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Abstract The study of kinematic and dynamic nature of relativistic space-time application
in relativity has a physical model of three classes namely: shrinking, steady and expanding.
Such a physical model is similar to Ricci-Yamabe flow, whose fixed points are solitons. Also,
for the solar system, Ricci-Yamabe flow gravity effects are not different from Einstein’s grav-
ity, and hence it obeys all the classical tests. In this article, we study Ricci-Yamabe solitons
of Kählerian Norden space-time manifolds and weakly Bochner symmetric Kählerian Norden
space-time manifolds. It’s shown that the steady, expanding, or shrinking Ricci-Yamabe solitons
depend on different relations of energy density, isotropic pressure, the cosmological constant,
and the gravitational constant.

1 Introduction

In Riemannian geometry, M is a manifold which includes a Euclidean structure in every tangent
space, varying from point to point smoothly. The harmonic map and Yang-Mills equations are
solutions of differential equations which give a connection to Riemannian, complex, and Kähler
manifolds. The Riemann surface can be generalized as a complex manifold and can restrict a
structure of differentiable and analytical on a manifold.

In modern physics, space and time are inseparable, at least in the process of representing
physical things through ourselves, where these two dimensions play an important role in imag-
ining and conceptualizing the connections of all physical things. In 1915, Einstein developed
the theory of gravity is known as general relativity. Then he made a connection to relativity
and complex manifolds by introducing an imaginary time coordinate into Minkowski space. The
4-dimensional vector space of the flat Minkowski spacetime can be represented as M4. If we con-
sider general relativity, then the four-dimensional Kählerian Norden manifold is considered as
a perfect fluid space-time (briefly say, PFST ). Perfect fluids are used in cosmology to model the
idealized distributions of matter. It is defined by various thermodynamical variables (variables
are: particle number density, energy density, pressure, temperature, and entropy per particle).
These variables are spacetime scalar fields whose values represent measurements made in the
rest frame of the isotropic or star.

On the other hand, Ricci flow and Yamabe flow were introduced by Hamilton simultaneously
[5]. These are partial differential equations of Riemannian manifolds in any dimension, whose
fixed points are solitons. The Ricci solitons and Yamabe solitons are self-similar solutions to
the Ricci flow and Yamabe flow, respectively. The Ricci and Yamabe solitons are identical in
dim(M) = 2 and not identical in dim(M) > 2. In the last two decades, these two flows
have been the attraction of many geometers. Recently, in 2019, Guler and Crasmareanu [4]
introduced a new geometric flow which is a generalization of a scalar blend of Ricci flow and
Yamabe flow under the name of Ricci-Yamabe flow of the type (l,m) and is defined as

∂g

∂t
= −2lS +mrg, g0 = g(0). (1.1)
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Ricci-Yamabe soliton is self-similar to the Ricci-Yamabe flow ( it depends only on one parameter
group of diffeomorphism and scaling) and it is defined on (M, g) by

LV g(X,Y ) + 2lS(X,Y ) + (2Λ −mr)g(X,Y ) = 0, (1.2)

where S is the Ricci tensor, r is a scalar curvature, L is the Lie derivative operator along vector
field V , l and m are scalar constants and Λ is a constant. In the study of kinematic and dynamic
nature of relativistic spacetime application in relativity, we present a physical model of three
classes namely expanding: Λ > 0, shrinking: Λ < 0, and steady: Λ = 0 of perfect fluid solution
of spacetime and Ricci-Yamabe soliton.
Writing explicitly the Lie derivative (LV g)(X,Y ) we get

(LV g)(X,Y ) = g(∇XV, Y ) + g(X,∇Y V ), (1.3)

and from (1.2) we obtain

S(X,Y ) =

(
−Λ

l
+

mr

2l

)
g(X,Y )− 1

2l
[g(∇XV, Y ) + g(X,∇Y V )]. (1.4)

In [17], Siddiqi and Akyol defined an π-Ricci-Yamabe solitons, which is defined as

LV g(X,Y ) + 2lS(X,Y ) + (2Λ −mr)g(X,Y ) + 2Ωπ(X)⊗ π(Y ) = 0, (1.5)

where π is a 1-form, Ω is a constant and S, g, LV , l,m, r,Λ have meaning already stated. The
data (g, V, l,m,Λ,Ω) which satisfy the equation (1.5) is said to be an π-Ricci-Yamabe solitons.
Using (1.3) in (1.5) we get

