 ∗ f2 = f1 ◦ φ ◦ f2 for all f1, f2 ∈ M0(X,G). For
|G| ≥ 2 and |X| ≥ 2, we characterize when a zero-symmetric sandwich nearring M0(X,G)
has a multiplicative identity and, in that situation, determine those functions with multiplicative
inverses. We find the center of M0(X,G) and also find the generalized center in certain cases
when M0(X,G) does not have an identity.

1 Introduction

Let (G,+) be a finite group, written additively with identity 0, but not necessarily abelian. Let
X be a finite, nonempty set and choose a fixed mapping φ : G → X with φ(0) = x0. Then the
set of functions M(X,G) = {f : X → G} forms a right nearring under pointwise addition and
multiplication defined by f1 ∗ f2 = f1 ◦φ ◦ f2. We call the nearring (M(X,G),+, ∗) a sandwich
nearring determined by X and G and sandwich function φ.

Note that if X = G and φ is the identity function from G to G, then M(X,G) = M(G), the
well-known nearring of mappings from G to G. Thus sandwich nearrings are generalizations of
the nearring of self-mappings. For more information on nearrings, consult [9], [12], or [15].

Sandwich nearrings have garnered much attention in recent years. Wendt [16] characterized
1-primitive and 2-primitive zero-symmetric nearrings as dense subnearrings of sandwich central-
izer nearrings. Maxson and Speegle [11], as well as Fuchs [10], investigated ideals and simplicity
in sandwich nearrings. Booth studied 2-primitivity, 3-primitivity, and radicals of sandwich near-
rings in [2] and [3]. In several of these studies, X and G were assumed to have a topological
structure.

If |G| = 1, then M(X,G) consists of a single function. Thus, throughout the paper we
assume |G| ≥ 2.

It is well-known that in any right nearring N with additive identity 0, 0 ·n = 0 for all n ∈ N .
However, unlike in rings, n · 0 is not always zero. For this reason, we define the zero-symmetric
part of N , denoted N0, by N0 = {n ∈ N | n · 0 = 0}, a subnearring of N .

In a right nearring N , an element d ∈ N is distributive if d(n1 + n2) = dn1 + dn2 for all
n1, n2 ∈ N . The set of all distributive elements in N is denoted ND. The generalized center of
N is GC(N) = {n ∈ N | nd = dn for all d ∈ ND}. We note that GC(N) is a subnearring of N
by Proposition 1.3 in [7]. The center of N is C(N) = {c ∈ N | cn = nc for all n ∈ N}.

In this paper, we investigate M0(X,G) = (M(X,G))0, the zero-symmetric part of M(X,G).
We determine when M0(X,G) has a multiplicative identity and, in that situation, identify which
functions in M0(X,G) have multiplicative inverses. We then characterize the distributive ele-
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ments in M0(X,G) and find the generalized center of M0(X,G) in certain cases. Finally, we
find the center of M0(X,G). Recent papers involving commutativity include [13] and [14].

We use id to denote the identity function from a set to itself (as opposed to the identity in
M(X,G) or M0(X,G)). The set of all endomorphisms of G is denoted EndG, and Im f is the
image of a function f . For ease of notation, we also let g0 = 0 ∈ G.

Finally, for any g ∈ G, we define fg : X → G by fg(x) =

{
0 if x = x0

g if x ̸= x0
. Therefore

fg ∈ M(X,G). Note that f0 is the additive identity of M(X,G).

2 Characterization of M0(X,G)

By definition, M0(X,G) = {f ∈ M(X,G) | f ∗ f0 = f0}. First we find a more user-friendly
characterization of M0(X,G).

Theorem 2.1. The zero-symmetric part of M(X,G) is M0(X,G) = {f ∈ M(X,G)| f(x0) = 0}.

Proof. Let f ∈ M0(X,G) and x ∈ X . Then f ∗ f0 = f0, and f(x0) = f(φ(0)) = (f ◦ φ)(0) =
(f ◦ φ)(f0(x)) = (f ◦ φ ◦ f0)(x) = (f ∗ f0)(x) = f0(x) = 0. Therefore M0(X,G) ⊆ {f ∈
M(X,G)| f(x0) = 0}. For the reverse containment, assume f(x0) = 0. Let x ∈ X . Then
(f ∗ f0)(x) = (f ◦ φ ◦ f0)(x) = (f ◦ φ)(f0(x)) = (f ◦ φ)(0) = f(φ(0)) = f(x0) = 0 = f0(x).
Thus f ∗ f0 = f0 and {f ∈ M(X,G)| f(x0) = 0} ⊆ M0(X,G), hence equality.

