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Abstract Transportation systems are fundamental to global supply chains, yet they often face
uncertainties arising from fluctuating costs, varying supply-demand dynamics, and unforeseen
disruptions. Addressing these challenges, in this research, we aim to propose a mathematical
model to unfold traditional transportation problems (TTP) by utilizing fermate fuzzy parame-
ters (FFP). We embody the mathematical model of TTP into a crisp form by employing a new
fermatean fuzzy score function (NFFSF) within the fermatean fuzzy environment (FFE). This re-
search study extends and develops a mathematical model of multi-objective transportation prob-
lems (MOTP). We then transformed it into crisp form using NFFSF in the same environment.
Our mathematical model of MOTP minimizes three substantial objectives: total transportation
cost, total transportation time, and deterioration cost during transportation. The findings of the
present work spur the parameters involved in the mathematical models, including objective costs,
supply, and demand, which are considered FFP. We apply the Fermatean fuzzy programming ap-
proach (FFPA) and the neutrosophic goal programming approach (NGPA) to obtain the best
compromise solutions to the proposed problem, utilizing solution method-based strategies. This
study also provided a simulated numerical example to demonstrate the effectiveness and prac-
ticality of the proposed paradigm. The findings offer valuable managerial insights, providing a
structured framework for policymakers and industry leaders to enhance transportation efficiency
in complex, uncertain environments.

1 Introduction

The transportation problem (TP) is a classic optimization problem in operations research and
logistics [1, 2, 3]. It involves determining the most economical method [4] to transport products
from suppliers (origines) to destinations (receivers or demand points) while satisfying supply
and demand constraints [89]. Efficient resolution of transportation problems is critical for im-
proving business operational effectiveness and profitability and optimizing public services and
infrastructure. The MOTP refers to a variant of the TP where multiple conflicting objectives
must be optimized simultaneously [5, 6, 7].

Transportation is vital in modern supply chain management, impacting economic growth,
environmental sustainability, and overall efficiency [38]. However, real-world transportation
systems are often subject to uncertainties arising from fluctuating demand, varying supply lev-
els, unpredictable transportation costs, and deterioration during transit—traditional mathemati-
cal models for MOTP struggle to accommodate these uncertainties effectively, leading to subop-
timal decision-making[2, 61]. Researchers have increasingly used fuzzy logic and uncertainty-
based optimization approaches to address these challenges. Among these, FFS offers a superior
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method for handling uncertainty due to its higher flexibility in modeling membership and non-
membership functions. Moreover, the study explores the potential role of the Metaverse in sus-
tainable transport planning, emphasizing how virtual simulations and digital twins can assist in
optimizing transportation strategies before real-world implementation. By integrating artificial
intelligence (AI) and data analytics, policymakers can use the Metaverse to evaluate different
transportation scenarios, improve decision-making, and reduce the environmental impact of lo-
gistics operations[16].

In recent years, the emergence of the Metaverse has introduced new possibilities for sustain-
able transport planning by leveraging virtual simulations and digital twins. The Metaverse en-
ables urban planners and policymakers to model, analyze, and optimize transportation networks
in a risk-free virtual environment before implementing them in the real world. By integrating
artificial intelligence, big data analytics, and immersive virtual reality (VR) simulations, trans-
portation planners can evaluate various scenarios, assess traffic patterns, and identify the most
efficient and sustainable solutions[16]. Additionally, the Metaverse promotes remote work and
virtual tourism, reducing the need for physical travel and minimizing carbon footprints. This
innovative approach aligns with sustainable transportation goals by fostering efficient mobility
solutions while mitigating environmental impacts in uncertain and dynamic environments.

In contrast to the traditional transportation problem, which focuses on minimizing transporta-
tion costs or maximizing efficiency [8]. MOTP considers additional objectives such as mini-
mizing transportation time, deterioration cost during transportation, minimization of inventory
levels, maximization of customer satisfaction, carbon emissions, minimization of the number
of vehicles used, maximizing resource utilization and minimizing congestion [9, 10, 11]. The
solid transportation problem (STP) is an extension of the transportation problem that considers
additional constraints related to the transportation capacity of vehicles or modes of transport
[3, 14]. In STP, vehicle capacity is limited by weight and other physical characteristics, such as
space occupancy [15, 16]. This additional constraint introduces complexities in the optimiza-
tion process, as it requires considering the number of goods to be transported and their physical
properties and compatibility with the vehicles [17, 18, 19]. Various methods, e.g., can solve TP,
the North-West Corner Method, the Least Cost Method, Vogel’s Approximation Method, and
Heuristic and metaheuristic Algorithms (Genetic Algorithms, NSGA-2 3).

