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Abstract The purpose of this paper is to study quasi-Yamabe soliton and quasi-Yamabe gra-
dient soliton on 3-dimensional trans-Sasakian manifolds. First, we prove that if a three dimen-
sional trans-Sasakian manifolds admit a quasi-Yamabe soliton (M, g, X, \,~), whose soliton
field is pointwise collinear with the Reeb vector field &, then (¢) the manifold reduces to quasi-
Sasakian manifold, (4¢) it has constant scalar curvature, (i:) the characteristic vector field & is
harmonic and (iv) X is infinitesimal contact transformation. Next, we prove that, when a three
dimensional trans-Sasakian manifolds admit a quasi-Yamabe gradient soliton then the manifold
is either Einstein and constant curvature or X is pointwise collinear with Dr or M3 is flat.

1 Introduction

In a Riemannian manifold (M™, g) the Riemannian metric g is said to be Yamabe soliton if it
satisfies

1
5Lx9 = (r = Ng, (1.1)

for X is a constant and a differentiable vector field X is known as a soliton vector field, where
Lx denotes the Lie derivative along X and r being the scalar curvature of M. Yamabe soliton
is a special solution of the Yamabe flow. The notion of the Yamabe flow has been introduced
by Hamilton [6] towards the study of Yamabe metrics on contact Riemannian manifolds. The
Yamabe soliton is said to be shrinking if A < 0, steady if A = 0, and expanding if A > 0.

In 2018, B. Y. Chen and S. Deshmukh [3] generalized the notion of Yamabe soliton and
they introduced quasi-Yamabe soliton which can be characterized on Riemannian manifolds as
follows:

S Exg=(r = Ng + X (U)X (V), (12)

where X represents a dual 1-form of X, ~ is smooth function and X is any real number. It can
be defined as quasi-Yamabe gradient soliton, If X is a gradient of some smooth function f and
(1.2) simplifies, then we get

V2 f=(r=Ng(U,V) +~df @ df (1.3)

where V2 f is the Hessian of f defined as Hess; (U, V) = g(VyDf, V), D denotes the gradient
operator. Several authors considered « as a constant in their studies such as Ghosh [4], Huang
and Li [7]. Throughout this paper, we consider «y as a constant.

In the last few years, many authors studied on Yamabe solitons and their generalization in
different types of contact metric manifolds in [1, 4, 10, 13, 15] etc. In [4], Ghosh proved that a
quasi-Yamabe soliton on complete Kenmotsu manifold has warped product structure. Later on,
Wang [14] established the constant scalar curvature of a compact quasi- Yamabe soliton. Siddiqi,
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Chaubey and Ramandi [12] studied on 3-Dimensional trans-Sasakian manifolds with gradient
generalized quasi-Yamabe and quasi-Yamabe metrics. Further, Huang-Li [7] established the
constant scalar curvature of a compact quasi- Yamabe gradient soliton.

The above works motivate us to study quasi-Yamabe soliton and quasi- Yamabe gradient soli-
ton on 3-dimensional trans-Sasakian manifolds. The paper is organized as follows:
After an introduction, section 2 contains some preliminary results on 3-dimensional trans-Sasakian
manifolds. In section 3.1, we study quasi-Yamabe soliton on 3-dimensional trans-Sasakian man-
ifolds. Next, in section 3.2, some results of quasi-Yamabe gradient soliton on 3-dimensional
trans-Sasakian manifolds are investigated.

2 Preliminaries

First, we recall some rudiments of trans-sasakian manifold. Let M be a (2n + 1)-dimensional
smooth Riemannian manifold (M, g) is said to be an almost contact metric manifold [2] if it
admits a (1, 1) tensor field ¢, a global 1-form 7, a characteristic vector field £ and a Riemannian
metric g on M satisfying the following relations:

U =-U+nU), ¢6=0, ) =1n06=0 2.1)
9(¢U, V) = g(U, V) = n(U)n(V), 22)
9(¢U, V) +g(U,¢V) =0, (2.3)

n(U) = g(U,¢), (2.4)

for all vector fields U, V on M.
If (M x R, J,G) corresponds to the class Wy [5] and J be the almost complex structure over
M x R givenby J(U, f4) = (¢U — f&,n(U)-L), then the structure is said to be a trans-Sasakian

structure [8]. For any vector fields U on M and smooth functions f on M x R, it can be illustrated
by the circumstance

(Vuo)V = o{g(U,V)§ = n(V)U} + B{g(¢U, V) — n(V)oU}, (2.5)

where «, [ are the smooth functions on M and such a structure is referred to as the trans-Sasakian
structure of type (a, 3). More specifically, the manifold is said to be

« cosymplectic if @ and 3 both are zero,
e -Sasakian if a # 0 and 8 = 0,
« B-Kenmotsu if 5 # 0 and o = 0.