If X = G and φ = id, then M0(X,G) = M0(G) = {f ∈ M(G) | f(0) = 0}, the zero-
symmetric part of M(G). So M0(X,G) generalizes M0(G). Note that fg ∈ M0(X,G) for all
g ∈ G. Also, if |X| = 1, then M0(X,G) consists of a single function. Thus, throughout the
paper we assume |X| ≥ 2.

To end this section, we determine when M0(X,G) is abelian.

Theorem 2.2. The sandwich nearring M0(X,G) is abelian if and only if (G,+) is abelian.

Proof. Assume that M0(X,G) is abelian. Let g1, g2 ∈ G. Since |X| ≥ 2, we can choose
x0 ̸= x ∈ X . Then g1 + g2 = fg1(x) + fg2(x) = (fg1 + fg2)(x) = (fg2 + fg1)(x) = fg2(x) +
fg1(x) = g2 + g1. Thus G is abelian.

Now assume G is abelian. For f, h ∈ M0(X,G) and x ∈ X we have f(x), h(x) ∈ G. Thus
(f + h)(x) = f(x) + h(x) = h(x) + f(x) = (h+ f)(x). Thus f + h = h+ f , and M0(X,G) is
abelian.

3 Multiplicative identity and inverses

In this section, we determine when M0(X,G) has a multiplicative identity. In this case, we also
determine the elements in M0(X,G) that have multiplicative inverses.

Lemma 3.1. If M0(X,G) has a multiplicative identity I , then I ◦φ : G → G is the identity map,
φ is injective, I is surjective, and |X| ≥ |G|.

Proof. Assume I ∈ M0(X,G) is a multiplicative identity. Let g ∈ G and x0 ̸= x ∈ X . Then
(I ◦φ)(g) = (I ◦φ)(fg(x)) = (I ◦φ ◦ fg)(x) = (I ∗ fg)(x) = fg(x) = g. Therefore I ◦φ is the
identity map from G to G. Since I ◦ φ is a bijection, we conclude that φ is an injection and I is
a surjection. Since I is surjective and X and G are finite, it follows that |X| ≥ |G|.

The next lemma is a straightforward exercise in discrete mathematics, so we omit the proof.

Lemma 3.2. Let Y and Z be finite sets, and let β : Y → Z be a function. If |Y | = |Z|, then β is
injective if and only if β is surjective.

Next we characterize when M0(X,G) has a multiplicative identity.

Theorem 3.3. The following are equivalent:

(i) The nearring M0(X,G) has a multiplicative identity I;
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(ii) φ is a bijection;

(iii) M0(X,G) ∼= M0(G).

In addition, if φ : G → X is bijective, then I : X → G is the bijection given by I = φ−1.

Proof. Assume M0(X,G) has a multiplicative identity I . Then I ◦ φ : G → G is the identity
map, φ is injective, I is surjective, and |X| ≥ |G| by Lemma 3.1. Assume φ is not a bijection.
So φ is not surjective and |X| ≠ |G| by Lemma 3.2. Thus |X| > |G|, say G = {g0, g1, . . . , gn}
and X = {x0, x1, . . . , xn, xn+1, . . . , xm}. Since φ is injective, without a loss of generality we
assume φ(gi) = xi for i = 0, 1, . . . , n. As I ◦ φ : G → G is the identity map, we conclude that
I(xi) = gi for all i = 0, 1, . . . , n. Assume I(xn+1) = gk ∈ G for some 0 ≤ k ≤ n.

Define f : X → G by f(xi) =

{
0 if 0 ≤ i ≤ n

g1 if n+ 1 ≤ i ≤ m
. Then f ∈ M0(X,G). Since

f = f ∗I , it follows that g1 = f(xn+1) = (f ∗I)(xn+1) = (f ◦φ◦I)(xn+1) = (f ◦φ)(I(xn+1)) =
(f ◦ φ)(gk) = f(φ(gk)) = f(xk) = 0. Thus g1 = 0, a contradiction. Therefore φ is a bijection,
and (i) implies (ii).

