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Abstract This paper aims to study special types of ruled surfaces in three-dimensional Eu-
clidean space E3. These surfaces are constructed by focal and slant curves, and generated by
Frenet vectors of these curves. Also, some geometric properties and important results for these
surfaces such as related to the curvatures of these surfaces are obtained. Finally, some compu-
tational examples that illustrate the validity of the theoretical results of this study are given and
plotted.

1 Introduction

One of the main objectives of classical differential geometry is to study some classes of surfaces
with unique properties in E3 such as developable surfaces, ruled surfaces, minimal surfaces,
etc. Ruled surfaces are surfaces generated by moving a straight line continuously in space and
are one of the most essential topics in differential geometry [1]. This sort of surface assumes a
significant part and has numerous applications in various fields, for example, Material science,
PC Helped Mathematical planning, and the investigation of plan issues in spatial systems, etc.,
[2, 3]. Developable surfaces are special cases of ruled surfaces [4]. On a developable surface,
the Gaussian curvature is zero everywhere. There are many investigations that are interesting
with numerous properties of these surfaces in Euclidean and Minkowski spaces and a few por-
trayals, see for example [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. A group of managed surfaces created
by a few unique bends utilizing the Frenet outline in Euclidean 3-space are examined in [15].
The paper is organized as follows: In Section 2, we provide a brief review of the geometry of
curves and surfaces, particularly ruled surfaces and their focal and slant curves related to our
study. Section 3 explores a geometric study of a ruled surface given in terms of a focal curve as
a basic curve of the surface. Additionally, we track the ruled surface which has slant curves as
its base curves, and in particular, we take into account Salkowski and anti-Salkowski curves as a
model for these curves, which are discussed in Section 4. To enhance our findings and provide a
practical demonstration, we include some computational examples in Section 5. Moreover, these
examples not only serve to illustrate our primary results but also feature graphical representa-
tions for clarity. Finally, we conclude this study in Section 6.

2 Preliminaries

Let E3 be a 3-dimensional Euclidean space provided with the metric:

⟨, ⟩ = dx2
1 + dx2

2 + dx2
3,
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where (x1, x2, x3) is a rectangular coordinate system of E3.
For any arbitrary smooth curve r = r(s) : I ⊂ R → E3, where s is the arc length parameter, let
{ζ1(s), ζ2(s), ζ3(s)} be its Frenet frame. Then, Frenet equations of r are read ζ ′1(s)

ζ ′2(s)

ζ ′3(s)

 =

 0 ρ(s) 0
−ρ(s) 0 σ(s)

0 −σ(s) 0


 ζ1(s)

ζ2(s)

ζ3(s)

 , (2.1)

where ζ1, ζ2 and ζ3 are respectively, the tangent, normal and binormal vectors of r. These vectors
are mutually orthogonal unit vectors satisfying

⟨ζ1, ζ1⟩ = ⟨ζ2, ζ2⟩ = ⟨ζ3, ζ3⟩ = 1,
⟨ζ1, ζ2⟩ = ⟨ζ2, ζ3⟩ = ⟨ζ3, ζ1⟩ = 0,
det(ζ1, ζ2, ζ3) = 1,

(2.2)

and the functions ρ(s) and σ(s) are the curvatures of r, respectively [4].
To study the ruled surfaces whose main curves are focal and slant, we need to present the fol-
lowing definitions.

Definition 2.1. For a unit speed curve r = r(s) : I → E3, where s is the arc length parameter.
The bend comprising of the focuses of kissing circles of r is known as a defined central bend of
r. The hyper-planes are ordinary to r at a point comprised of the arrangement of focuses of all
circles digression to r by then. Subsequently, the focal point of kissing circles at that point lies
in such an ordinary plane. Meaning the central bend of r by Cr and we can compose

Cr(s) = (r+ c1ζ2 + c2ζ3) (s), (2.3)

where the coefficients c1, c2 are smooth functions of the parameter of r, called the first and second
focal curvatures of Cr, respectively [16]. Further, these curvatures are defined as follows:

c1 =
1
ρ
, c2 =

c′1
σ
, ρ ̸= 0, σ ̸= 0. (2.4)

Lemma 2.2. Let r : I → E3 be a unit speed helix and Cr be its focal curve in E3. Then (see,
[17])

c1 =
1
ρ
= constant and c2 = 0. (2.5)

Definition 2.3. For a unit speed curve r = r(s) : I → E3, the curve r is a slant helix if its normal
lines make a constant angle with a fixed direction [17].