In the same manner, the MOTP can be solved by various types of methodologies, e.g., Chance
constraint programming [20, 21], fuzzy programming [22, 23], fuzzy goal programming [24, 25],
multi-criteria decision-making analysis [26], and interactive evolutionary algorithms [27, 28].
This research study explores solution approaches for mathematical multi-objective transportation
problems under uncertain environments. By addressing the complexity and uncertainty inherent
in these problems, we aim to contribute to developing more effective, efficient, and sustainable
transportation solutions. Traditional transportation problem models often fail to account for the
uncertain and imprecise nature of transportation parameters, such as fluctuating supply and de-
mand, varying transportation costs, and uncertain deterioration rates. While existing studies have
explored fuzzy and neutrosophic approaches to address uncertainty, limited research has lever-
aged FFP to model uncertainty in transportation problems. Additionally, most prior works focus
either on cost minimization alone or employ single-objective optimization methods, lacking a
comprehensive multi-objective approach that optimizes transportation, time, and deterioration
costs. Moreover, integrating FFPA and NGPA within a unified framework for transportation
problems remains unexplored, leaving a significant gap in the literature. This study fills these
gaps by introducing a robust multi-objective optimization framework under the FFE, providing
a more realistic and practical solution for uncertain transportation scenarios.

The remaining sections of this article are arranged as follows: We discussed the literature
review in section 2. Basic definitions, theorems, and arithmetic operations are presented in
Section 3. In Section 4, uncertain and crisp mathematical models of the TTP and MOTP are
shown, and in Sections 5 and 6, proposed FFPA and NGPA are for the presented mathematical
modeling. Section 7 presents the methodology for the proposed problem. Section 8 presents
the numerical example of a proposed mathematical model. Finally, Section 9 discusses the
conclusion and the managerial and practical implications.
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2 Literature review

Fermatean fuzzy programming approach is a non-linear programming approach that handles the
MOTP and other problems. It extends the concept of Pythagorean fuzzy programming [29]. An
NFFSF is introduced to convert fuzzy data into crisp form using the fermatean fuzzy technique.
FFP provides an alternative approach to solving MOTP [29, 81, 92, 93]. Senapati and Yager
[30] introduced fermatean fuzzy sets and compared them to Pythagorean and intuitionistic fuzzy
sets. They proposed a score function to rank fermatean fuzzy sets and used Euclidean distance
to measure their similarity. Sharma et al. [31] established a score function for grading fermatean
fuzzy sets and presented an algorithm for optimizing TP using FFP. Akram et al. [32] proposed
a fermatean fuzzy data envelopment analysis (DEA) method to address TP with multiple goals
and fuzzy costs. They introduced a new method (multi-criteria decision-making approach) to
measure efficiency for each segment of the transportation route using fermatean fuzzy score
functions [33, 34, 35] and developed a multi-objective transportation mathematical model under
FFE. They transformed this mathematical model into crisp mathematical form using the Trape-
zoidal FFPA and LR fully Pythagorean fuzzy programming approach. They also provided some
numerical examples to justify this approach.

Sirbiladze et al. [36] presented a mathematical model of a fuzzy vehicle routing problem
under different environments. They used the multi-criteria decision-making approach to solve
this mathematical model and get the best Pareto optimal solution [32, 37, 38] developed a math-
ematical model for TP that considered multiple goals. They utilized a Type-1 fermatean fuzzy
Number in an FFE to minimize the factors that needed consideration. Sahoo [39] proposed a
novel method for addressing TP that involves fuzzy parameters, particularly fermatean fuzzy
ones. It addresses the uncertainty and imprecision frequently arising in transportation issues,
mainly during volatile economic conditions [40].