From the above expression, it follows that

Vué = —agU + B{U — n(U)¢}, (2.6)

(Vum)(V) = —ag(eU, V) + Bg(oU, ¢V). 2.7)
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In a 3-dimensional trans-Sasakian manifold [9, 11], we have
RUV)Z =[5 =2c* =) ¢8| [o(v.2)U - g, 2)V]

— |5 = 3(e? = 84 + €8] [o(v. 20n(U) - (U, Z)n(V) ¢
+|9(V. Z2)n(V) = 9(U, Z2)n(V)] |(grada) — grads|
~[5 = 3(e% = 84 +€8]n(2) [n(vV)U = n(U)V ]

— |28+ (62)a|n(2)[n(V)U —n(U)V]

_ :Uﬂ + (qﬁU)oz} {Q(V’ Z)§ — 77(Z>V}

_ :Vﬂ + (¢V)a} [g(U, Z)€ — H(Z)U}

r

2~ (o= %) — ¢8| (U V)
—|5 =3 = B) +&8|nm(v)
~|[VB+(eV)a|n(U) - [UB + (4U)aln(V).

For a 3-dimensional trans-Sasakian manifold the following relations hold

S(U,V) = [

¢(grada) = gradp. (2.8)
Then it follows that
UB+ (¢U)a=0 2.9
and hence
=0 (2.10)
206+ €a =0 (2.11)
when «, 5= constant, and Using the condition (2.9), (2.10) then the above equations reduces to
SW,V) = % = (> = 8],V - [£ =30 = )| n(©)n(v) 2.12)
RUV)Z=  [5-20®=)|[s(V.2)U - g, 2)V]
~9(V.2)|5 = 3(e® = 84)|n(U)¢
+9(U, 2) |5 = 3(a? = ) |n(V)¢
~[% = 3(a> = )| n(vin(2)U
+[5 =32 = ) n@n(z)V, 2.13)
again (2.12) and (2.13) can be reduced to the following for a particular vector field £
S(U,€) =2(a” = B)n(U) (2.14)
R U)V = (o = B2){g(U, V)€ —n(V)U} (2.15)
and
QU =[5 - (@* = 1)U - |5 = 3(e> - 8)|n(U)¢ (2.16)

where S, R and @ denote the Ricci tensor, curvature tensor and Ricci operator of g respectively.
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3 Main Results

3.1 Quasi-Yamabe soliton

In this section, we consider 3-dimensional trans-Sasakian manifold as quasi-Yamabe soliton
with a constant v and proved the following theorem.

Theorem 3.1. If (g, X, \,7) is a quasi-Yamabe soliton on 3-dimensional trans-Sasakian man-
ifolds (M3,¢,¢,1m, 9, a, B) such that X is pointwise collinear with &,(i.e, there exists a smooth
function ¢ on M? so that X = c€), then

i. The manifold reduces to a quasi-Sasakian manifold.
ii. The characteristic vector field & is harmonic.
iii. The scalar curvature is constant.
iv. X is an infinitesimal contact transformation.

provided, £(c) # 400 - 83

Proof. If X is pointwise collinear with £, then
(Leeg)(U,V) = g(Vueg, V) +g(U, Vyet), 3.1
using (2.6) and (2.3) in the equation (3.1), we get
(Leeg)(U, V) = Uen(V) + (Veyn(U) + 2¢8{g(U, V) = n(U)n(V)}. (3.2)
Since X = ¢, the equation number (1.2) simplifies to
(Leeg) (U, V) = 2(r = N)g(U, V) + 24 (U)n(V). (3.3)
Equating (3.2) and (3.3), we get
(V) + (Ven(U) +2¢8{g(U, V) = n(U)n(V)} = 2(r = Ng(U, V) + 2y n(U)n(V).(3.4)

contracting U and V, we obtain

= tc=3(r—\) 4+~ — 2. (3.5)
Substituting U = V = £ in (3.4), we get,
fc=(r—\) +~c. (3.6)
Equating (3.5) and (3.6), we get,
r—A=cp. 3.7
Taking ¢ instead of V in (3.4) and using (3.6), we immediately get
(Ue) = [(r =) + ¢’ (U). (3.8)
Taking covariant differentiation of the equation (3.7),
Ver = BVe(e) + cVe(B),
using (2.10) in the above equation, we obtain