Now assume that φ is a bijection. Define a function α : M0(X,G) → M0(G) by α(f) = f◦φ.
Let f1, f2 ∈ M0(X,G). Then α(f1 + f2) = (f1 + f2) ◦φ = (f1 ◦φ)+ (f2 ◦φ) = α(f1)+α(f2).
Also, α(f1 ∗ f2) = α(f1 ◦φ ◦ f2) = (f1 ◦φ ◦ f2) ◦φ = (f1 ◦φ) ◦ (f2 ◦φ) = α(f1) ◦α(f2). Thus
α is a nearring homomorphism.

Let m ∈ M0(G) and consider m ◦ φ−1 ∈ M0(X,G). So α(m ◦ φ−1) = (m ◦ φ−1) ◦ φ = m,
and α is surjective. Now let f, h ∈ M0(X,G) such that α(f) = α(h). Then f ◦φ = h◦φ. Hence
f ◦ φ ◦ φ−1 = h ◦ φ ◦ φ−1. Therefore f = h and α is injective. Thus α is an isomorphism and
M0(X,G) ∼= M0(G). So (ii) implies (iii).

Assume M0(X,G) ∼= M0(G). Since M0(G) has an identity, it follows that M0(X,G) does
as well. Hence (iii) implies (i) and the proof of the equivalence is complete.

In the proof of (i) implies (ii), it was shown that if M0(X,G) has a multiplicative identity I ,
then I = φ−1. This verifies the last statement.

A corresponding result was obtained in [11] for the case where G and X are vector spaces
over a field, φ is a homogeneous function, and M(X,G) is the set of homogeneous maps from
X to G.

We conclude the section with a description of all invertible elements when M0(X,G) has a
multiplicative identity.

Theorem 3.4. Assume φ is a bijection, say φ(gi) = xi for i = 0, 1, . . . , n, so that M0(X,G)
has an identity I . Let f ∈ M0(X,G). Then f has a multiplicative inverse if and only if f is a
bijection. In particular, if f is a bijection with f(xi) = gj , then f−1(xj) = gi.

Proof. Let φ : G → X be a bijection with φ(gi) = xi for i = 0, 1, . . . , n. By Theorem 3.3, the
multiplicative identity I : X → G is given by I(xi) = gi for all i = 0, 1, . . . , n.

Let f ∈ M0(X,G) such that f is not a bijection. Since φ is a bijection, it follows that
|X| = |G|. Hence, f is neither injective nor surjective. So assume f(xj) = f(xk) = gm for
some xj ̸= xk. As I is bijective, I(xj) = gj ̸= gk = I(xk).

Assume f has a multiplicative inverse f−1. Then f−1 ∗f = I = f ∗f−1. Then for i ∈ {j, k},
we have gi = I(xi) = (f−1 ∗f)(xi) = (f−1 ◦φ◦f)(xi) = (f−1 ◦φ)(f(xi)) = (f−1 ◦φ)(gm) =
f−1(φ(gm)) = f−1(xm). Thus gj = f−1(xm) = gk, a contradiction. So f does not have a
multiplicative inverse.

Now assume f ∈ M0(X,G) is a bijection. Then there exists a bijection γ : {0, 1, . . . , n} →
{0, 1, . . . , n} such that f(xi) = gγ(i). Define h : X → G by h(xj) = gγ−1(j). Let xj ∈ X . Then
(f∗h)(xj) = (f◦φ◦h)(xj) = (f◦φ)(h(xj)) = (f◦φ)(gγ−1(j)) = f(φ(gγ−1(j))) = f(xγ−1(j)) =
gγ(γ−1(j)) = gj = I(xj). So f ∗ h = I . For xi ∈ X , we get (h ∗ f)(xi) = (h ◦ φ ◦ f)(xi) =
(h◦φ)(f(xi)) = (h◦φ)(gγ(i)) = h(φ(gγ(i))) = h(xγ(i)) = gγ−1(γ(i)) = gi = I(xi). So h∗f = I

and h = f−1.
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4 Generalized centers

In this section, we study the generalized center of M0(X,G). We first characterize the distribu-
tive elements in M0(X,G).

