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Abstract The purpose of this work is to show that the solution of a class of two-dimensional
free boundary problems with Neumann boundary conditions is unique. This is a generalization
of the problem of type −∆u(x, y) + (χ(u(x, y)))y = 0, which was previously examined. In
our work, we explore the uniqueness of a solution to the problem −div(a(x, y)∇u(x, y)) =
(h(x, y)χ(u(x, y)))y, employing a methodology similar to that utilized by Chipot and Lyaghfouri
in a previously published article.

1 Introduction

Consider the following weak problem:

(P )



Find(u, χ) ∈ H1(Ω)× L∞(Ω) such that :
(i) u ≥ 0, 0 ≤ χ ≤ 1, u(1 − χ) = 0 a.e. in Ω,

(ii)u = 0 on S2,

(iii)

∫
Ω

(
a(X)∇u+ χh(X)e

)
.∇ξdX ≤

∫
S3

β(X,φ− u)ξdσ(X)

∀ξ ∈ H1(Ω), ξ ≥ 0 on S2,

Figure 1.

where Ω is an open bounded Lipschitz domain R2 (see Figure 1), S = S1 ∪ S2 ∪ S3 denotes the
boundary of Ω, where S1, S2 and S3 are disjoint nonempty sets (to simplify, we will consider
that S3 is connected), and ν is the outward unit normal vector to S. X = (x, y) ∈ R2 and e is the
vector (0, 1). a(X) = (aij(X)) is a two-by-two matrix; h(X) is a function defined in Ω, β(X, .)
is a function defined on S3 ×R, and φ is a Lipschitz continuous function on S3.
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F designates the free boundary, the interface between the two sets {u > 0} and {u = 0}. Besides
the dam problem, this general problem describes many free boundary problems, including the
aluminum electrolysis problem [2, 11], the lubrication problem [1, 9, 6, 7].
For the dam problem, Carrillo and Chipot [4] investigated fluid flow through a two-dimensional
porous medium with a linear leaky boundary condition. They established a weak formulation of
the problem, which was based on physical modeling. They established the existence of a weak
solution and some properties of the solution: regularity and monotonicity. Next, Chipot and
Lyaghfouri [10] studied a more general problem than the one described above, with a nonlinear
leaky boundary condition. They established the existence of a weak solution, the regularity of
the solution, the free boundary, and the uniqueness of the solution of a problem analogous to
the problem introduced in [4]. On the other hand, there are several works on the existence,
uniqueness, regularity of solution, and free boundary in a dam problem with Dirichlet boundary
conditions and other general problems (see, for instance, [3, 9, 5, 6, 7, 13, 14, 15, 16, 19]).
Among recent works, the authors of [17] and [18] have established the free boundary regularity
of a more general problem than the problem of [10]. As for the existence of the solution, it can
be referenced in previous works with a slight modification (see, for example, [10]). For this
reason, our study will focus on the uniqueness of the solution and related results.
Among the previous results related to uniqueness:

• The case where a(X) = I2 and h(X) = 1, which is the dam problem with linear Darcy’s
law and nonlinear leaky boundary conditions (see [10]).

• The case where a(X) is a diagonal matrix, h(X) = a22(X), and β is increasing a.e. in S3
(see [15]).

• The case where a(X) is a symmetric matrix, h(X)e replaced by the vector a(X)e, and β is
increasing a.e. in S3 (see [8]).

In our work, we give more general conditions than these conditions, such as (2.1)-(2.5). The main
difficulties are the nature of the matrix (its symmetry cannot be ignored) and the relationship
between the matrix a and the function h. We succeeded in isolating the function from the matrix,
contrary to previous studies, but we were limited to the case in which the function is related only
to the second variable.
The paper is organised as follows: In Section 2, we review certain necessary features that will
be required throughout this work. Section 3 introduces the concept of S3-connected solutions,
the pool, and some attributes. In Section 4, we look at a comparison result that is important for
uniqueness. In Section 5, we shall verify the uniqueness of the S3-connected solution. Finally,
in Section 6, two specific situations are presented.

2 Preliminary results

Let us denote by:

πx(Ω) = (a, b), πx(S3) = (a0, b0),

s+(x) = sup{y : X = (x, y) ∈ Ω}, ∀x ∈ πx(Ω),

s−(x) = inf{y : X = (x, y) ∈ Ω}, ∀x ∈ πx(Ω).

Assume that a(X) and h(X) satisfies for positive constants λ,Λ and h :

aij ∈ H1(Ω) ∩ L∞(Ω), |a(X)| ≤ Λ,

a(X)z.z ≥ λ|z|2, for all z ∈ R2, for a.e.X ∈ Ω,
(2.1)

h ≤ h(X) ≤ λ, hy(X) ≥ 0 for a.e.X ∈ Ω, (2.2)

(a12)x ≤ 0, (a21)x ≤ 0, (a22 − h)y ≤ 0, in D′(Ω), (2.3)

a21νx + (a22 − h)νy ≥ 0, on S1, (2.4)
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β(X, 0) = 0, β(X, .) is Lipschitz continuous and increasing for a.e.X ∈ S3. (2.5)

First, we will give some properties of regularity for u :

Remark 2.1. As well as in [6, Remark 2.1], we have:

i) u ∈ C0,α
loc (Ω) for some α ∈ (0, 1). As a consequence, the set {u > 0} is open.

ii) If a ∈ C0,α
loc (Ω) (0 < α < 1), then we have u ∈ C1,α

loc ({u > 0}).