S(X,Y ) =

(
−Λ

l
+

mr

2l

)
g(X,Y )− Ω

l
π(X)π(Y )− 1

2l
[g(∇XV, Y ) + g(X,∇Y V )]. (1.6)

The conformal Ricci-Yamabe flow equations are similar to Navier-Stokes equations of fluid me-
chanics. These two equations are similar so the time-dependent scalar field p is called a con-
formal pressure. The real physical pressure maintains the incompressibility of the fluid, but con-
formal pressure deforms the metric flow. The fixed points of the conformal Ricci-Yamabe flow
equations are Einstein metrics with Einstein constant − 1

n . In [6], A. Haseeb and M. A. Khan
introduced a new type of soliton called conformal η Ricci-Yamabe solitons, which is defined as

LV g + 2lS +

(
2Λ −mr −

(
p+

2
n

))
g + 2Ωπ ⊗ π = 0. (1.7)

Using (1.3)

S(X,Y ) =

(
−Λ

l
+

(
mr + p+ 2

n

)
2l

)
g(X,Y )− Ω

l
π(X)π(Y )− 1

2l
[g(∇XV, Y ) + g(X,∇Y V )]. (1.8)

A matter is assumed to be fluid having pressure, density, and kinematic and dynamical quan-
tities like verticity, shear, velocity, acceleration and expansion [1, 19]. It contents of the uni-
verse are supposed to accomplish such as a perfect fluid in standard cosmological models. The
energy-momentum tensor plays a big role in the matter content of spacetime (universe). The
energy-momentum tensor applications are cosmology and stellar structure and its examples are
electromagnetism and scalar field theory. The general form of the energy-momentum tensor T
for a perfect fluid is [10]

T (X,Y ) = ρg(X,Y ) + (σ + ρ)π(X)π(Y ), (1.9)

for all X,Y ∈ χ(M4), where π(X) = g(X, ξ) is a one form, ρ, σ and g are isotropic pressure,
energy density, and metric tensor of Minkowski space-time respectively. If ρ = −σ then (1.9) is
Lorentz-invariant and medium is a vacuum. If 3ρ = σ in (1.9) then the medium is a radiation
fluid.

The Einstein’s gravitational equation of perfect fluid motion is [10]

κT (X,Y ) = S(X,Y ) + (µ− r

2
)g(X,Y ), (1.10)
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for all X,Y ∈ χ(M4), where µ and κ are cosmological constant and gravitational constant of
the perfect fluid, respectively. A cosmological constant adds to Einstein’s equations to get a static
universe is just as Einstein’s idea. In modern cosmology, Eq (1.10) is favored as a candidate for
dark energy, the cause of the acceleration of the expansion of the universe. From Eqs (1.9) and
(1.10), we get

S(X,Y ) = −
(
µ− r

2
− κρ

)
g(X,Y ) + k(σ + ρ)π(X)π(Y ). (1.11)

Over the last two decades, many differential geometers progressively studied the properties of
symmetries with various geometric tools like vector fields [16], curvature tensors [13], and
importantly geometric flows [15] on abstract surfaces. The investigation of Ricci solitons on
Lorentzian manifolds with a semi-symmetric metric P -connection was carried out by the re-
searchers Y. Li et al. [8]. In [10], Neill discussed the application of semi-Riemannian geometry
in relativity, and in 1983 Kaigorodov [7] studied the structure of space-time. De and Mallick [9]
studied some conditions for the existence of perfect fluid pseudo-Riemannian symmetric space-
time. In [2], Ali and Ahsan initiated the study of Ricci solitons and symmetries of PFST. Blaga
[3], discussed the geometrical characteristics of PFST in labels of Ricci solitons, Einstein soli-
tons, and their wings namely, π-Ricci solitons and π-Einstein solitons in a PFST respectively. In
[20], the authors described the Ricci soliton structure in a PFST whose time-like velocity vector
field ξ is torse-forming. Danish Siddiqi and Alam Siddiqui [18], studied geometrical structure
in a PFST in terms of Conformal Ricci soliton. Recently, Praveena et. al. [12, 11], described
solitons in an almost pseudo symmetric Kählerian and Kähler Norden space-time manifold with
different curvature tensors. Bhattacharyya et al. [14] studied Conformal Einstein soliton within
the framework of para-Kähler manifolds. Motivated by the above studies in the present paper
we study the geometrical behavior of KNSM with Ricci-Yamabe solitons.