Apart from this, Sahoo [41] addressed complex TP by utilizing FFP and proposing a novel
solution. They introduced a mathematical approach that considers these fuzzy parameters and
transforms them into well-defined transportation problems using score and accuracy functions.
This method is simple, pragmatic, and can be readily implemented, making it valuable for real-
world decision-making scenarios involving FFP. Yazdi et al. [42], Muneeb et al. [43], and
Bouraima et al. [44] proposed a novel approach to making informed decisions regarding sus-
tainable urban transportation. They developed a model based on fermatean fuzzy logic that
prioritizes various strategies for enhancing city transport sustainability. Chaudhary et al. [45]
presented an STP model with multiple objectives using TS-PFHS parameters for sustainable
green transportation. They evaluated a TS-PFHS set to address randomness and imprecision in a
single framework. Maity et al. [46] investigated the MOTP using uncertain conditions, particu-
larly transportation costs, supply, and demands. They proposed a novel approach to address this
uncertainty by incorporating the concept of reliability, which influences the dependability of the
costs [47]. Garg and Rizk-Allah [48] proposed a new mathematical model and solved it using the
alpha-cult method for addressing the complex MOTP, which aids decision-making when faced
with uncertainty. Abd El-Wahed [49] proposed various mathematical models under uncertain
parameters and converted these models into a deterministic form fuzzy programming approach.
They demonstrated the superiority of the fuzzy approach over the interactive procedure, mainly
when dealing with numerous goals and constraints. Fathy Ammar [50] developed a multi-level,
multi-objective mathematical model using uncertain conditions and solved this mathematical
model using the interval programming technique [51].

Given this importance, the potential research study of Das [52] and Kumar et al. [53] devel-
oped an uncertain mathematical model of MOTP using a neutrosophic programming approach
and gets efficient solutions. A non-linear hyperbolic membership function is used in this math-
ematical programming approach. Sharma Chaudhary [54] developed a mathematical model of
MOTP utilizing time sequential dual hesitant fuzzy sets. This approach considers hesitation and
uncertainty in decision-making over different periods. Mekawy [55] presented a fuzzy multi-
objective linear fractional programming problem and converted it into a precise problem. The
conversion utilizes real numbers from close interval approximations and the order relations of
piecewise quadratic fuzzy numbers. Edalatpanah [56] and Borza et al. [57] presented a novel
approach for resolving fuzzy linear programming problems. The approach utilizes horizon-
tal membership functions and multi-dimensional relative-distance-measure fuzzy interval arith-
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metic. Sheikhi and Ebadi [58] proposed a method for resolving linear fractional programming
transportation problems utilizing fuzzy numbers. They focused on linear fractional program-
ming, a specialized area within non-linear programming. Linear programming is also found to
assess transportation efficiency concerning the effects it has on the environment [59].

Wang et al. [60] developed a method for solving neutrosophic multi-objective linear pro-
gramming problems (NMOLP) using triangular neutrosophic numbers. This method addresses
real-world decision-making scenarios and proposes a novel strategy for solving NMOLP prob-
lems with mixed constraints, where parameters are triangular neutrosophic numbers. Khalifa
et al. [61] introduced a method for solving multi-objective transportation problems with fuzzy
parameters represented as (α, β) interval-valued fuzzy numbers. They developed a solution pro-
cedure for multi-objective fractional programming problems in a hesitant fuzzy decision en-
vironment. The utilization of linguistic variables, interactive methods, and goal planning has
enabled the creation of effective strategies, which have significantly enhanced decision-making
methodologies in this context [62].

Beyond the above consideration, the pivotal research established by Farrokhi-Asl and Tavakkoli-
Moghaddam [63] introduced a mathematical model for a bi-objective vehicle routing problem.
Salamatbakhsh et al. [64] extended this model to include additional objectives. The model aims
to minimize waste collection costs and reduce the environmental risks of transporting hazardous
waste. Using a neutrosophic goal programming approach. Veeramani et al. [65] present a com-
promise solution framework for the multi-objective fractional transportation problem (MOFTP).
The framework addresses complex transportation scenarios by considering multiple objectives:
cost, time, and environmental and social concerns. Ur Rahman [66] proposed a two-phase para-
metric approach for flexible fuzzy transportation problems. This approach addressed real-world
situations involving uncertain transportation costs and demands. Kané et al. [67] proposed a
novel approach to transportation problems that employs trapezoidal fuzzy numbers to represent
costs and supply and demand values. A fuzzy linear programming method was developed that
converts these fuzzy transportation problems into two interval transportation problems. Pratihar
et al. [68] proposed an algorithm to solve fuzzy transportation problems using a modified Vogel’s
approximation method with costs represented as trapezoidal interval type-2 fuzzy sets. This ap-
proach introduces a linear programming problem method for effectively handling transportation
parameters such as costs, demand, and supply uncertainty.