The following three propositions were established in [9], where the Dirichlet condition u = 0
was imposed on S3 instead of the Neumann boundary condition that we are considering in this
work. The proofs are the same.

Proposition 2.2. Let (u, χ) be a solution of (P ). Then,

χy ≤ 0 in D′(Ω). (2.6)

Proposition 2.3. Let (u, χ) be a solution of (P ) and X0 = (x0, y0) ∈ Ω.

i) If u(X0) > 0, then there exists ε > 0 such that

u(x, y) > 0 ∀(x, y) ∈ Cε(X0) = B(X0, ε) ∪ {(x, y) ∈ Ω : |x− x0| < ε, y < y0 + ε},

where B(X0, ε) is the open ball of centre x0 and radius ε.

ii) If u(X0) = 0, then u(x0, y) = 0 ∀y ≥ y0, (x0, y) ∈ Ω.

We then define the function Φ as

Φ(x) =

{
s−(x) if {y : (x, y) ∈ Ω, u(x, y) > 0} = ∅,
sup{y : (x, y) ∈ Ω, u(x, y) > 0} otherwise.

(2.7)

Φ is well defined and satisfies the following result:

Proposition 2.4. Φ is lower semi-continuous on (a, b) and {u > 0} = {y < Φ(x)}.

The following proposition is similar to [10, Theorem 4.6]:

Proposition 2.5. Let (u, χ) be a solution of (P ), and let Ck be a connected component of [u >
0] ∩ [y > k] where πx(Ck) = (ak, bk) such that [ak, bk] ∩ (a0, b0) = ∅.
If we set Zk = Ω ∩ ((ak, bk)× (k,+∞)) , then we have∫

Zk

(
a(X)χ∇u+ h(X)χ2e

)
.edX ≤

∫
Zk

(
a(X)∇u+ h(X)χe

)
.edX ≤ 0.

The following proposition is a straightforward and direct generalization of [10, Theorem 4.9],
and [15, Theorem 2.9]:

Proposition 2.6. Let (u, χ) be a solution of (P ) and B(X0, r) ⊂ Ω.

If u = 0 in B(X0, r), then we have:

χ(X) =
β((x, s+(x)), φ(x, s+(x)))

h(X)ν2(x, s+(x))
for a.e.X ∈ Dr(X0),

where Dr(X0) = B(X0, r) ∪ {(x, y) ∈ Ω; |x− x0| < r, y > y0}.

The following proposition is a straightforward and direct generalization of [10, Theorem 4.11]:

Proposition 2.7. Let (u, χ) be a solution of (P ). If the Lebesgue measure of the free boundary is
zero, then we have

χ = χ{u>0} +
β(x, φ)

hν2
χ{u=0} for a.e.x ∈ Ω.
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Proposition 2.8. Let x0 ∈ (a, b) be such that (x0,Φ(x0)) ∈ Ω and

s+ is C1,α,

a ∈ C0,α(Ω ∪ S3),

β(x, φ)− hν2 ∈ C0(S3),
β((x0, s+(x0), φ(x0, s+(x0))

ν2(x0, s+(x0)
< h(x0,Φ(x0)).

(2.8)

Then, Φ is continuous at x0.

3 S3-connected solution

As in the dam problem, the concept of a S3-connected solution is very important in the unique-
ness of the solution. We refer to [3, 10] for the original definition of a S3-connected solution.
Before giving this notion, we need the following theorem and corollary. Their demonstration is
an adaptation of the demonstrations in [10, Theorem 6.1] and [15, Theorem 5.1].

Theorem 3.1. Let (u, χ) be a solution of (P ). Then, for all (a′, b′) ⊂ (a0, b0), we do not have
u = 0 in Z = ((a′, b′)×R) ∩ Ω.

Proof. Assuming that u = 0 on Z, then we have by Proposition 2.6

χ(X) =
β((x, s+(x)), φ(x, s+(x)))

h(x)ν2(x, s+(x))
for a.e. (x, y) ∈ Z.

Let ξ ∈ H1(Z) be such that ξ = 0 on ∂Z ∩ Ω. Then ±χ(Z)ξ are test functions for (P ), so we
have : ∫

Z

χh(X).ξydX =

∫
S3

β((x, s+(x)), φ((x, s+(x))).ξdσ(X). (3.1)

Using Green’s formula, and since β((x, s+(x)), φ((x, s+(x))) = χh(X) is independent of y, we
get∫

Z

χh(X).ξydX = −
∫
Z

(
χh(X)

)
y
ξdX +

∫
∂Z

χh(X).ξηydσ(X),

=

∫
S3

β((x, s+(x)), φ((x, s+(x))).ξdσ(x),

+

∫
S1

β((x, s+(x)), φ((x, s+(x)))

ν2
.ξηydσ(X),

where ηy denotes the 2nd component of the outward unit normal to Z. Combining with (3.1),
we obtain ∫

S1

β((x, s+(x)), φ((x, s+(x)))

ν2
.ξηydσ(X) = 0,

from which we deduce

β((x, s+(x)), φ((x, s+(x)))

ν2
.ηy = 0 a.e.x ∈ (a′, b′).

This contradicts the statement β(X,φ) > 0.