In Euclidean 3-space, the ruled surface is created by a one-boundary group of straight lines
has the following representation:

Ψ (s, v) = r (s) + vβ (s) , (2.6)

where r(s) is called the base curve and β(s) is a generator which represents the direction of
straight line [18]. So, the standard unit normal vector field of Ψ is defined by

U =
Ψs ∧ Ψv

∥Ψs ∧ Ψv∥
, (2.7)

where Ψs =
∂Ψ(s,v)

∂s and Ψv = ∂Ψ(s,v)
∂v .

The 1st and 2nd fundamental forms of Ψ are, respectively expressed as

I = Eds2 + 2Fdsdv +Gdv2, (2.8)

II = eds2 + 2fdsdv + gdv2, (2.9)

where
E = ⟨Ψs,Ψs⟩, F = ⟨Ψs,Ψv⟩, G = ⟨Ψv,Ψv⟩, (2.10)
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e = ⟨Ψss, U⟩, f = ⟨Ψsv, U⟩, g = ⟨Ψvv, U⟩. (2.11)

Also, the Gaussian curvature K, the mean curvature H and the distribution parameter λ of Ψ

are expressed as [19]

K =
eg − f2

EG− F 2 , (2.12)

H =
Eg +Ge− 2Ff

2 (EG− F 2)
, (2.13)

λ =
det (r′, β, β′)

∥β′∥2 . (2.14)

In the light of Brioschi’s formula in Euclidean 3-space, the second Gaussian curvature is given
as follows:

KII =
1

(eg − f2)
2


∣∣∣∣∣∣∣
− 1

2evv + fsv − 1
2gss

1
2es fs − 1

2ev

fv − 1
2gs e f

1
2gv f g

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣

0 1
2ev

1
2gs

1
2ev e f
1
2gs f g

∣∣∣∣∣∣∣
 .

(2.15)
Also, the second mean curvature is expressed as

HII = H +
1

2
√

det(II)

∑
i,j

∂

∂ui

(√
det(II)hij ∂

∂uj
(ln

√
K)

)
, (2.16)

where (hij) is the associated matrix of its inverse (hij); i, j ∈ {1, 2} and the parameters u1, u2

are s, v, respectively [20, 21].
Now, in the light of this, we give the following two definitions [22, 23].

Definition 2.4. A regular surface in E3 is a flat (developable) surface if K = 0 and is a minimal
surface if H = 0.

Definition 2.5. A non-developable surface in E3 is a II-flat if KII = 0 and said to be II-minimal
if HII = 0.

In this context, it is worth noting that a minimal surface has vanishing second Gaussian
curvature but a surface with vanishing second Gaussian curvature need not be minimal.
The geodesic curvature, normal curvature and geodesic torsion of r (s) are respectively, defined
by (see [1]): 

ρg = ⟨U ∧ ζ1, ζ
′
1⟩,

ρn = ⟨r′′, U⟩,
σg = ⟨U ∧ U ′, ζ ′1⟩.

(2.17)

Definition 2.6. For any curve r(s) lying on a surface, the following assertions hold [24]:
(i) r(s) is a geodesic curve if and only if the geodesic curvature ρg vanishes.
(ii) r(s) is an asymptotic line if and only if it’s normal curvature ρn equals zero.
(iii) r(s) is a line of curvatures if and only if the geodesic torsion σg = 0.