Furthermore, Kané et al. [69] identified several advantages of their proposed method com-
pared to existing techniques. A generic ranking index was introduced to compare fuzzy numbers
involved in transportation problems with triangular fuzzy numbers. Sheikhi and Ebadi [58] pre-
sented a novel approach to solving linear interval fractional transportation problems (ILFTPs)
with interval objective functions by transforming the ILFTP into a non-linear programming prob-
lem and then converting it into a linear programming problem with additional constraints and
variables. Khalifa et al. [70] addressed the challenge of solving piecewise quadratic fuzzy multi-
objective de novo programming problems by applying a min-max goal programming approach.
Edalatpanah [71] introduced a novel concept in neutrosophic sets: the neutrosophic structured el-
ement (NSE). He put forth a decision-making methodology for multi-attribute decision-making
problems utilizing NSE information, thereby exemplifying the efficacy of this concept in ad-
dressing neutrosophic decision-making issues.

Jaikumar et al. [72] introduced the concept of picture fuzzy soft graphs (PFSGs), a powerful
mathematical tool for modeling real-world vagueness. PFSGs extend the scope of fuzzy graphs
(FGs) and intuitionistic fuzzy graphs (IFGs) by providing a unified framework for expressing
positive, negative, and neutral membership functions. Akram et al. [73] introduced complex
q-rung picture fuzzy sets (Cq-RPFSs), which generalize q-RPFSs by including a phase term
to handle ambiguity and periodicity. They addressed multi-criteria decision-making (MCDM)
problems by proposing complex q-rung picture fuzzy Einstein averaging operators in the Cq-
RPFSs environment. Adak Gunjan [74] examined the potential of using fermatean fuzzy num-
bers to construct profitable portfolios within the financial market. Their approach addresses
the uncertainty inherent in decision-making, which often arises from subjective opinions and
expressions of decision-makers.
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3 Preliminaries and definitions

The basic definitions of the farmatean fuzzy programming, which are used in our proposed work,
which is given below:

Definition 3.1 According to Senapati and Yager [29], Farmatean fuzzy sets: Farmatean fuzzy
sets (FFSs) can be represented as 𭟋 = {⟨ω, α𭟋(ω), β𭟋(ω) : ω ∈ Y ⟩}

Where α𭟋(ω) : Y −→ [0, 1] is the degree of satisfaction, and β𭟋(ω) : Y −→ [0, 1] is the
degree of dissatisfaction, including the conditions.

0 ≤ α𭟋(ω)3 + β𭟋(ω)3 ≤ 1∀ ω ∈ Y . For any fermatean fuzzy set 𭟋 and ω ∈ Y, σ𭟋(ω) =
3
√

1 − (α𭟋(ω))3 − (β𭟋(ω))3 is identified as the degree of indeterminacy of ω ∈ Y to 𭟋.The set
𭟋 = {⟨ω, α𭟋(ω), β𭟋(ω) : ω ∈ Y ⟩} is denote as 𭟋 = ⟨α𭟋, β𭟋⟩.

Definition 3.2 Let 𭟋 = ⟨α𭟋, β𭟋⟩, 𭟋1 = ⟨α𭟋1 ,β𭟋1⟩ and 𭟋2 = ⟨α𭟋2 ,β𭟋2⟩ be three fermatean
fuzzy sets on the universal set Y , and ζ > 0 be any scalar. Arithmetic operations of fermatean
fuzzy sets is as follows with numerical examples.

𭟋1

⊕
𭟋2 = ( 3

√
α3
𭟋1

+ α3
𭟋2

− α3
𭟋1

α3
𭟋2

, β𭟋1β𭟋2) (3.1)

Let 𭟋 = ⟨0.4, 0.7⟩,𭟋1 = ⟨0.8, 0.6⟩ and 𭟋2 = ⟨0.2, 0.9⟩ be three fermatean fuzzy sets and
ζ = 2 be any scalar quantity. Then,

𭟋1
⊕

𭟋2 = ⟨0.8, 0.6⟩
⊕

⟨0.2, 0.9⟩ = (0.8020, 0.54)

𭟋1

⊕
𭟋2 = (α𭟋1α𭟋2 ,

3
√
β3
𭟋1

+ β3
𭟋2

− β3
𭟋1

β3
𭟋2
) (3.2)

𭟋1
⊗

𭟋2 = ⟨0.8, 0.6⟩
⊕

⟨0.2, 0.9⟩ = (0.16, 0.923)

ζ ⊙𭟋 = ( 3
√

1 − (1 − α𭟋3)ζ), β𭟋
ζ (3.3)

ζ
⊙

𭟋 = 2
⊙

⟨0.4, 0.7⟩ = (0.498, 0.49)

𭟋ζ = α𭟋
ζ , (

3
√

1 − (1 − β𭟋
3)ζ) (3.4)

𭟋ζ = ⟨0.4, 0.7⟩2 = (0.064, 0.828).