Theorem 4.1. Let d ∈ M0(X,G). Then d ∈ (M0(X,G))D if and only if d ◦ φ ∈ EndG. In
particular, if d ◦ φ = 0, then d ∈ (M0(X,G))D.

Proof. Assume d ∈ (M0(X,G))D. Let a, b ∈ G and x0 ̸= x ∈ X . Then (d ◦ φ)(a + b) =
(d ◦ φ)(fa(x) + fb(x)) = (d ◦ φ ◦ (fa + fb))(x) = (d ∗ (fa + fb))(x) = (d ∗ fa + d ∗ fb)(x) =
(d ∗ fa)(x)+ (d ∗ fb)(x) = (d ◦φ ◦ fa)(x)+ (d ◦φ ◦ fb)(x) = (d ◦φ)(fa(x))+ (d ◦φ)(fb(x)) =
(d ◦ φ)(a) + (d ◦ φ)(b). Thus d ◦ φ is an endomorphism of G.

Assume d◦φ ∈ EndG. Let f, h ∈ M0(X,G) and x ∈ X . We conclude that (d∗(f+h))(x) =
(d ◦φ ◦ (f +h))(x) = (d ◦φ)(f(x)+h(x)) = (d ◦φ)(f(x))+ (d ◦φ)(h(x)) = (d ◦φ ◦ f)(x)+
(d ◦ φ ◦ h)(x) = (d ∗ f)(x) + (d ∗ h)(x). Hence d ∈ (M0(X,G))D.

Since 0 ∈ EndG, the last sentence follows as a special case of the theorem.

If φ is a bijection, then M0(X,G) ∼= M0(G) by Theorem 3.3. It is known that (M0(G))D =
EndG ([12], Lemma 9.6). We conclude that the generalized center of M0(G) is GC(M0(G)) =
{s ∈ M0(G) | s ◦ α = α ◦ s for all α ∈ EndG}. This nearring has been studied in [4], [5], [6],
and [8]. Thus for the rest of this section, we consider GC(M0(X,G)) where φ is not a bijection.

For the remainder of the paper, we let P = φ−1(x0), the preimage of x0 in G via φ, and
K = ∩Ker(d ◦ φ) for all d ∈ (M0(X,G))D. A simple, but useful, result is given by the
following lemma.

Lemma 4.2. For P and K defined above, P ⊆ K.

Proof. Let g ∈ P and d ∈ (M0(X,G))D. Then (d ◦ φ)(g) = d(φ(g)) = d(x0) = 0. So
g ∈ Ker(d ◦ φ). Since d ∈ (M0(X,G))D is arbitrary, it follows that g ∈ ∩Ker(d ◦ φ) for all
d ∈ (M0(X,G))D. Therefore g ∈ K and P ⊆ K.

Theorem 4.3. If φ is not surjective, then GC(M0(X,G)) = {s ∈ M0(X,G) | s(Imφ) =
0 and s(X\ Imφ) ⊆ K}.

Proof. Assume φ is not surjective. Thus let Imφ = {x0, x1, . . . , xn} ≠ X and xn+1 ∈ X\ Imφ.
Let s ∈ GC(M0(X,G)) and xi ∈ Imφ. Then there exists gi ∈ G such that φ(gi) = xi.

Define di(x) =

{
gi if x = xn+1

0 if x ̸= xn+1
. So di ∈ M0(X,G). Since di ◦ φ = 0, it follows that di

is distributive by Theorem 4.1. Hence s ∗ di = di ∗ s. Since di(Imφ) = 0, we conclude that
0 = di(φ(s(xn+1))) = (di◦φ◦s)(xn+1) = (di∗s)(xn+1) = (s∗di)(xn+1) = (s◦φ◦di)(xn+1) =
s(φ(di(xn+1))) = s(φ(gi)) = s(xi). Therefore s(xi) = 0 and s(Imφ) = 0.

Let d ∈ (M0(X,G))D and y ∈ X\ Imφ. Since s(Imφ) = 0, it follows that 0 = s(φ(d(y))) =
(s◦φ◦d)(y) = (s∗d)(y) = (d∗ s)(y) = (d◦φ◦ s)(y) = (d◦φ)(s(y)). Thus s(y) ∈ Ker(d◦φ).
Since d is arbitrary, we get s(y) ∈ K and s(X\ Imφ) ⊆ K. Therefore GC(M0(X,G)) ⊆ {s ∈
M0(X,G) | s(Imφ) = 0 and s(X\ Imφ) ⊆ K}. The reverse inclusion is straightforward to
verify.