3 Ruled surfaces with focal curves

In this section, we present a geometric study of a ruled surface given in terms of focal curve as
a base curve of the surface. So, we start as follows.
Let r = r (s) be a given unit speed curve in E3 and Cr (s) be the focal curve of r. Then, the
parametrization of the ruled surface which generated by the tangent of r and its base curve is
Cr (s) is given by

Φ1(s, v) = Cr(s) + vζ1(s), ⟨ζ1, ζ1⟩ = 1. (3.1)

The partial derivatives of Φ1 with respect to s and v are as follows:

Φ1s = (vρ)ζ2 + (c1σ + c′2) ζ3, Φ1v = ζ1. (3.2)
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In light of this, the components of the first fundamental form of Φ1 are, respectively

EΦ1 = (c1σ + c′2)
2
+ (vρ)2, FΦ1 = 0, GΦ1 = 1. (3.3)

Also, the unit normal vector of Φ1 is obtained as

UΦ1(s, v) =
(c1σ + c′2) ζ2 − (vρ)ζ3√
(c1σ + c′2)

2
+ (vρ)2

; ⟨UΦ1 , UΦ1⟩ = 1. (3.4)

The second order partial derivatives of Φ1 are
Φ1ss = −[vρ2]ζ1 +

(
vρ′ − c1σ

2 − c′2σ
)
ζ2 + (c′1σ + c1σ

′ + c′′2 + vρσ) ζ3,

Φ1sv = ρζ2,

Φ1vv = 0,
(3.5)

and the second fundamental quantities of Φ1 are calculated as follows:
eΦ1 =

−ρ2σv2 + (c1σρ
′ − c1ρσ

′ − ρσc′1 + ρ′c′2 − ρc′′2 )v + c2
1σ

3 − 2c1c
′
2σ

2 − c′22 σ√
(c1σ + c′2)

2
+ (vρ)2

,

fΦ1 =
c1ρσ + c′2ρ√

(c1σ + c′2)
2
+ (vρ)2

, gΦ1 = 0.
(3.6)

By straightforward calculations, the Gaussian curvature of Φ1 is

KΦ1 = −

(
c1ρσ + c′2ρ

(c1σ + c′2)
2
+ (vρ)2

)2

. (3.7)

Also, from Eqs. (2.13), (3.3) and (3.6), the mean curvature and the distribution parameter of Φ1
are respectively,

HΦ1 =
−ρ2σv2 + (c1σρ

′ − c1ρσ
′ − ρσc′1 + ρ′c′2 − ρc′′2 )v + c2

1σ
3 − 2c1c

′
2σ

2 − c′22 σ

2
(
(c1σ + c′2)

2
+ (vρ)2

) 3
2

, (3.8)

λΦ1 =
c1σ + c′2

ρ
. (3.9)

By using Eqs. (2.15) and (2.16), we obtain the second curvatures of Φ1, which could be shortly
written as

(KII)Φ1 =

∑8
i=0 Ai v

i

2ρ (c1σ + c′2)
2
(
(c1σ + c′2)

2
+ (vρ)2

) 7
2
, (3.10)

(HII)Φ1 =

∑4
j=0 Bj v

j

2ρ (c1σ + c′2)
2
(
(c1σ + c′2)

2
+ (vρ)2

) 3
2
, (3.11)

where Ai; i = 1, ..., 8 and Bj ; j = 1, ..., 4 are complicated functions which give contradictions
in the two cases; (KII)Φ1 = 0 and (HII)Φ1 = 0. This is clear because the base curve of the
surface is a focal curve, and therefore, ρ ̸= 0 and σ ̸= 0.
On the other hand, from Eq. (2.17), the geodesic curvature, normal curvature and geodesic
torsion of the focal curve Cr (s) on Φ1 are, respectively

(ρg)Φ1 = 0,

(ρn)Φ1 =
−(c′1σ+c1σ

′+c′′2 )vρ−(c1σ+c′2)
2σ√

(c1σ+c′2)
2+(vρ)2 ,

(σg)Φ1 =
(c1σ+c′2)

2(c′1σ+c1σ
′+c′′2 −vρσ)ρ

(c1σ+c′2)
2+(vρ)2 .

(3.12)

From the aforementioned data, we have the following results.
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Theorem 3.1. Let Φ(s, v) be a ruled surface in E3 and generated by the tangent of r(s) and
its base curve is Cr (s). Then, the relation between Gaussian curvature K and the distribution
parameter λ of Φ is expressed as

K =
λ2

(λ2 + v2)2 , (3.13)

which is called the Euclidean Lamarle formula, and it is clear that is a positive formula.

Proof. The proof is clear from Eqs. (3.7) and (3.9).