The following result is a straightforward and direct generalization of [10, Theorem 6.1, ii)]:

Corollary 3.2. For any connected component C of {u > 0}, such that

infπx(C) > a0 (resp. supπx(C) < b0),

there exists a unique connected component C ′ of {u > 0} such that

infπx(C) = supπx(C
′) (resp. supπx(C) = infπx(C

′)). (3.2)
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Proof. Let C be a connected component of {u > 0}, (a1, b1) = πx(C). Assume that a0 < a1
(resp b1 < b0). Then, by Theorem 3.1 one cannot have u = 0 in the strip of Ω between a0 and
a (resp. between b and b0). So, there exists a unique connected component C ′ of {u > 0}, such
that a1 = supπx(C ′) (resp b1 = infπx(C ′)).

Now, we introduce the following definition, which closely resembles those found in [10, Defini-
tion 6.2] and [15, Definition 5.2]:

Definition 3.3. A pair of solutions (u, χ) of (P ) is an S3-connected solution if for all connected
component C of [u > 0] we have: πx(C) ∩ (a0, b0) ̸= ∅.
The following theorem gives a characterization of the solutions (u, χ) with u having support
under S2:

Theorem 3.4. Assume that h = h(y) and let (u, χ) be a pair of solutions of (P ) and C a con-
nected component of [u > 0] such that πx(C) ∩ (a0, b0) = ∅. Then we have:

C = {(x, y) ∈ Ω : x ∈ πx(C), y < kc},

u(x, y) =
χ(C)

λ

∫ kc

y

h(t)dt, ∀(x, y) ∈ Ω, x ∈ πx(C),

χ = χ(C).

Proof. By assumption, we have πx(C) ⊂ πx(S2). If we denote by Z the strip Z = (πx(C) ×
R) ∩ Ω, then ±χ(Z)u = ±χ(C)u are test functions for (P ), and we have∫

Z

(
a(X)∇u+ χh(y)e

)
.∇udX = 0.

So, ∫
Z

(a(X)∇u∇u+ χh(y).e.∇u)dX = 0.

Using (2.1) and (2.2), after multiplying the above equality by λ, we obtain∫
Z

(λ2u2
x + λ2u2

y + λχh(y)uy)dX ≤ 0. (3.3)

By applying Proposition 2.5 to Z where, Ck = C is a connected component of [u > 0]∩ [y > k]
and k = inf{y : (x, y) ∈ Z}, we get∫

Z

(
a(X)(χ∇u).e+ χ2h(y)

)
dX ≤

∫
Z

(
a(X)∇u+ χh(y)e

)
.edX ≤ 0.

Then, after multiplying the above formula by λ, we obtain∫
Z

((λa21ux + λa22uy)χ+ χ2λh(y))dX ≤ 0. (3.4)

Note that χux = ux, χuy = uy, a.e. in Z, and χ(Z)u is non-negative and belongs to H1(Ω).
Then, according to (2.3) and (2.4), we obtain∫

Z

((λa21ux + λa22uy)χ)dX = −
∫
Z

(λ(a21)x + λ(a22)y)udX

+

∫
∂Z∩S1

(a21νx + a22νy)λudσ(X),

= −
∫

Ω

(λ(a21)x + λ(a22)y)χ(Z)udX

+

∫
∂Z∩S1

(a21νx + a22νy)λudσ(X),

≥ −
∫

Ω

(λhy)χ(Z)udX +

∫
∂Z∩S1

(a21νx + a22νy)λudσ(X),

= −
∫
Z

λuhydX +

∫
∂Z∩S1

(a21νx + a22νy)λudσ(X),

=

∫
Z

λχh(y)uydX +

∫
∂Z∩S1

(a21νx + (a22 − h)νy)λudσ(X),

≥
∫
Z

λχh(y)uydX.
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Note that by (2.2), we have χ2h2(y) ≤ χ2λh(y). Hence,∫
Z

((λχh(y)uy + χ2h2(y))dX ≤
∫
Z

((λa21ux + λa22uy)χ+ χ2λh(y))dx ≤ 0. (3.5)

By adding (3.3) and (3.5), we obtain∫
Z

(λux)
2 + (λuy + χh(y))2dX ≤ 0,

from which we deduce

ux = 0 and uy = −χh(y)

λ
a.e. inZ.

So, u = u(y) in Z, then

χ = 1 a.e. in Z ∩ [u > 0] and χ = − λ

h(y)
uy = 0 a.e. in Z ∩ [u = 0].

Hence χ = χ(Z ∩ [u > 0]) = χ(C), then uy = −h(y)

λ
a.e. in C.

So,

u(x, y) =
χ(C)

λ

∫ kc

y

h(t)dt, χ = χ(C) a.e. inZ.

At this point, the authors in [3, 10] introduced the notion of a ’pool,’ which interprets (u, χ)
in this context. In our work, we will retain the term ’pool,’ even though we cannot provide a
physical interpretation for it. We then have the following definition:

Definition 3.5. We call a ’pool’ in Ω a pair (u, χ) of functions which both vanish in Ω except on
the strip Zk = Ω ∩ (πx(C)×R), where C is a sub-domain of Ω, and where we have

u(x, y) =
χ(C)

λ

∫ kc

y

h(t)dt, and χ(x, y) = χ([y < k]) a.e. inZk,

with k = max{y, (x, y) ∈ C} and Zk ∩ [y < k] is connected.