Corollary 4.4. Assume φ is injective but not surjective. Then GC(M0(X,G)) = {f0}.

Proof. Assume that φ is injective but not surjective. Then |G| < |X|, say G = {g0, g1, . . . , gn}
and X = {x0, x1, . . . , xn, xn+1, . . . , xm}. Since φ is injective, without a loss of generality we

assume φ(gi) = xi for i = 0, 1, . . . , n. Define d(xi) =

{
gi if 0 ≤ i ≤ n

0 if n+ 1 ≤ i ≤ m
. Then d ∈

M0(X,G).
Note that for gi ∈ G, (d ◦ φ)(gi) = d(φ(gi)) = d(xi) = gi. So d ◦ φ = id ∈ EndG, and

d is distributive by Theorem 4.1. Since d ◦ φ = id is an automorphism of G, it follows that
Ker(d ◦ φ) = {0} and K = {0}. Thus for s ∈ GC(M0(X,G)), by Theorem 4.3, we conclude
that s(X\ Imφ) = 0. Since s(Imφ) = 0 as well by Theorem 4.3, it follows that s(X) = 0.
Hence s = f0 and GC(M0(X,G)) ⊆ {f0}. As GC(M0(X,G)) is a subnearring of M0(X,G),
we get f0 ∈ GC(M0(X,G)). Therefore GC(M0(X,G)) = {f0} and the proof is complete.
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Lemma 4.5. Assume φ(g1) = φ(g2) for some g1, g2 ∈ G. Then g1 − g2 ∈ K, and g1 and g2 are
in the same coset of G determined by K.

Proof. Let d ∈ (M0(X,G))D and assume φ(g1) = φ(g2) for some g1, g2 ∈ G. Then by Theorem
4.1, d◦φ ∈ EndG. Hence (d◦φ)(g1 − g2) = (d◦φ)(g1)− (d◦φ)(g2) = d(φ(g1))−d(φ(g2)) =
d(φ(g1)) − d(φ(g1)) = 0. Thus g1 − g2 ∈ Ker(d ◦ φ). Since d ∈ (M0(X,G))D is arbitrary, we
get g1 − g2 ∈ K. The last statement follows from properties of cosets.

Finding all endomorphisms of a group, or equivalently identifying all distributive elements of
M0(X,G), is usually not very straightforward. In the case where φ is not surjective, finding the
kernel of d ◦ φ for a single d ∈ (M0(X,G))D is useful since K ⊆ Ker(d ◦ φ). This is illustrated
by the following examples.

Example 4.6. Let G = Z6, X = {x0, x1, x2, x3}, and define φ by φ(0) = φ(3) = x0, φ(1) =
φ(4) = x1, and φ(2) = φ(5) = x2. Note that P = {0, 3} ⊆ K by Lemma 4.2.

Also, for d({x0, x3}) = 0, d(x1) = 2, and d(x2) = 4, the mapping d ◦φ is an endomorphism
of Z6 and d ∈ (M0(X,Z6))D. In addition, Ker(d ◦ φ) = {0, 3}, so that K ⊆ {0, 3}. Thus
K = {0, 3} and GC(M0(X,Z6)) = {s ∈ M0(X,Z6) | s({x0, x1, x2}) = 0 and s(x3) ∈ {0, 3}}
by Theorem 4.3.

In the previous example, we found a single distributive element d with Ker(d ◦φ) = P = K.
In the next example P = K also, but there is no distributive element d such that Ker(d◦φ) = K.

Example 4.7. Let G = Q = {±1,±i,±j,±k}, the quaternion group. Let X = {x0, x1, . . . , x5}
and define φ by φ({±1}) = x0, φ({±i}) = x1, φ({±j}) = x2, and φ({±k}) = x3. So
P = {±1} ⊆ K.

For d1({x0, x1}) = 1 and d1({x2, x3, x4, x5}) = −1, the mapping d1 ◦φ is an endomorphism
of Q and d1 ∈ (M0(X,Q))D. Also Ker(d1 ◦ φ) = {±1,±i}.