Lemma 3.2. For the ruled surface Φ(s, v), we have
(i) The surface Φ(s, v) is neither II-minimal nor II-flat surface.
(ii) The base curve of Φ(s, v) is a geodesic curve.

Corollary 3.3. For the ruled surface Φ(s, v) which has the distribution parameter λ and Gaus-
sian curvature K, the following statements are hold.
(i) Along a ruling the Gaussian curvature K(s, v) → 0 as v → ∓∞.
(ii) If the distribution parameter never vanishes then K(u, v) is continuous and when v = 0 then
K(u, v) has a maximum value.

As we have done for a ruled surface which generated by the tangent vector, we can also do
this again for other ruled surfaces Φ2(s, v) = Cr(s) + vζ2(s) and Φ3(s, v) = Cr(s) + vζ3(s),
which generated by the principal and binormal vectors of r(s), respectively and the base curve
is Cr (s). The calculations on these surfaces provide the following results.

Lemma 3.4. The ruled surface Φ2(s, v) is:
(i) not a II-minimal ruled surface.
(ii) a II-flat surface, if its focal curve is a circular helix.

Lemma 3.5. For the ruled surface Φ3(s, v), we have
(i) Φ3(s, v) is flat and not minimal.
(ii) the second Gaussian, and second mean curvatures of Φ3(s, v) are not defined.

4 Ruled surfaces with slant curves

In this part, we concentrate on the ruled surface which has slant curves as its base curves, and
in particular we take into account Salkowski and anti-Salkowski curves as a model for these
curves.

4.1 Ruled surface generated by a Salkowski curve

Let us consider a ruled surface given by a Salkowski curve r1 = r1 (s) (i.e., a curve with constant
curvature and non-constant torsion [25]) as its base curve and generated by the tangent vector
of r1. This surface can be expressed as follows:

Ψ1(s, v) = r1(s) + vζ1(s), v ∈ R, (4.1)

and we have
Ψ1s = ζ1 + vκζ2, Ψ1v = ζ1. (4.2)

From which, the surface normal is given by

UΨ1 = −ζ3, (4.3)

it follows that, the first and second fundamental quantities of Ψ1 are

EΨ1 = 1 + (vρ)2, FΨ1 = 1, GΨ1 = 1, (4.4)

eΨ1 = −v ρ σ, fΨ1 = 0, gΨ1 = 0 =⇒ det(II) = 0. (4.5)
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Utilizing the information portrayed previously, the mean curvature HΨ1 and distribution param-
eter λΨ1 of Ψ1 are respectively, obtained as follows:

HΨ1 =
−σ

2vρ
, λΨ1 = 0. (4.6)

Besides, each of the Gaussian curvature, the normal curvature and the geodesic torsion is van-
ished while the geodesic curvature (ρg)Ψ1 = −ρ.

If we take into account that the surface is generated once by the principal normal vector
and another time by the binormal vector of r1 (s), then we can present the following important
results.

Lemma 4.1. For the ruled surface Ψ1(s, v) which is generated by the tangent vector of r1 (s),
we have
(i) Ψ1(s, v) is a developable surface.
(ii) the second Gaussian and second mean curvatures of Ψ1(s, v) are not defined.

Lemma 4.2. If the ruled surface Ψ1(s, v) is generated by the principal normal vector of r1 (s),
then
(i) it is not developable and not minimal.
(ii) its base curve is an asymptotic line.

Lemma 4.3. For the ruled surface Ψ1(s, v) which is generated by the binormal vector of r1 (s),
we have
(i) Ψ1(s, v) is neither developable, minimal, II-flat nor II-minimal surface.
(ii) the base curve r1 (s) is a geodesic curve.

4.2 Ruled surface generated by an anti-Salkowski curve

In this section, another slant curve is considered so called anti-Salkowski curve; r2 = r2 (s)(i.e.,
a curve with non-constant curvature and constant torsion [25]) as a base curve for construct-
ing and studying a ruled surface generated by the tangent of this curve. Such surface has the
following parametrization:

Ω1(s, v) = r2(s) + vζ1(s), v ∈ R. (4.7)

The natural frame of Ω1 is given by

Ω1s = ζ1 + vρζ2, Ω1v = ζ1, (4.8)

which can be leads to the surface normal

UΩ1 = −ζ3. (4.9)

From this, we have {
EΩ1 = 1 + (vρ)2, FΩ1 = 1, GΩ1 = 1,
eΩ1 = −vρσ, fΩ1 = 0, gΩ1 = 0, det(II) = 0,

(4.10)

Based on the aforementioned calculations, the following values related to the surface are ob-
tained: {

KΩ1 = 0, HΩ1 =
−σ
2vρ , λΩ1 = 0,

(ρg)Ω1 = −ρ, (ρn)Ω1 = 0, (σg)Ω1 = 0,
(4.11)

and then, we consider the following results.