2 Geometrical behavior of Kählerian Norden space-time manifold:

In this section, we recollect a few basic ingredients of the Kählerian Norden space-time manifold
(briefly KNSM) and definitions.

General relativistic perfect fluid space-time of dimension four with pseudo-Riemannian met-
ric ′g′ and (1, 1) tensor field ′J ′ which satisfies

J2(Z) = −Z, g(JZ, JY ) = −g(Z, Y ) and (∇ZJ)(Y ) = 0,

is called KNSM. For a KNSM, we also have

R(JX, JY, Z,W ) = −R(X,Y, Z,W ), (2.1)

S(JZ, JY ) = −S(J, Y ), S(Z, JY )− S(JZ, Y ) = 0, (2.2)

g(JZ, JY ) = −S(J, Y ), g(Z, JY )− g(JZ, Y ) = 0, (2.3)

where R is the Riemannian curvature and S is Ricci tensor.

Let {ei}ni=1 be a local orthonormal basis in a KNSM. Then g(ei, ej) =

{
dimM, for i=j;
0, for i ̸= j.

,

S(ei, ei) = r, S(Jei, ei) = r∗, where r and r∗ are scalar curvature and *-scalar curvature re-
spectively.

Definition 2.1. An n-dimensional (n > 2) differentiable manifold (M, g) is called weakly sym-
metric if there exists 1-forms α, β, γ, ν and a vector field P such that

(∇XR)(Y, Z)U = α(X)R(Y,Z)U + β(Y )R(X,Z)U + γ(Z)R(Y,X)U

+ν(U)R(Y,Z)X + g(R(Y, Z)U,X)P,

for all X,Y, Z, U ∈ χ(M).

Definition 2.2. A KNSM is said to be a weakly Bochner symmetric manifold if its Bochner
curvature tensor B of type (0, 4) is non-zero and satisfy

(∇XB)(Y,Z, U,W ) = α(X)B(Y,Z, U,W ) + β(Y )B(X,Z,U,W )

+γ(Z)B(Y,X,U,W ) + ν(U)B(Y, Z,X,W ) +B(Y,Z, U,X)η(W ), (2.4)
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where η(W ) = g(P,W ) and B is given by

B(X,Y, Z, U) = R(X,Y, Z, U)− 1
2n+ 4

[g(Y,Z)S(X,U)− S(X,Z)g(Y,U)

+g(JY, Z)S(JX,U)− S(JX,Z)g(JY, U) + S(Y,Z)g(X,U)− g(X,Z)S(Y,U)

+S(JY, Z)g(JX,U)− g(JX,Z)S(JY, U)− 2S(Y, JX)g(JZ,U)

−2S(JZ,U)g(JX, Y )] +
r

(2n+ 2)(2n+ 4)
[g(Y,Z)g(X,U)− g(X,Z)g(Y,U)

+g(JY, Z)g(JX,U)− g(JX,Z)g(JY, U)− 2g(JX, Y )g(JZ,U)]. (2.5)

Plugging X = U = ei in the above equation and then summing over i gives

K(Y, Z) =
n

2n+ 4

[
S(Y, Z)− r

2(n+ 1)
g(Y,Z)− r∗

n
g(JY, Z)

]
. (2.6)

Consider {ei}4
i=1 an orthonormal frame field i.e., g(ei, ej) = εijδij , i, j ∈ {1, 2, 3, 4} with

εij =

{
−1, for i=j;
0, for i ̸= j.

Let ζ =
∑4

i=1 ζ
iei, then

−1 = g(ζ, ζ) = Σ1≤i,j≤4ζ
iζjg(ei, ei) =

4∑
i=1

εii(ζ
i)2, (2.7)

and

π(ei) = g(ei, ζ) =
4∑

j=1

ζjg(ei, ej) = εiiζ
j . (2.8)

Contracting the equation (1.11) provides

r = 4Λ + κ(σ − 3ρ). (2.9)

Using the above equation in (1.11), we have

S(X,Y ) =

(
µ+

κ(σ − ρ)

2

)
g(X,Y ) + κ(σ + ρ)π(X)π(Y ), (2.10)

for all X,Y ∈ χ(M4).

3 Ricci-Yamabe solitons on KNSM:

In this section, we study KNSM admitting Ricci-Yamabe solitons.
Taking JX and JY instead of X and Y resp. in (2.10) and making use of (2.2) and(2.3), one
can easily get

S(X,Y ) =

(
µ+

k

2
(σ − ρ)

)
g(X,Y )− κ(σ + ρ)π(JX)π(JY ). (3.1)

Making use of the above equation in (2.10) gives

κ(σ + ρ)[π(JX)π(JY ) + π(X)π(Y )] = 0.