Figure 2. S3-connected solution and pool

Now, we will give a theorem analogous to [10, Theorem 6.7]

Theorem 3.6. All (u, χ) solution of (P ) can be written as the sum of an S3-connected solution
and pools.

Remark 3.7. It is important to note that λ is unique in both hypotheses (2.1) and (2.2). Other-
wise, achieving (3.5) would be impossible, indicating that no pools would exist in this scenario.
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4 Comparison results

The following comparison theorem is necessary to prove the uniqueness of S3-connected solu-
tion. To prove this theorem, we will adapt the proof of [10, Theorem 7.1].

Theorem 4.1. Let (u1, χ1), (u2, χ2) be two solutions of (P ). Define Φi(i = 1, 2) as the function
associated with ui by (2.7). If Φ1,Φ2 are continuous on (a, b) except on a set of measure zero,
then we have

i)
∫

Ω

(a(X)∇(u1 − u2)
+ + h(X).e(χ1 − χ2)

+)∇ξdX = 0, for all ξ ∈ H1(Ω),

ii) β(X,φ− u1) = β(X,φ− u2), a.e. X ∈ S3,

iii) u1 = u2 a.e. onS3.

We require the following lemma, similar to [10, Lemma 7.2]:

Lemma 4.2. Under the assumptions of theorem 4.1, for all ξ ∈ H1(Ω) ∩ C(Ω), ξ ≥ 0, we have∫
Ω

(a(X)∇(ui − u0) + h(X).e(χi − χ0))∇ξdX

≤
∫
Di

h(x,Φi(x)−)

(
1 − β(X,φ)

h.ν2

)
ξ(x,Φi(x))dx,

(4.1)

where
Di = {x ∈ (a, b) : Φ0(x) < Φi(x)}, i = 1, 2,
u0 = min{u1, u2},
χ0 = min{χ1, χ2},
Φ0 = min{Φ1,Φ2}.

Proof. For ε > 0, we consider ζ = min{ξ, ui − u0

ε
}. So, ζ is a test function for (P ) and we

have for i, j = 1, 2 with i ̸= j :∫
Ω

(
a(X)∇(ui − uj) + h(X).e(χi − χj)

)
∇ζdX

=

∫
S3

(
β(X,φ− ui)− β(X,φ− uj)

)
ζdσ(X).

(4.2)

Taking into account that we integrate only on the set {ui − u0 > 0}, where u0 = uj , equation
(4.2) becomes∫

Ω

(
a(X)∇(ui−u0)+h(X).e(χi−χ0)

)
∇ζdX =

∫
S3

(
β(X,φ−ui)−β(X,φ−u0)

)
ζdσ(X) ≤ 0.

which can be written∫
{ui−u0>εξ}

a(X)∇(ui − u0)∇ξdX +
1
ε

∫
{ui−u0≤εξ}

a(X)∇(ui − u0).∇(ui − u0)dX

+

∫
Ω

h(X)(χi − χ0).ξydX −
∫

Ω

h(X)(χi − χ0)
(
ξ − ui − u0

ε

)+
y
dX ≤ 0.

According to (2.1), the second term of the above inequality is non negative, so∫
{ui−u0>εξ}

a(X)∇(ui − u0)∇ξdX +

∫
Ω

h(X)(χi − χ0).ξydX

≤
∫

Ω

h(X)(χi − χ0)
(
ξ − ui − u0

ε

)+
y
dX.

(4.3)
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According to Proposition 2.7, the right side of (4.3) becomes∫
Ω

h(X)(χi − χ0)
(
ξ − ui − u0

ε

)+
y
dX

=

∫
{ui>u0}∩{u0=0}

(
h(X)− β(X,φ)

ν2

)(
ξ − ui − u0

ε

)+
y
dX,

=

∫
Di

dx

∫ Φi(x)

Φ0(x)

(
h(X)− β(X,φ)

ν2

)(
ξ − ui − u0

ε

)+
y
dy.

(4.4)

Since h(X)− β(X,φ)

ν2
≥ 0, for a.e. X ∈ {ui > 0} ∩ {u0 = 0},

β(X,φ)

ν2
does not depend on y

and h(X) = h(x, y) is non-decreasing in y for almost every x ∈ Di, we deduce that∫ Φi(x)

Φ0(x)

(
h(X)− β(X,φ)

ν2

)(
ξ − ui − u0

ε

)+
y
dy

=

(
h
(
x, ϕi(x)−

)
− β(X,φ)

ν2

)∫ Φi(x)

Φ∗(x)

(
ξ − ui − u0

ε

)+
y
dy.

(4.5)

with Φ∗(x) ∈ [Φ0(x),Φi(x)] . Moreover,∫ Φi(x)

Φ∗(x)

(
ξ − ui − u0

ε

)+

y

dy ≤ ξ (x,Φi(x)) . (4.6)

Consequently, from (4.3), (4.4), (4.5) and (4.6), we deduce that∫
{ui−u0>εξ}

a(X)∇(ui − u0).∇ξdX +

∫
Ω

h(X)(χi − χ0))ξydX

≤
∫
Di

h(x,Φi(x)−)

(
1 − β(X,φ)

h.ν2

)
ξ(x,Φi(x))dX.

Letting ε → 0 and using Lebesgue’s theorem, we get the lemma.

Proof. of theorem 4.1.

i) Let ξ ∈ C(Ω), ξ ≥ 0, setting

D0 = {(x, y) ∈ Ω : Φ0(x) < y < s+(x)} .