Lemma 4.4. For the ruled surface Ω1(s, v) which is generated by the tangent vector of r2 (s),
the following statements hold:
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(i) Ω1(s, v) is a developable and not minimal surface.
(ii) The second Gaussian and second mean curvatures of Ω1(s, v) are not defined.
(iii) The base curve r2 (s) is a principal line or an asymptotic line.

In the context of the conversation, for the ruled surfaces; Ω2(s, v) and Ω3(s, v) which are
generated by the principal normal and binormal vectors, respectively of the base curve r2 (s),
we can present the following result.

Lemma 4.5. The base curve r2 (s) of Ω2(s, v) is an asymptotic line, and the base curve r2 (s) of
Ω3(s, v) is a geodesic curve.

5 Applications

In this part, we interest by introducing some computational examples of different ruled surfaces
that are fully consistent with the results obtained in this study.

Example 5.1. Consider the following ruled surfaces given by the parameterizations:
Φ1(s, v) = Cr(s) + vζ1(s),

Φ2(s, v) = Cr(s) + vζ2(s),

Φ3(s, v) = Cr(s) + vζ3(s),

(5.1)

where r(s) is a circular helix given by

r(s) = (s, cos (s) , sin (s)). (5.2)

The Frenet apparatus of r(s) is calculated as follows:
ζ1(s) =

1√
2
(1,− sin (s) , cos (s)),

ζ2(s) = −(0, cos (s) , sin (s)),
ζ3(s) =

1√
2
(1, sin (s) ,− cos (s)),

(5.3)

and ρ = σ = 1
2 are the curvature and torsion of r(s).

The focal curve of r (the base curve for these ruled surfaces) is determined as

Cr = (s,− cos (s) ,− sin (s)). (5.4)

In terms of this focal curve, the ruled surfaces Φ1,Φ2 and Φ3 are rewritten as follows (see Fig.
1): 

Φ1(s, v) =
(
s+ v√

2
,− cos (s)− v√

2
sin (s) ,− sin (s) + v√

2
cos (s)

)
,

Φ2(s, v) = (s,−(1 + v) cos (s) ,−(1 + v) sin (s)) ,

Φ3(s, v) =
(
s+ v√

2
,− cos (s) + v√

2
sin (s) ,− sin (s)− v√

2
cos (s)

)
.

(5.5)

Since the calculations related to the three surfaces follow a single methodology to obtain the
values of the geometric invariants of each surface, we will take into account one of them say
Φ1(s, v) as a model for these surfaces. Therefore the partial derivatives with respect to s and v
are: 

Φ1s =
(

1, sin (s)− v√
2

cos (s) ,− cos− v√
2

sin (s)
)
,

Φ1v = 1√
2
(1,− sin (s) , cos (s)) ,

Φ1ss =
(

0, cos (s) + v√
2

sin (s) , sin (s)− v√
2

cos (s)
)
,

Φ1sv = −1√
2
(0, cos (s) , sin (s)) , Φ1vv = (0, 0, 0) ,

(5.6)

and the unit normal vector to the surface Φ1(s, v) is given by

UΦ1 =
1

2
√

4 + v2

(
−
√

2v,−4 cos (s)−
√

2v sin (s) ,
√

2v cos (s)− 4 sin (s)
)
. (5.7)
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Then, for Φ1(s, v), we find{
EΦ1 = 2 + 1

2v
2, FΦ1 = 0, GΦ1 = 1,

eΦ1 = −
√

1 + 1
4v

2, fΦ1 =
√

2√
4+v2 , gΦ1 = 0.