Taking ζ instead of Y , the above equation becomes κ(σ + ρ)π(X) = 0. Which implies σ = −ρ.
Utilizing this in (3.1), we obtain

S(X,Y ) = (µ+ σκ)g(X,Y ). (3.2)

Inserting (3.2) in (1.4), we get the form

(µ+ σκ)g(X,Y ) =

(
−Λ

l
+

mr

2l

)
g(X,Y )− 1

2l
[g(∇XV, Y ) + g(X,∇Y V )]. (3.3)
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Setting X = Y = ζ. Multiply by εii in the above equation and by virtue of (2.7) and (2.8), we
have

Λ =
1
4
(2mr + divV )− l(µ+ σκ)

Thus, we can state the following:

Theorem 3.1. Let (g, ζ,Λ, l,m) be a Ricci-Yamabe soliton in a KNSM with ρ = −σ. Then it
is steady, shrinking or expanding according to as µ = 1

4l (2mr + divV ) − σκ, µ > 1
4l (2mr +

divV )− σκ or µ < 1
4l (2mr + divV )− σκ respectively.

Remark 3.2. Now we will draw some particular cases of Theorem (3.1). If a KNSM with
vector field ζ admits:

• Ricci soliton (l = 1, m = 0), then the Ricci soliton is steady, shrinking or expanding
according as µ = 1

4(divV −4σκ), µ > 1
4(divV −4σκ) or µ < 1

4(divV −4σκ) respectively.

• Yamabe soliton (l = 0, m = 1), then the Yamabe soliton is steady, shrinking or expanding
according as r = − 1

2divV, r < − 1
2divV or r > − 1

2divV respectively.

Now substituting the relation (3.2) into (1.6), we obtain

(µ+ σκ)g(X,Y ) =

(
−Λ

l
+

mr

2l

)
g(X,Y )− Ω

l
π(X)π(Y )− 1

l
divV. (3.4)

Multiplying (3.4) by εii and on contracting by making use of equations (2.7) and (2.8), one would
get

4Λ − Ω = −4l(µ+ σκ) + 2mr + divV. (3.5)

Plugging X = Y = ζ in (3.4), one can get

Λ − Ω =
mr

2
− l(µ+ σκ). (3.6)

Solving (3.5) and (3.6) by making use of (2.9), we have Λ = 1
(1−2m)(−lµ+ (2m− l)σκ+ divV

3 )

and Ω = −divV
3 . Hence, we can state the following:

Theorem 3.3. Let (g, V,Λ,Ω, l,m, ) be a π-Ricci-Yamabe soliton in a KNSM with ρ = −σ.
Then it is steady, shrinking or expanding according to as µ = 1

l ((2m− l)σκ−Ω), µ > 1
l ((2m−

l)σκ− Ω) or µ < 1
l ((2m− l)σκ− Ω) respectively.

Remark 3.4. Now we will draw some particular cases of Theorem (3.3). If a KNSM with
vector field ζ admits:

• Ricci soliton (l = 1, m = 0), then the Ricci soliton is steady, shrinking or expanding ac-
cording as µ = −σκ, µ > −σκ or µ < −σκ respectively. Praveena et al. [11] demonstrated
this relationship in their work.

• Yamabe soliton (l = 0, m = 1), then the Yamabe soliton is steady, shrinking or expanding
according as σκ = 0, σκ < 0 or σκ > 0 respectively.

Now replacing the relation (3.2) in the conformal π-Ricci-Yamabe soliton relation (1.8), we
have

(µ+ σκ)g(X,Y ) =

(
−Λ

l
+

(mr + p+ 2
n)

2l

)
g(X,Y )− Ω

l
π(X)π(Y )

− 1
2l
[g(∇XV, Y ) + g(X,∇Y V )]. (3.7)

Multiplying (3.7) by εii and on contracting by making use of equations (2.7) and (2.8), one would
get

4Λ − Ω = −4l(µ+ σκ) + 2mr + p+
2
n
+ divV. (3.8)
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Switching X = Y = ζ in (3.7), one can easily obtain

Λ − Ω =
1
2

(
mr + p+

2
n

)
− l(µ+ σκ). (3.9)