For δ > 0, set αδ(X) =

(
1 − d(X,A0)

δ

)+

, where A0 = {u0 > 0}. Then, we have

∫
Ω

(a(X)∇(ui − u0) + h(X).e(χi − χ0))∇ξdX

=

∫
Ω

(a(X)∇(ui − u0) + h(X).e(χi − χ0))∇ (αδξ) dX

+

∫
Ω

(a(X)∇(ui − u0) + h(X).e(χi − χ0))∇ ((1 − αδ) ξ) dX.

(4.7)

Applying Lemma 4.2, we get∫
Ω

(a(X)∇(ui − u0) + h(X).e(χi − χ0))∇ (αδξ) dX

≤
∫
Di

h(x,Φi(x)−)

(
1 − β(X,φ)

h.ν2

)
(αδξ)(x,Φi(x))dx.

(4.8)

Since (1 − αδ)ξ is a test function for (P), we have∫
Ω

(a(X)∇ui + h(X).eχi).∇ ((1 − αδ)ξ) dX ≤
∫
S3

β(x, φ− ui)(1 − αδ)ξdσ(X). (4.9)
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On the other hand, the function (1 − αδ) vanishes on the set A0. So,∫
Ω

(a(X)∇u0 + h(X).eχ0).∇ ((1 − αδ)ξ) dX =

∫
{u0=0}

h(X)χ0 ((1 − αδ)ξ)y dX

=

∫
D0

β(X,φ)

ν2
((1 − αδ)ξ)y dX

=

∫
D0

(
β(X,φ)

ν2
(1 − αδ)ξ

)
y

dX

=

∫
S3∩D0

β(X,φ)

ν2
(1 − αδ)ξdσ(X).

(4.10)
Subtracting (4.10) from (4.9), we get∫

Ω

(a(X)∇(ui − u0) + h(X).e(χi − χ0)).∇ ((1 − αδ) ξ) dX

≤
∫
S3∩D0

(β(X,φ− ui)− β(X,φ− u0)) (1 − αδ)ξdσ(X)

+

∫
S3\S3∩D0

β(X,φ− ui)(1 − αδ)ξdσ(X) ≤ 0.

(4.11)

Thus, employing (4.8) and (4.11), (4.7) yields:∫
Ω

(a(X)∇(ui − u0) + h(X).e(χi − χ0))∇ξdX

≤
∫
Di

h(x,Φi(x)−)

(
1 − β(X,φ)

h.ν2

)
(αδξ)(x,Φi(x))dx.

(4.12)

Letting δ → 0 in (4.12), we get by Lebesgue’s theorem∫
Ω

(a(X)∇(ui − u0) + h(X).e(χi − χ0))∇ξdX ≤ 0, ∀ξ ∈ C1(Ω), ξ ≥ 0. (4.13)

Taking M − ξ in (4.13), where M = sup
Ω
ξ, we obtain∫

Ω

(a(X)∇(ui − u0) + h(X).e(χi − χ0))∇ξdX = 0, ∀ξ ∈ C1(Ω), ξ ≥ 0. (4.14)

By density, (4.14) holds for all ξ ∈ H1(Ω), ξ ≥ 0.
Now, for ξ ∈ H1(Ω), we note that ξ = ξ+ − ξ− with ξ− = (−ξ)+. Thus,∫

Ω

(a(X)∇(ui − u0) + h(X).e(χi − χ0))∇ξdX = 0, ∀ξ ∈ H1(Ω).

ii) Let ξ ∈ H1(Ω). From i) we have∫
Ω

(a(X)∇(ui − u0) + h(X).e(χi − χ0))∇ξdX = 0, i = 1, 2.

So, ∫
Ω

(a(X)∇(u1 − u2) + h(x).e(χ1 − χ2))∇ξdX = 0. (4.15)

Since ξ is a test function for (P ), we get∫
Ω

(a(X)∇ui + h(x).eχi)∇ξdX =

∫
S3

β(X,φ− ui)ξdσ(X), i = 1, 2. (4.16)

Thus, using (4.15) and (4.16), we obtain:∫
S3

(β(X,φ− u1)− β(X,φ− u2)) ξdσ(X) = 0 ∀ξ ∈ H1(Ω),

which gives β(X,φ− u1) = β(X,φ− u2) a.e. on S3.
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iii) Following ii) and (2.5), we get u1 = u2 a.e. on S3.

The following result follows from Theorem 4.1.

Corollary 4.3. If (u1, χ1) and (u2, χ2) are two pairs of solutions of problem (P ), then (u0, χ0) =
(min(u1, u2),min(χ1, χ2)) is also a solution of (P ).

5 Uniqueness of S3-connected solution

In this section, we assume that
a12 = a21 (5.1)

The main result of this work is the following theorem:

Theorem 5.1. If s− is continuous and the free boundary is of Lebesgue measure zero then, there
exists one and only one S3− connected solution of (P ).