£(r) = BE(c). (3.9)
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Now take the covariant differentiation of the equation (2.16) along V' and then using (2.6)
and (2.7), we get,

(W= [F v -+ [5 - -P)v
- [5 - 3vier - ) u(we
—[5 = 3(a? = )] [ — ag(eV, V)¢ + Bg(oV. 00 )¢ + (D)
{—agV + BV =n(V))}], (3.10)

Since,
(divQ)U = g((Ve,Q)U. €s).
Using (3.10), we get
(@vQU = g(FU.e) ~g(esla> = B0, e:) + [ = (0> = 83)]9(9..U 1)
—9( |50 =3ei(a? = )| mU)g. e ) =[5~ 3(a” = 87)]
[ = ag(oes, U)g(&, ) + B(des, 6U)g(6, e3) +n(U)
{—ag(dei.e) + Bglers ei) —nlene)}].

which implies

QU = 39(Dreg(Ue:) - g(D(e? = 7). e0) + (U )

Now, we get from the above equation

r

1 1 2 2 2 2\1.7;
3Ur) = S(Ur) =U(e? = 5°) +[5 — (o = B)]divU
(5 = 3(a? = B))(U) - 26(U) (5 — 3(a - 5],
So,
Ua? =) =[5 — (o = B))dioU — £(5 = 3(0” = B)n(U) = 289(V)[5 ~ 3(0” = B3.11)

Substituting £ for U in the foregoing equation, we get

r

§a? = 87) = [5 — (o7 = B))divg = €(5 = 3(a” = 7)) = 26[5 = 3(a> = )] (3.12)
which implies
20(6(a)) =[5~ (® — 8)]dive — 2¢(r) — 6ag(0) ~26[L ~3(a> = )] (3.13)
Now,

dZ’Ug = g(veigaei)
= 26. (3.14)
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Using (3.14) in (3.13) we get,

Sa(€(a)) = 45(a’ ~ ) — 36(r), (3.15)
using (2.11) in the foregoing equation (3.15), we obtain
£(r) = B(40a” — 852). (3.16)
Substituting this value of £(r) in the equation (3.9) we get,

B[40a2 — 857 — £(c)] = 0. (3.17)

Our assumption is £(c) # 40a? — 8432, so, B = 0, then from (2.11) ¢(a)=0.

Hence, the manifold M3 is reduced to quasi-Sasakian manifold and the characteristic vector
field £ is harmonic.

From equation (3.7), we get r = ), so the scalar curvature is constant.

Now, from equation (3.3), we get

(Leeg)(U, V) = 29 n(U)n(V).

Taking ¢ instead of V in the foregoing equation, we get

(Leeg) (U, &) = 27cn(U)
= Leeg(U.€) — g(£eU, &) — g(U, £¢€) = 27n(U)

= (Leen)U = 37n(V))

Hence, X is an infinitesimal contact transformation.

3.2 Quasi-Yamabe gradient soliton

In this section, we consider 3-dimensional trans-Sasakian manifold as quasi-Yamabe gradient
soliton with ~y as a constant and proved the following theorem.

Theorem 3.2. If (g, X, \, ) is a quasi-Yamabe gradient soliton on 3-dimensional trans-Sasakian
manifolds, then the manifold M is either Einstein and constant curvature or X is pointwise
collinear with Dr or M?3 is flat.

Proof. Proof: We start by equation (1.3) as,
VuDf = (r =AU +~v9(Df,U)Df, (3.18)
taking differentiating (3.18) covariantly along vector field V, we get
VyVuDf = (Vr)U + (r = A\)VvU +5(Vvg(Df,U))Df +~9(Df,U)VyDf. (3.19)
Interchanging U and V in the foregoing equation, we obtain
VuVvDf = (Ur)V + (r = VoV +v(Vug(Df,V)Df +9(Df,V)VuDf.  (3.20)
From (3.18) we get,
VivviDf = (r =\ (VuV = VyU) +v9(Df,VuV = VyU)Df. (3.21)
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It is well known that
R(U,V)Df =VyVvDf—-VyVuDf— Vv Df,
using (3.19), (3.20) and (3.21) in the above formula, we get
RUV)Df = (Ur)V — (Vr)U +79(Df,V)VuDf —1g(Df,U)VyDf
+lg(VuDf,V))Df — g(VyDf,U))Df],

for any gradient vector field Z, it is well known that g(VyZ, V) = g(VyZ, U).
Using this and (3.18) in the preceding equation yields