On Solving (3.8) and (3.9) by making use of (2.9), we obtain Λ = 1
(1−2m)(−lµ+ (2m− l)σκ+

p
2 + 1

n + divV
3 ) and Ω = −divV

3 . Hence, we can state the following:

Theorem 3.5. Let (g, ζ,Λ,Ω, l,m) be a conformal π-Ricci-Yamabe soliton in a KNSM with
ρ = −σ. Then it is steady, shrinking or expanding according to as µ = 1

l

(
(2m− l)σκ+ p

2 + 1
n − Ω

)
,

µ > 1
l

(
(2m− l)σκ+ p

2 + 1
n − Ω

)
or µ < 1

l

(
(2m− l)σκ+ p

2 + 1
n − Ω

)
respectively.

Remark 3.6. Now we will draw some particular cases of Theorem (3.5). If a KNSM with
vector field ζ admits:

• Conformal Ricci soliton (l = 1, m = 0), then it is steady, shrinking or expanding according
as µ = −σκ+ p

2 + 1
n , µ > −σκ+ p

2 + 1
n or µ < −σκ+ p

2 + 1
n respectively. Praveena et

al. [11] demonstrated this relationship in their work.

• Conformal Yamabe soliton (l = 0, m = 1), then it is steady, shrinking or expanding ac-
cording as p = −(4σκ+ 2

n), p < −(4σκ+ 2
n) or p > −(4σκ+ 2

n) respectively.

4 Ricci-Yamabe solitons on Weakly Bochner symmetric KNSM:

In this section, we study Ricci-Yamabe soliton in the framework of Weakly Bochner symmetric
KNSM: Utilizing (2.1), (2.2) and (2.3) in (2.5), we have

B(JY, JZ,U,W ) = −B(Y, Z, U,W ). (4.1)

Differentiating (4.1) covariantly along X , we obtain

(∇XB)(JY, JZ,U,W ) = −(∇XB)(Y, Z, U,W ). (4.2)

Making use of (2.4) in the above relation, we have

β(JY )B(X, JZ,U,W ) + γ(JZ)B(JY,X,U,W ) +B(JY, JZ,U,X)η(W )

= −β(Y )B(X,Z,U,W )− γ(Z)B(Y,X,U,W )−B(Y,Z, U,X)η(W ), (4.3)

where η(W ) = g(W,P ). Setting Y = Z = U = ζ = P = ei in the above equation, one can
easily obtain

K(X,W ) = 0. (4.4)

Utilizing equation (4.4) in (2.6) we obtain

S(X,Y ) =
r

10
g(X,Y )− r∗

4
g(JX, Y ). (4.5)

Using (4.5) in (1.4), we have

r

10
g(X,Y )− r∗

4
g(JX, Y ) =

(
−Λ

l
+

mr

2l

)
g(X,Y )− 1

2l
[g(∇XV, Y ) + g(X,∇Y V )].

Plugging X = Y = ζ in the above equation, we have

r

10
=

(
−Λ

l
+

mr

2l

)
(4.6)

Theorem 4.1. Let (g, ζ,Λ, l,m) be a Ricci-Yamabe soliton in a weakly symmetric KNSM with
ρ = −σ. Then it is steady, shrinking or expanding according to as r

2

[
m− l

5

]
= 0, r

2

[
m− l

5

]
<

0 or r
2

[
m− l

5

]
> 0 respectively.
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Now substituting the relation (4.5) into (1.6), we obtain

r

10
g(X,Y )− r∗

4
g(JX, Y ) =

(
−Λ

l
+

mr

2l

)
g(X,Y )− Ω

l
π(X)π(Y )

− 1
2l
(g(∇XV, Y ) + g(X,∇Y V )) (4.7)

Multiplying (4.7) by εii and on contracting by making use of equations (2.7) and (2.8), one would
get

4Λ − Ω = 2r
(
m− l

5

)
+ divV. (4.8)

Plugging X = Y = ζ in (4.7), one can get

Λ − Ω =
r

2

(
m− l

5

)
. (4.9)

Solving (4.8) and (4.9) by making use of (2.9), we have Λ = 1
(1−2(m−l

5 ))

(
2
(
m−l

5

)
σκ+ divV

3

)
and Ω = divV

3 . Hence, we can state the following:

Theorem 4.2. Let (g, V,Λ,Ω, l,m, ) be a π-Ricci-Yamabe soliton in a weakly symmetric KNSM
with ρ = −σ. Then it is steady, shrinking or expanding according to as σ = −1

2κ(m−l
5 )

Ω, σ <

−1
2κ(m−l

5 )
Ω or σ > −1

2κ(m−l
5 )

Ω respectively.