To prove this theorem, we need the following lemmas:

Lemma 5.2. Let (u1, χ1), (u2, χ2) be two solutions of (P ), then we have

∇(u2 − u1) = −h(X)

λ
(χ2 − χ1).e a.e. in Ω. (5.2)

Proof. We will adapt the proofs which found in [10, Lemma 7.6] and [15, Lemma 5.12]: By
Theorem 4.1, we have:∫

Ω

(a(X)∇(u1 − u2)
+ + h(X).e(χ1 − χ2)

+)∇ξdX = 0, ∀ξ ∈ H1(Ω),

which can be written:∫
Ω

(a(X)∇(u1 − u0) + h(X).e(χ1 − χ0))∇ξdX = 0, ∀ξ ∈ H1(Ω), (5.3)

where u0 = min(u1, u2) and χ0 = min(χ1, χ2).
Moreover, thanks to Theorem 4.1 iii), we have:

u2 = u1 = u0 on S3.

First, choose ξ = λ(u1 − u0) in (5.3), we get∫
Ω

λa(X).∇(u1 − u0)∇(u1 − u0) + λh(X).e(χ1 − χ0)∇(u1 − u0)dX = 0.

From (2.1), we get∫
Ω

(λ2|∇(u1 − u0)|2 + λh(X).e(χ1 − χ0)∇(u1 − u0))dX ≤ 0. (5.4)

Next, taking ξ = λy in (5.3), we obtain∫
Ω

(λa(X)∇(u1 − u0).e+ λh(X).(χ1 − χ0))dX = 0.

Given that (χ1 − χ0)2 ≤ (χ1 − χ0), and χ1∇(u1 − u0) = ∇(u1 − u0) a.e. in Ω. Then, we have∫
Ω

(λa(X)χ1∇(u1 − u0).e+ λh(X).(χ1 − χ0)
2)dX ≤ 0. (5.5)
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Note that u1 − u0 is non-negative and belongs to H1(Ω). Then, according to (2.3) and (2.4) we
obtain∫

Ω

λa(X)χ1∇(u1 − u0).edX =

∫
Ω

((λa21(u1 − u0)x + λa22(u1 − u0)y)χ1)dX,

= −
∫

Ω

(λ(a21)x + λ(a22)y)(u1 − u0)dX

+

∫
S1

λ(u1 − u0)(a21νx + a22νy)dσ(X),

≥ −
∫

Ω

(λhy)(u1 − u0)dX

+

∫
S1

λ(u1 − u0)(a21νx + a22νy)dσ(X),

=

∫
Ω

λχ1h(X)(u1 − u0)ydX

+

∫
S1

λ(u1 − u0)(a21νx + (a22 − h)νy)dσ(X),

≥
∫

Ω

λχ1h(X)(u1 − u0)ydX.

By (2.2), we have (χ1 − χ0)2h2(X) ≤ λ(χ1 − χ0)2h(X). Hence, (5.5) becomes∫
Ω

(λh(X).eχ1∇(u1 − u0) + h2(X).(χ1 − χ0)
2)dX ≤ 0. (5.6)

Since u0 is a test function for (P ), we get∫
Ω

(a(X)∇u1 + h(X).eχ1)∇u0dX =

∫
S3

β(X,φ− u1).u0dσ(X). (5.7)

From (5.3) and since u1 is also a test function for (P ), we obtain:∫
Ω

(a(X)∇u0 + h(X).eχ0)∇u1dX =

∫
Ω

(a(X)∇u1 + h(X).eχ1)∇u1dx,

=

∫
S3

β(X,φ− u1).u1dσ(X).
(5.8)

Subtracting (5.8) from (5.7) and multiplying by λ, we get by taking into consideration u2 =
u1 = u0 on S3, ∫

Ω

−λh(X).eχ0∇(u1 − u0)dX = 0. (5.9)

Adding (5.4), (5.6) and (5.9), we get∫
Ω

|λ∇(u1 − u0) + h(X)e.(χ1 − χ0)|
2
dX ≤ 0,

which leads to

∇(u1 − u0) = −h(X)

λ
(χ1 − χ0).e, a.e. in Ω.

Similarly, one can prove that

∇(u2 − u0) = −h(X)

λ
(χ2 − χ0).e, a.e. in Ω.

By combining the formulas above, we get

∇(u2 − u1) = −h(X)

λ
(χ2 − χ1).e, a.e in Ω.
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Lemma 5.3. Let (u, χ) be a solution of (P ) and let C be a connected component of {u > 0}. If
there exists a connected component C0 of {u0 > 0} such that u = u0 in C0 ⊂ C. Then we have
u = u0 in C0 = C.

Proof. We argue as in [8]. We observe that C0 is a nonempty open subset of the open connected
set C. Moreover it is also closed in C. Indeed let (Xn)n be a sequence in C0 that converges to
a point X ∈ C. Using the fact that u(Xn) = u0(Xn) for all n, we obtain by continuity of u and
u0 that u(X) = u0(X). Since u(X) > 0, we have u0(X) > 0. Given that X ∈ C0, we have
necessarily X ∈ C0. Thus C0 = C and u = u0 in C0 = C.

Lemma 5.4. Let (u, χ) be a solution of (P ) and let C be a connected component of {u > 0}.
Assume that there exists a real constant k such that ϕ(x) = k for all x ∈ πx(C) = (a′, b′). Then
we have s−(a′) = s−(b′) = k, and:

C = {(x, y) ∈ Ω / x ∈ (a′, b′) and s−(x) < y < k }

Proof. Let Z = {(x, y) ∈ Ω / x ∈ (a′, b′) and s−(x) < y < k }. First, it is obvious that C ⊂ Z.
Next, we have Z ⊂ {u > 0} and Z is connected. Therefore, Z ⊂ C. Hence, C = Z.
It remains to verify that s−(a′) = s−(b′) = k. Assume that s−(a′) < k. Then we have by
Proposition 2.4, u(a′, y) = 0 for all y ∈ (s−(a′), k).