Likewise, for d2({x0, x2}) = 1 and d2({x1, x3, x4, x5}) = −1, the mapping d2 ◦ φ is an
endomorphism of Q and d2 ∈ (M0(X,Q))D. Also Ker(d2 ◦ φ) = {±1,±j}.

Thus K ⊆ [{±1,±i} ∩ {±1,±j}] = {±1} = P , and K = P . Therefore GC(M0(X,Q)) =
{s ∈ M0(X,Q) | s({x0, x1, x2, x3}) = 1 and s({x4, x5}) ⊆ {±1}} by Theorem 4.3.

Note that there is no d ∈ (M0(X,Q))D with Ker(d ◦ φ) = {±1} = K. If such a d existed,
then the factor group Q/K would consist of the four cosets {±1}, {±i}, {±j}, and {±k}, and
Q/K ∼= Z2 × Z2. However, Q has no subgroup isomorphic to Z2 × Z2. Thus no endomorphism
d ◦ φ can exist with Ker(d ◦ φ) = {±1}.

Now we consider a special case.

Theorem 4.8. Assume d ◦ φ = 0 for all d ∈ (M0(X,G))D.

(i) If φ is surjective but not injective, then GC(M0(X,G)) = M0(X,G).

(ii) If φ is neither surjective nor injective, then GC(M0(X,G)) = {s ∈ M0(X,G) | s(Imφ) =
0}.

Proof. First note that for all d ∈ (M0(X,G))D, d ◦ φ = 0 if and only if d(Imφ) = 0.
(i) Assume φ is surjective but not injective. Then for d ∈ (M0(X,G))D, 0 = (d ◦ φ)(G) =

d(φ(G)) = d(X). Hence d = f0 and (M0(X,G))D = {f0}. We conclude that GC(M0(X,G)) =
M0(X,G).

(ii) Assume φ is neither surjective nor injective. By Theorem 4.3, GC(M0(X,G)) ⊆ {s ∈
M0(X,G) | s(Imφ) = 0} . Let f ∈ M0(X,G) such that f(Imφ) = 0. Also let x ∈ X and
d ∈ (M0(X,G))D. Since f(Imφ) = 0 and d(Imφ) = 0, we get (f ∗ d)(x) = (f ◦ φ ◦ d)(x) =
f(φ(d(x))) = 0 = d(φ(f(x))) = (d ◦ φ ◦ f)(x) = (d ∗ f)(x). Therefore f ∗ d = d ∗ f and
f ∈ GC(M0(X,G)). We conclude that {s ∈ M0(X,G) | s(Imφ) = 0} ⊆ GC(M0(X,G)), and
thus we have equality.

We now provide examples to show that the previous theorem applies in some cases.

Example 4.9. Let G be a finite simple group. Assume φ is not injective. Then for each distribu-
tive element d, d ◦ φ is not an automorphism of G, and Ker(d ◦ φ) ̸= {0}. Since G is simple and
Ker(d ◦ φ) is a normal subgroup of G, it follows that Ker(d ◦ φ) = G. Therefore d ◦ φ = 0 for
all d ∈ (M0(X,G))D.
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Example 4.10. Let G = Z4, X = {x0, x1, x2}, and φ(g) = xg for g = 0, 1, 2, and φ(3) = x2.
By Lemma 4.5, 3 − 2 = 1 ∈ K. Thus, ⟨1⟩ = Z4 ⊆ K. It follows that K = Z4 and d ◦ φ = 0 for
all d ∈ (M0(X,Z4))D. By Theorem 4.8, GC(M0(X,Z4)) = M0(X,Z4).

5 Centers

Since C(M0(X,G)) ⊆ GC(M0(X,G)), we use our results in the previous section on generalized
centers to classify C(M0(X,G)) for different cases of φ.

Lemma 5.1. Let c ∈ C(M0(X,G)). Then either:

(i) φ is injective; or

(ii) c(Imφ) = 0 and c(X\ Imφ) ⊆ P .

Proof. Let c ∈ C(M0(X,G)) and g ∈ G. There are two cases to consider.
(i) Suppose there exists x ∈ X such that φ(c(x)) ̸= x0. Thus x ̸= x0. Then (c ◦ φ)(g) =

(c◦φ)(fg(x)) = (c◦φ◦fg)(x) = (c∗fg)(x) = (fg ∗c)(x) = (fg ◦φ◦c)(x) = fg(φ(c(x))) = g.
Hence (c ◦ φ)(g) = g for all g ∈ G and c ◦ φ = id.