(5.8)

The Gaussian curvature KΦ1 and the mean curvature HΦ1 are, respectively given by

KΦ1 =
−4

(4 + v2)2 , HΦ1 =
−1

2
√

4 + v2
(5.9)

Besides, (HII)Φ1 and (KII)Φ1 are calculated as below:

(HII)Φ1 = − 6 + v2

4
√

4 + v2
, (KII)Φ1 = −

√
4 + v2

8
. (5.10)

Through this application, the aforementioned calculations showed clear confirmation of the va-
lidity of the results in Lemma (3.2), where it turned out to be the surface Φ1(s, v) is neither
developable, minimal, II-flat nor II-minimal surface.

(a) (b)

(c)

Figure 1: The ruled surfaces associated with Cr and generated by: (a) the tangent vector, (b) the
principal normal vector, (c) the binormal vector of r(s); s ∈ [−2π, 2π], v ∈ [−4, 4].
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Example 5.2. Consider the following ruled surfaces which generated by the tangent (ζ1), prin-
cipal normal (ζ2) and binormal (ζ3) vectors of a Salkowski curve r1(s) as a base curve for each
of these surfaces (see Fig. 2). So, by straightforward calculations we get

Ψ1(s, v) = r1(s) + vζ1(s)

=



(
a

2b(−1+b2)

)( 2b
a cos (s) cos (as) (v − 3b2v − 3b sin (as))

+((1 + 3b2) cos (2as)− (−1 + 3b2)(1 + 2bv sin (as))) sin (s)

)
,

(
a

2b(−1+b2)

)( 2b
a cos (as) sin (s) (v − 3b2v − 3b sin (as))

+(−(1 + 3b2) cos (2as) + (−1 + 3b2)(1 + 2bv sin (as))) cos (s)

)
,(

a
b

)
(cos (2as)− 4bv sin (as)) ,

(5.11)
Ψ2(s, v) = r1(s) + vζ2(s)

=


(

a
2b(−1+3b2)

)(
((−1 + 3b2)(−1 + 2v) + (1 + 3b2) cos (2as)) sin (s)− 3b2

a cos (s) sin (2as)
)
,(

a
2b(1−3b2)

)(
((−1 + 3b2)(−1 + 2v) + (1 + 3b2) cos (2as)) cos (s) + 3b2

a sin (s) sin (2as)
)
,(

a
4b2

) (
cos (2as)− 4b2v

)
,

(5.12)
Ψ3(s, v) = r1(s) + vζ3(s)

=



(
a

2b(−1+3b2)

)( ((−1 + 3b2)(−1 + 2bv cos (as)) + (1 + 3b2) cos (2as)) sin (s)+
2b
a (v − 3b2v − 3b cos (as)) cos (s) sin (as)

)
,

(
a

2b(1−3b2)

)( (
(cos (s) (−1 + 3b2)(−1+

)
2bv cos (as)) + (1 + 3b2) cos (2as))

+ 2b
a ((−1 + 3b2)v + 3b cos (as)) cos (2as)) sin (s) sin (as)

)
,

a
4b2 (4bv cos (as) + cos (2as)) ,

(5.13)
where

r1(s) =

(
1√

1 + b2

) − 1−a
4(1+2a) sin ((1 + 2a)s)− 1+a

4(1−2a) sin ((1 − 2a)s)− 1
2 sin (s) ,

1−a
4(1+2a) cos ((1 + 2a)s) + 1+a

4(1−2a) cos ((1 − 2a)s) + 1
2 cos (s) ,

1
4b cos (2as) ,


and

a =
b√

1 + b2
; a, b are constants.

Calculations related to the surface Ψ1(s, v) will be performed, which will lead to obtain the
following values:

ρ = 1, σ = tan (as) .

After calculating the first and second fundamental quantities of this surface, we obtain

KΨ1 = 0, HΨ1 =
sin (as)

2v cos (as)
. (5.14)

Since det(II) = 0, then it becomes clear that the second Gaussian and second mean curvatures
are undefined. This confirm the validity of the results in Lemma (4.1).



INVESTIGATION OF CURVATURE FUNCTIONS 955

(a) (b)

(c)

Figure 2: The ruled surfaces associated with r1(s) and generated by: (a) the tangent vector,
(b) the principal normal vector, and (c) the binormal vector of r1; m = 1

3 , t ∈ [−2π, 2π], v ∈
[−4, 4].