We distinguish two cases:

i) u(x, y) = 0 for all x ≤ a′:

In this case, we have the following situation in a small ball Br(a′, y0) centered at a point (a′, y0)
for some y0 ∈ (s−(a′), k):

u(x, y) = 0 in Br(a′, y0) ∩ {x ≤ a′} and u(x, y) > 0 in Br(a′, y0) ∩ {x > a′}

which contradicts Proposition 2.9 of [18].

ii) There exists a connected component C ′ of {u > 0} such that supπx(C ′) = a′:

In this case, since u(a′, y) = 0 for all y ∈ (s−(a′), k), we can adapt the proof of continuity of ϕ
(see [6], [18]) to show that there exists ϵ > 0 and y0 ∈ (s−(a′), k) such that u(x, y) = 0 for all
x ∈ Br(a′, y0) ∩ {x ≤ a′}, leading to the same situation as in i):

u(x, y) = 0 in Br(a′, y0) ∩ {x ≤ a′} and u(x, y) > 0 in Br(a′, y0) ∩ {x > a′}

which again contradicts Proposition 2.9 of [18].

Hence, we have proved that s−(a′) = k. The proof that s−(b′) = k can be done similarly.

Lemma 5.5. Let (u, χ) be a solution of (P ) and let C1 and C2 be two connected components of
{u > 0} such that supπx(C1) = infπx(C2). Then, it is not possible that there exists two real
constants k1 and k2 such that ϕ(x) = k1 for all x ∈ πx(C1) = (a1, b1) and ϕ(x) = k2 for all
x ∈ πx(C2) = (b1, b2).

Proof. Assume that C1 ̸= C2 and let k0 = min(k1, k2). Then we necessarily have by Proposition
2.3, u(b1, y) = 0 for all y ∈ (s−(b1), k0). So, we have the following situation in a small ball
Br(b1, y0) centered at a point (b1, y0) for some y0 ∈ (s−(b1), k0):

u(x, y) = 0 in Br(b1, y0) ∩ {x = b1}
u(x, y) > 0 in Br(b1, y0) ∩ {x ̸= b1}

which contradicts Proposition 2.9 of [18]. Hence, we have proved that C1 = C2.

Proof. of theorem 5.1. Let (u1, χ1) and (u2, χ2) be two pairs of S3−connected solutions of (P ).
Let (u0, χ0) = (min(u1, u2),min(χ1, χ2)). Note that from Theorem 4.1 and Corollary 4.3, the
function (ui − u0) satisfies{

div(a(X)∇(ui − u0)) = −div((χi − χ0)h(y)e) in D′(Ω)

ui − u0 = 0 on S2 ∪ S3.
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It follows that (ui−u0) ∈ C0(Ω∪S2∪S3), and we deduce from Lemma 5.2 that (ui−u0)(x, y) =
f(y) in Ω for some continuous function f in I = (infπy(Ω), supπy(Ω)).

Since f ′(y) = (ui − u0)y = −h(y)

λ
(χi − χ0) ≤ 0, f is non-increasing in I . Moreover f(y) ≥

0 and f(y) = 0 for all y ∈ πy(S2 ∪ S3). Set k = sup{y ∈ I, f(y) > 0}. Then k ∈
[infπy(Ω), inf(πy(S2 ∪ S3)].
If k = infπy(Ω), then f(y) = 0 for all y ∈ I and we have ui = u0 in Ω.

If k ∈ (inf(πy(Ω)), inf(πy(S2 ∪ S3))], we have{
f(y) > 0 ∀y ∈ (inf(πy(Ω)), k)

f(y) = 0 ∀y ∈ [k, sup(πy(Ω))).

It follows that ui = u0 in Ω∩{y ≥ k} and ui > u0 in Ω∩{y < k}. In particular we have ui > 0
in Ω ∩ {y < k}.

Let Ci be a connected component of {ui > 0} such that πx(Ci) ∩ πx(S3) ̸= ∅, and let (ai, bi) =
πx(Ci). Using Lemma 5.4, we know that s−(ai) = s−(bi) = k, and:

Ci = {(x, y) ∈ Ω / x ∈ (ai, bi) and s−(x) < y < k }

Let C0 be a connected component of {u0 > 0} such that C0 ⊂ Ci and πx(C0) ∩ πx(S3) ̸= ∅. We
distinguish two cases:

i) C0 ∩ {y = k} ≠ ∅:

By Lemma 5.2, we have ∇(ui − u0) = 0 a.e. in C0. So ui − u0 = ci in C0 for some nonnegative
constant ci. Since ui = u0 in Ω ∩ {y = k} and Ci ∩ C0 ∩ {y = k} ̸= ∅, we get ui − u0 = 0 in
C0. By Lemma 5.3, we deduce that ui = u0 in C0 = Ci.

ii) C0 ∩ {y = k} = ∅:

In this case, we have C0 ⊂ {y < k}.