R(U,V)Df = (Ur)V — (VP)U +~(r — N[(VAU — (Uf)V]. (3.22)
Taking ¢ for U in (3.22), we get
R V)Df = (§r)V = (Vr)E+(r = N[V )E = (€HV]. (3.23)
Now, taking inner product with U yields,
9(R(&V)DS,U) = (&r)g(V.U) = (Vr)n(U) +v(r = N[(V/)n(U) = (€f)g(U,V)]. (3.24)

We know that, g(R(&,V)Df,U) = —g(R(&,V)U, Df)
So, from (2.15)

g(R(E,V)Df,U) = —(a® = B)[g(U, V) (£f) = n(U)(V )], (3.25)
Equating (3.24) and (3.25) we get,
(Er)g(V,U) = (Vr)n(U) +4(r = VIV Hn(U) = (€£)g(U, V) = =(? = B*)[g(U, V)(£f) = n(U)(V £)]3.2
which gives the following after antisymmetrizing
(Vr)nU) = (Ur)n(V) +~(r = N[Uf)n(V) = (VHnO)] = (o® = B)[U)n(V) = (V F)n(U)}3.27)
Replacing V by ¢V in the foregoing equation, we get

(@VrIn(U) = ~(r =N (eV fnU) = —(o® = B2)(¢V fIn(U)

= (V1) +[(a® = B) = y(r = N)](¢V f) =0
= g(Dr,¢V) + [(o® = B*) = v(r — N)]g(Df,¢V) =0

= —Dr+n(Dr)é + [(o® — %) = y(r = N][-Df +n(Df)E] =0 (3.28)

Substitute U = V' = £ in the equation (3.27), we get £&r = 0, so, 7 is invariant along &.
From (3.28),

Dr=[(a? = %) =y(r = N][=Df + (£/)€] = 0, (3.29)
Using &r = 0 in the equation (3.26), we get
—(Vr)n(U) + 0 = N[V HnU) = (ENHg(U, V) = —(a® = B2)[9(U, V)(&f) = n(U)(V )13.30)
Replacing U by ¢U in the (3.30), we get
(N0 = 8%) =~ (r = N)g(eU, V) = 0. (3.31)

Case-1
When a? — 82 —y(r —X\) = 0and (£f) # 0
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Then from (3.29), Dr = 0, that means r is constant, which implies o> — 3> = Constant
and from (3.22), we get

R(U,V)Df =~(r = N(VHU = (Uf)V].
Now, taking inner product with Z, we get
9(R(U,V)DF, Z) = ~(r = NIV f)g(U, Z) = (Uf)g(V, Z)].

Substituting U = Z = e; and summing over i, we obtain

S(V.Df) = ~y(r=NBVS)-g(Df V)]
= 29(r = A)(Vf). (3.32)
From (2.12), we get
SV, Df) =[5~ (@2 = )| (V) = [5 =3 = B)]n(V) (/). (3.33)
Equating (3.32) and (3.33), we have
=NV ) =[5 (@@= -[5 -3 -AnMEn, 639

using o? — %= y(r — \) we get,

[r = 6(a® = BNV ) = (f)n(V)] = 0. (3.35)

Here, again two cases are arise first is, if » = 6(cv2 — 52), then the manifold is becomes to
Einstein and the curvature is constant.
Second is

V1) = (&HmV) (3.36)
= X=Df=({f)¢

Hence, X is pointwise collinear with &.

Case-(2), when £f = 0 and a? — 3% # ~(r — \)
From equation (3.29) we get

Dr=—[(a® = p*) —~(r = \)]Df
So, X = Df is pointwise collinear with Dr.

Case-3, when £f = 0 and o — 3% = v(r — \).
Then the result of case—(2) is true with X = Df = 0. In this case » = X and hence, o> — 3% = 0.
So, R(U, V)¢ = 0. Hence, the manifold M 3 is flat. i,e M is of constant curvature.
O
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