Definition 3.3 Let 𭟋 = ⟨α𭟋, β𭟋⟩,𭟋1 = ⟨α𭟋1 , β𭟋1 , and 𭟋2 = ⟨α𭟋2 , α𭟋2⟩ be three fermatean
fuzzy sets on the universal set Y , and ζ > 0 be any scalar. Their arithmetic operations of fer-
matean fuzzy set are defined as follows:

𭟋1

⋃
𭟋2 = (max{α𭟋1 , α𭟋2},min{β𭟋1 , β𭟋2}) (3.5)
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𭟋1
⋃
𭟋2 = (max{⟨0.8, 0.6⟩},min{⟨0.2, 0.9⟩}) = (0.8, 0.2)

𭟋1

⋂
𭟋2 = (min{α𭟋1 , α𭟋2},max{β𭟋1 , β𭟋2}) (3.6)

𭟋1
⋂
𭟋2 = (min{⟨0.8, 0.6⟩},max{⟨0.2, 0.9⟩}) = (0.2, 0.6)

𭟋c = (β𭟋, α𭟋) (3.7)

𭟋c = ⟨0.4, 0.7⟩c = (0.7, 0.4)

Accuracy function (AF)
Assuming 𭟋 = ⟨α𭟋, β𭟋⟩ is a fermatean fuzzy set, the accuracy function of fermatean fuzzy set
can be represented as follows:

A𭟋(𭟋) = (α𭟋
3 + β𭟋

3) (3.8)

Score function
Theorem 1. Let 𭟋 be a fermatean fuzzy set 𭟋 = ⟨α𭟋, β𭟋⟩ then the score function 𭟋 represented
simply proceeds;

S𭟋
∗(𭟋) = 1/2(1 = α𭟋

3 − β𭟋
3).(min(α𭟋, β𭟋)) (3.9)

Property 1. Consider a fermatean fuzzy set 𭟋 = ⟨α𭟋, β𭟋⟩, then S𭟋
∗(𭟋) ∈ [0, 1].

Proof: According to the ortho-pair definition, α𭟋, β𭟋 ∈ [0, 1]. Then, min(α𭟋, β𭟋) ∈ [0, 1],
and also α𭟋

3 ≥ 0, β𭟋3 ≥ 0, α𭟋
3 ≥ 1, β𭟋3 ≥ 1

=⇒ 1−β𭟋
3 ≥ 0, =⇒ 1+α𭟋

3−β𭟋
3 ≥ 0,∵ 1/2(1+α𭟋

3−β𭟋
3).(min(α𭟋, β𭟋)) ≥ 0 (3.10)

Again α𭟋
3 − β𭟋

3 ≤ 1, add one both sides =⇒ 1+α3
𭟋 − β𭟋

3 ≤ 2, (∵ α𭟋
3 ≥ 0) =⇒

1/2(1 + α𭟋
3 − β𭟋

3).(min(α𭟋, β𭟋) ≤ 1)
Hence, S𭟋

∗(𭟋) ∈ [0, 1].

Theorem 2. Let 𭟋 be a fermatean fuzzy set 𭟋 = (α𭟋, β𭟋), then the new fermatean fuzzy
score function (NFFSF) 𭟋1d represent as follows:

S𭟋
∗(𭟋1d) = 1/2(1 + α𭟋 − β𭟋).(min(α𭟋, β𭟋))

2 (3.11)

Property 1. Consider a fermatean fuzzy set 𭟋 = (α𭟋, β𭟋), then S𭟋
∗(𭟋1d) ∈ [0, 1]

proof: According to the ortho-pair definition, α𭟋, β𭟋 ∈ [0, 1]. Then, min(α𭟋, β𭟋) ∈ [0, 1]
and also α𭟋 ≥ 0, β𭟋 ≥ 0, β𭟋 ≤ 1, =⇒ 1 − β𭟋 ≥ 0 =⇒ 1 + α𭟋 − β𭟋 ≥ 0.
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∵ 1/2(1 + α𭟋 − β𭟋).(min(α𭟋, β𭟋))2 ≤ 0, again, α𭟋 ≤ 1 and β𭟋 ≤ 1, α𭟋 − β𭟋 ≤ 1, and
add one both sides, =⇒ 1 + α𭟋 − β𭟋 ≤ 2 =⇒ (min(α𭟋, β𭟋) ≤ 1) =⇒ (min(α𭟋, β𭟋))2 ≤
1 =⇒ 1/2(1 + α𭟋 − β𭟋).(min(α𭟋, β𭟋))2 ≤ 1(∵ (min(α𭟋, β𭟋))2 ≤ 1)

Hence, S𭟋
∗(𭟋1d) ∈ [0, 1].