Remark 4.3. Now we will draw some particular cases of Theorem (4.2). If a weakly symmetric
KNSM with vector field ζ admits:

• Ricci soliton (l = 1, m = 0), then the Ricci soliton is steady, shrinking or expanding ac-
cording as σ = 5

2κΩ, σ < 5
2κΩ or σ > 5

2κΩ respectively. Praveena et al. [11] demonstrated
this relationship in their work.

• Yamabe soliton (l = 0, m = 1), then the Yamabe soliton is steady, shrinking or expanding
according as σ = 0, σ > 0 or σ < 0 respectively.

Now replacing the relation (4.5) in the conformal π-Ricci-Yamabe soliton relation (1.8), we
have

r

10
g(X,Y )− r∗

4
g(JX, Y ) = (−Λ

l
+

(mr + p+ 1
2)

2l
)g(X,Y )

−Ω

l
π(X)π(Y )− 1

2l
[g(∇XV, Y ) + g(X,∇Y V )]. (4.10)

Multiplying (4.10) by εii and on contracting by making use of equations (2.7) and (2.8), one
would get

4Λ − Ω =
−2rl

5
+ 2

(
mr + p+

1
2

)
+ divV. (4.11)

Switching X = Y = ζ in (4.10), one can easily obtain

Λ − Ω = − rl

10
+

1
2
(mr + p+

1
2
). (4.12)

On Solving (4.11) and (4.12) by making use of (2.9), we obtain
Λ =

(
1 + 2(l+5m)

5

) (
− 2

5(l+ 5m)κσ + 3
2

(
p+ 1

2

)
+ divV

3

)
and Ω = divV

3 . Hence, we can state
the following:

Theorem 4.4. Let (g, ζ,Λ,Ω, l,m) be a conformal π-Ricci-Yamabe soliton in a weakly symmet-
ric KNSM with ρ = −σ. Then it is steady, shrinking or expanding according to as σ =

5
2(l+5m)κ

( 3
2

(
p+ 1

2

)
+ 3Ω

)
, σ < 5

2(l+5m)κ

( 3
2

(
p+ 1

2

)
+ 3Ω

)
or σ > 5

2(l+5m)κ

( 3
2

(
p+ 1

2

)
+ 3Ω

)
respectively.
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Remark 4.5. Now we will draw some particular cases of Theorem (4.4). If a weakly symmetric
KNSM with vector field ζ admits:

• π-Conformal Ricci soliton (l = 1, m = 0), then it is steady, shrinking or expanding accord-
ing as σ = 5

2κ

( 3
2

(
p+ 1

2

)
+ 3Ω

)
, σ < 5

2κ

( 3
2

(
p+ 1

2

)
+ 3Ω

)
, or σ > 5

2κ

( 3
2

(
p+ 1

2

)
+ 3Ω

)
respectively. Praveena et al. [11] demonstrated this relationship in their work.

• π-Conformal Yamabe soliton (l = 0, m = 1), then it is steady, shrinking or expanding ac-
cording as σ = 1

2κ

( 3
2

(
p+ 1

2

)
+ 3Ω

)
, σ < 1

2κ

( 3
2

(
p+ 1

2

)
+ 3Ω

)
or σ > 1

2κ

( 3
2

(
p+ 1

2

)
+ 3Ω

)
respectively.

5 Conclusion

The energy-momentum tensor and a cosmological constant added to Einstein’s equation plays a
big role in matter content of the perfect fluid. Since the content in the matter of the fluid is not
pure and perfect fluid is dust which looks isotropic or stars in its rest frame. In modern cosmol-
ogy, it is considered a candidate for dark energy, the cause of the acceleration of the expansion
of the universe. In the study of the kinematic and dynamic nature of spacetime application in
relativity, we present a physical model of three classes namely expanding: Λ > 0, shrinking:
Λ < 0, and steady: Λ = 0 of perfect fluid solution of spacetime and Ricci-Yamabe soliton. Soli-
tons of KNSM depend on energy density σ, isotropic pressure ρ, cosmological constant µ and
gravitational constant κ because the cosmological constant is expressed as a linear combination
of energy density σ, isotropic pressure ρ, and gravitational constant κ.
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