By Lemma 5.2, we have (ui)y = f ′(y) = −h(y)

λ

(
1 − β(x, φ)

h(y)ν2

)
in Ci \ C0. It follows that

λf ′(y) + h(y) =
β(x, φ)

ν2
in Ci \ C0, which leads in particular to

β(x, φ)

ν2
= B is constant in

Ci \ C0.
We claim that ϕ0 is constant in πx(C0). Indeed, let x1 < x2 ∈ πx(C0) such that ϕ0(x1) < ϕ0(x2).
We have

ui(x, y) =

∫ k

y

(
h(t)−B

λ

)
dt in (πx(C0)× {−∞, k)) ∩ (Ci \ C0)

Since ui − u0 = ci in C0, we have by continuity ui(x1, ϕ0(x1)) = ui(x2, ϕ0(x2)). This leads to:∫ k

ϕ0(x1)

(
h(t)−B

λ

)
dt =

∫ k

ϕ0(x2)

(
h(t)−B

λ

)
dt or

∫ ϕ0(x2)

ϕ0(x1)

(
h(t)−B

λ

)
dt = 0

yielding to h(t) = B for all t ∈ [ϕ0(x1), ϕ0(x2)].
By continuity of ϕ0 and the intermediate-value theorem, there exists a point x0 ∈ (x1, x2) such
that y0 = ϕ0(x0) ∈ (ϕ0(x1), ϕ0(x2)).
Let ϵ be a small positive number such that the open ball Bϵ(x0, y0) is contained in the rectangle
R0 = (x1, x2)× (ϕ0(x1), ϕ0(x2)). Since h(y) = B for all y ∈ [ϕ0(x1), ϕ0(x2)], we have h(y) =
B in R0. Taking into account Proposition 2.7, we deduce that χ0 = 1 a.e. in R0, which leads to
div (a(x)∇u0) = −hy ≤ 0 in H−1(Bϵ(x0, y0)). Given that u0 ≥ 0 in Bϵ(x0, y0), we obtain from
the strong maximum principle that either u0 = 0 in Bϵ(x0, y0) or u0 > 0 in Bϵ(x0, y0). Both
situations are in contradiction with the fact that (x0, y0) ∈ ∂{u0 > 0}. The same conclusion
would be reached if we assumed that ϕ0(x1) > ϕ0(x2). Hence, we have proved that ϕ0 is
constant in πx(C0).
Using Lemma 5.5, we see that C0 is the only connected component of {u0 > 0} such that
C0 ⊂ Ci and πx(C0) ∩ πx(S3) ̸= ∅. It follows by Corollary 3.2 that we necessarily have



Uniqueness of solution for a class of free boundary elliptic problems 925

a0 = infπx(C0). Given that β((a0, s+(a0)), φ(a0, s+(a0))) = 0, and due to the continuity of
β(x, φ), we obtain β(x, φ) = 0 above Ci \ C0, which contradicts (2.5).
We conclude that Case 2 cannot hold.

By repeating the above, we arrive at ui = u0 in every connected component Ci of {ui > 0}.
Hence, ui = u0 in Ω, which leads to u1 = u2 in Ω. We deduce from Proposition 2.7 that
χ1 = χ2 a.e. in Ω.

6 Two particular cases

In this section, we will introduce two special cases: the first related to the domain boundary, and
the second related to the coefficients a(X) and h(X).

Case where s− is a monotonic graph (figure 3 and 4)

Figure 3.

Figure 4.

The following theorem ensures the uniqueness in certain particular cases. To prove that, we refer
to [10, Theorem 7.9].

Theorem 6.1. Assume that

s−(a) = s+(a) or {a} × [s−(a), s+(a)] ⊂ S2 ∪ S3,

s−(b) = s+(b) or {b} × [s−(b), s+(b)] ⊂ S2 ∪ S3.
and (6.1)

If the graph S− is assumed to be monotone on πx(Ω), then the problem (P ) has one and only
one solution.
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The dam problem with leaky boundary conditions
The study of the dam problem with leaky boundary conditions was initiated by J. Carrillo and M.
Chipot [4] in a simple case (a(X) = I2). An extensive investigation was conducted by M. Chipot
and A. Lyaghfouri [10], where they provided a uniqueness result in the case where a(X) = I2. A
general study of uniqueness can be found in [8, 15]. It is about studying the problem (P ) under
the condition

h(X)e = a(X)e. (6.2)

Then, the problem (P ) becomes

(P1)



Find(u, χ) ∈ H1(Ω)× L∞(Ω) such that :
(i) u ≥ 0, 0 ≤ χ ≤ 1, u(1 − χ) = 0 a.e. in Ω,

(ii) u = 0 on S2,

(iii)

∫
Ω

a(X)
(
∇u+ χe

)
.∇ξdX ≤

∫
S3

β(X,φ− u)ξdσ(X)

∀ξ ∈ H1(Ω), ξ ≥ 0 on S2.

Taking into account the conditions (2.1), (2.2) and (6.1), we will give the following theorem

Theorem 6.2. Assume that

a11 ≥ λ, a12 = a21 = 0, a22 = h = λ. (6.3)

Then, there exists one and only one S3-connected solution of (P1).

Proof. By (6.2), we get a12 = 0 and a22 = h(X).
Combining the condition (2.1) with the condition (2.2), we obtain

h(y) ≤ λ,

a11z
2
1 + h(y)z2

2 + a21z1.z2 ≥ λ(z2
1 + z2

1),∀(z1, z2) ∈ R2,
(6.4)

which give a11 ≥ λ, h(y) = λ, a21 = 0 and the condition (2.3) is immediate.
Consequently, we are under the conditions of the theorem 5.1.
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