Assume φ is not injective. Thus there exist distinct g1, g2 ∈ G such that φ(g1) = φ(g2) =
x1 ∈ X . Then for i ∈ {1, 2}, we get c(x1) = c(φ(gi)) = (c ◦ φ)(gi) = id(gi) = gi. Therefore
c(x1) = g1 = g2, a contradiction. We conclude that φ is injective.

(ii) Now suppose for all x ∈ X , φ(c(x)) = x0. In particular, choose x ̸= x0. Using the same
steps as above, we get (c ◦ φ)(g) = fg(φ(c(x))) = fg(x0) = 0. Hence (c ◦ φ)(g) = 0 for all
g ∈ G and c(Imφ) = 0. We note that since φ(c(x)) = x0, it follows that c(x) ∈ P for all x ∈ X .
As c(Imφ) = 0, we can restrict the domain to X\ Imφ to obtain c(X\ Imφ) ⊆ P .

Theorem 5.2. The center of M0(X,G) is classified as follows:

(i) If φ is bijective, then C(M0(X,G)) = {f0, φ
−1}.

(ii) If φ is injective but not surjective, then C(M0(X,G)) = {f0}.

(iii) If φ is not injective, then C(M0(X,G)) = {c ∈ M0(X,G) | c(Imφ) = 0 and c(X\ Imφ) ⊆
P}.

(iv) If φ is surjective but not injective, then C(M0(X,G)) = {f0}.

Proof. (i) Assume φ is bijective. Then M0(X,G) ∼= M0(G) by Theorem 3.3. The proof of
Proposition 1.1 of [1] yields that C(M0(G)) = {0, id}. It follows that C(M0(X,G)) consists
only of the zero and identity elements in M0(X,G), namely f0 and φ−1 by Theorem 3.3.

(ii) Now assume that φ is injective but not surjective. Then GC(M0(X,G)) = {f0} by
Corollary 4.4. Since C(M0(X,G)) ⊆ GC(M0(X,G)) and f0 ∈ C(M0(X,G)), we conclude
that C(M0(X,G)) = {f0}.

(iii) Assume φ is not injective, and let c ∈ C(M0(X,G)). By Lemma 5.1, c(Imφ) =
0 and c(X\ Imφ) ⊆ P . Thus C(M0(X,G)) ⊆ {s ∈ M0(X,G) | s(Imφ) = 0 and s(X\ Imφ) ⊆
P}.

Now let s ∈ {s ∈ M0(X,G) | s(Imφ) = 0 and s(X\ Imφ) ⊆ P}. Thus s(X) ⊆ P . Let
f ∈ M0(X,G) and x ∈ X . So φ(s(x)) = x0. It follows that (s ∗ f)(x) = (s ◦ φ ◦ f)(x) =
s(φ(f(x))) = 0 = f(x0) = f(φ(s(x))) = (f ◦ φ ◦ s)(x) = (f ∗ s)(x). Hence s ∗ f = f ∗ s and
s ∈ C(M0(X,G)). We conclude that {s ∈ M0(X,G) | s(Imφ) = 0 and s(X\ Imφ) ⊆ P} ⊆
C(M0(X,G)), hence equality.

(iv) Assume φ is surjective but not injective. Let c ∈ C(M0(X,G)). By part (iii), c(Imφ) =
0. The surjectivity of φ implies that Imφ = X . Thus c(X) = c(Imφ) = 0. So c = f0 and
C(M0(X,G)) ⊆ {f0}. The reverse inclusion is clear and C(M0(X,G)) = {f0}.

Unlike the generalized center, the center of a nearring, in general, is not a subnearring (see
[7]). The next theorem demonstrates that C(M0(X,G)) is often a subnearring of M0(X,G).

Theorem 5.3. The classification of when the center is a subnearring of M0(X,G) is as follows:

(i) If φ is bijective, then C(M0(X,G)) is a subnearring if and only if expG = 2.
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(ii) If φ is injective but not surjective, then C(M0(X,G)) is a subnearring.

(iii) If φ is surjective but not injective, then C(M0(X,G)) is a subnearring.

(iv) If φ is neither injective nor surjective, then C(M0(X,G)) is a subnearring if and only if
P = φ−1(x0) is a subgroup of G.