Example 5.3. Consider three ruled surfaces in the three-dimensional Euclidean space. If these
surfaces are generated by Frenet frame vectors of the anti-Salkowski curve r2(s) as the base
curve for the considered surfaces, then the parametric representations of the meant surfaces are
(see Fig. 3):

Ω1(s, v) = r2(s) + vζ1(s)

=



(
1

6b4+4b2−2

)( b(1 − 3b2 − 3(1 + b2) cos (2as)) sin (s) + b
a(1 + 3b2) cos (s) sin (2as)

+ (cos (as) sin (s)− a cos (s) sin (as)) v

)
,

(
1

6b4+4b2−2

)( b(−1 + 3b2 + 3(1 + b2) cos (2as)) cos (s)
+ b

a(1 + 3b2) sin (s) sin (2as)− (cos (as) cos (s) + a sin (s) sin (as)) v

)
,(

a2s
2b2 − a

2b2

)
(cos (as) sin (as)− 2bv) ,

(5.15)

Ω2(s, v) = r2(s) + vζ2(s)

=



(
1

6b4+4b2−2

)( −b(−1 + 3b2 + 3(1 + b2) cos (2as)) sin (s) + b
a(2(−1 + 3b2)v

+ (1 + 3b2) sin (2as)) cos (s)

)
,

(
1

6b4+4b2−2

)( b(−1 + 3b2 + 3(1 + b2) cos (2as)) cos (s)
+ b

a(2(−1 + 3b2)v + (1 + 3b2) sin (2as)) sin (s)

)
,(

a2s
2b2 + bv − a

4b2 sin (2as)
)
,

(5.16)
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Ω3(s, v) = r2(s) + vζ3(s)

=



(
a3

2b3

) −2b(1 + b2)v cos (s) cos (as) + 1
1−3b2 +

b
a(3b(1 + b2) cos (2as)

+(3b2 − 1)(b+ 2(1 + b2)v sin (as)) sin (s))
−(1 + 4b2 + 3b4) cos (s) sin (2as)

 ,

(
1

6b4+4b2−2

)( b(−1 + 3b2 + 3(1 + b2) cos (2as)) cos (s)
+ b

a(1 + 3b2) sin (s) sin (2as)

)
,(

a2s
2b2 + a v

b cos (as)− a
4b2 sin (2as)

)
,

(5.17)
with noting that the anti-Salkowski curve is given by

r2(s) =


a
4b

(
a−1
2a+1 sin ((2a+ 1)s) + a+1

2a−1 sin ((2a− 1)s)− 2a sin (s)
)
,

a
4b

(
1−a
1+2a cos ((2a+ 1)s)− 1+a

1−2a cos ((1 − 2a)s) + 2a cos (s)
)
,

a
4b2 (2as− sin (2as)) .


The calculations, related to the ruled surface Ω1(s, v) lead to

ρ = cot (as) , σ = 1.

As we are accustomed to, we summarize the calculations and mention specifically the ruled
surface generated by the tangent. So, we can get

KΩ1 = 0, HΩ1 = − sin (as)
2v cos (as)

, (5.18)

Also, the calculations shown that each of the second Gaussian curvature and the second mean
curvature is undefined. It agrees with Lemma (4.4).
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(a) (b)

(c)

Figure 3: The ruled surfaces associated with r2(s) and generated by: (a) the tangent vector,
(b) the principal normal vector, and (c) the binormal vector of r2; m = 1

3 , t ∈ [−2π, 2π], v ∈
[−4, 4].

6 Conclusions

In the three-dimensional Euclidean space, a geometric study of ruled surfaces in terms of special
curves, namely focal and slant curves, has been presented. Through this study, we have obtained
many important results related to the curvatures as well as distribution parameters of these
surfaces. Also, the interesting relation between Gaussian curvature and distribution parameter,
which is called the Euclidean Lamarle formula has been obtained. Finally, the results of the
theoretical study have been supported and illustrated by some computational examples.
In future works, we plan to study these surfaces in Lorentz-Minkowski space for different queries
and further improve the results in this paper, combined with the techniques and results in [26].
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