Proof. For (i), if φ is bijective, then M0(X,G) ∼= M0(G) by Theorem 3.3. The result now
follows from Theorem 5.1 in [7].

The subset of M0(X,G) consisting only of the identity element, {f0}, is a subnearring of
M0(X,G). Thus (ii) and (iii) follow from Theorem 5.2.

For (iv), assume φ is neither injective nor surjective. Hence by Theorem 5.2, C(M0(X,G)) =
{c ∈ M0(X,G) | c(Imφ) = 0 and c(X\ Imφ) ⊆ P}. Assume P is a subgroup of G. Note that
f0 ∈ C(M0(X,G)) and C(M0(X,G)) is nonempty.

Let c1, c2 ∈ C(M0(X,G)). For i ∈ {1, 2}, ci(Imφ) = 0 and ci(X\ Imφ) ⊆ P . Let y ∈ Imφ.
Then (c1 − c2)(y) = c1(y) − c2(y) = 0 − 0 = 0. Also, for all x ∈ X\ Imφ, c1(x), c2(x) ∈ P
and, since P is a subgroup of G, (c1 − c2)(x) = c1(x)− c2(x) ∈ P . We conclude that c1 − c2 ∈
C(M0(X,G)).

Also (c1 ∗ c2)(x) = (c1 ◦ φ ◦ c2)(x) = c1(φ(c2(x))) = 0. Thus c1 ∗ c2 = f0 ∈ C(M0(X,G)).
Therefore C(M0(X,G)) is closed under multiplication and C(M0(X,G)) is a subnearring of
M0(X,G).

For the converse, assume P is not a subgroup of G. Since P is finite, P is not closed under
addition. So let g1, g2 ∈ P such that g1 + g2 ̸∈ P . Since φ is not surjective, there exists x̄ ∈ X
such that x̄ /∈ Imφ. Note that x̄ ̸= x0 = φ(0) ∈ Imφ.

For i ∈ {1, 2}, define si : X → G by si(x) =

{
gi if x = x̄

0 if x ̸= x̄
. Since si(x0) = 0, we

conclude that si ∈ M0(X,G).
Let y ∈ Imφ. So y ̸= x̄, and si(y) = 0. Therefore si(Imφ) = 0. Since the range of si is

{0, gi}, we conclude that si(X\ Imφ) = {0, gi} ⊆ P . So si ∈ C(M0(X,G)).
However, (s1 + s2)(x̄) = s1(x̄) + s2(x̄) = g1 + g2 ̸∈ P . Hence (s1 + s2)(X\ Imφ) ̸⊆ P

and s1 + s2 ̸∈ C(M0(X,G)). It follows that C(M0(X,G)) is not a subnearring of M0(X,G).
Therefore C(M0(X,G)) is a subnearring of M0(X,G) if and only if P is a subgroup of G.

We end with two examples illustrating part (iv) of Theorem 5.3.

Example 5.4. Let G = S3, the symmetric group of order six, and let X = {x0, x1, x2, x3, x4}.
Also let A3 = {(1), (1 2 3), (1 3 2)}, the alternating group of even permutations in S3. Define
φ : S3 → X by φ(A3) = x0, φ((1 2)) = x1, and φ({(2 3), (1 3)}) = x2. Then φ is neither
injective nor surjective, and P = A3. So C(M0(X,S3)) = {c ∈ M0(X,S3) | c({x0, x1, x2}) =
0 and c({x3, x4}) ⊆ A3} by Theorem 5.2. Since A3 is a subgroup of S3, it follows from Theorem
5.3 that C(M0(X,S3)) is a subnearring of M0(X,S3).

Example 5.5. Let G = Z6 and X = {x0, x1, x2}. Define φ : Z6 → X by φ({0, 1, 2}) = x0 and
φ({3, 4, 5}) = x1. Then φ is neither injective nor surjective, and P = {0, 1, 2}. By Theorem 5.2,
C(M0(X,Z6)) = {c ∈ M0(X,Z6) | c({x0, x1}) = 0 and c(x2) ∈ {0, 1, 2}}. Since P = {0, 1, 2}
is not a subgroup of Z6, C(M0(X,Z6)) is not a subnearring of M0(X,Z6) by Theorem 5.3.
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