Theorem 3. Let 𭟋 be a fermatean fuzzy set 𭟋 = ⟨α𭟋, β𭟋⟩ then the Type 1 score function
𭟋1 represented as follows:

Type-1 fermatean fuzzy score function S𭟋
∗(𭟋11) = 1/2(1 + α𭟋

2 − β𭟋
2).

According to the ortho-pair definition, α𭟋, β𭟋 ∈ [0, 1], and

α𭟋
2 ≥ 0, β𭟋2 ≥ 0, α𭟋

2 ≤ 1, and β𭟋
2 ≤ 1 =⇒ 1 − β𭟋

2 ≥ 0 =⇒ 1 + α𭟋
2 − β𭟋

2 ≥ 0 ∵
1/2(1 + α𭟋

2 − β𭟋
2) ≥ 0.

Now, again α𭟋
2 − β𭟋

2 ≤ 1, add one both sides =⇒ 1+α𭟋
2 − β𭟋

2 ≥ 2, (∵ α𭟋
2 ≥ 0) =⇒

1/2(1 + α𭟋
2 − β𭟋

2 ≥ 1)(∵ (α𭟋, β𭟋) ≤ 1)

Hence, S𭟋
∗(𭟋11) ∈ [0, 1].

Type-2 fermatean fuzzy score function S𭟋
∗(𭟋11) = 1/3(1 + 2α𭟋

3 − β𭟋
3)

Type-3 fermatean fuzzy score function S𭟋
∗(𭟋13) = 1/2(1 + α𭟋

2 − β𭟋
2).|α𭟋 − β𭟋|

Let 𭟋1 = ⟨α𭟋1 , β𭟋1⟩, and 𭟋2 = ⟨α𭟋2 , β𭟋2⟩ be two fermatean fuzzy sets, then the following
operations will be satisfied,

S𭟋
∗(𭟋1) ≥ S𭟋

∗(𭟋2) with A𭟋(𭟋1) > A𭟋(𭟋2) iff 𭟋1 > 𭟋2
S𭟋

∗(𭟋1) ≤ S𭟋
∗(𭟋2) with A𭟋(𭟋1) < A𭟋(𭟋2) iff 𭟋1 < 𭟋2

S𭟋
∗(𭟋1) = S𭟋

∗(𭟋2) with A𭟋(𭟋1) = A𭟋(𭟋2) iff 𭟋1 = 𭟋2

Example 1. Let 𭟋1 = ⟨0.7, 0.6⟩ and 𭟋2 = ⟨0.8, 0.5⟩ be the two fermatean fuzzy sets; then
we will see the following operations,

By using the score function S𭟋
∗(𭟋) = 1/2(1 + α𭟋

3 − β𭟋
3).(min(α𭟋, β𭟋)).

S𭟋
∗(𭟋1) = 1/2(1 + 0.73 − 0.63).(min(0.7, 0.6)) = 0.337

S𭟋
∗(𭟋2) = 1/2(1 + 0.83 − 0.53).(min(0.8, 0.5)) = 0.346

Hence S𭟋
∗(𭟋1) < S𭟋

∗(𭟋2) =⇒ 𭟋1 < 𭟋2

Example 2. Let 𭟋1 = ⟨0.9, 0.8⟩ and 𭟋2 = ⟨0.6, 0.5⟩ be the two fermatean fuzzy sets; then
the following operations are represented,

By using the score function S𭟋
∗(𭟋) = 1/2(1 + α𭟋

3 − β𭟋
3).(min(α𭟋, β𭟋)).

S𭟋
∗(𭟋1) = 1/2(1 + 0.93 − 0.83).(min(0.9, 0.8)) = 0.486

S𭟋
∗(𭟋2) = 1/2(1 + 0.63 − 0.53).(min(0.6, 0.5)) = 0.0.022

Hence S𭟋
∗(𭟋1) > S𭟋

∗(𭟋2) =⇒ 𭟋1 > 𭟋2

4 Mathematical model

4.1 Mathematical model of traditional transportation problem

The mathematical model of the traditional transportation problem (TTP) is presented as follows:
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Minf =
M∑
i=1

N∑
i=1

cijyij (4.1)

s.t.
N∑
j=1

yij ≤ si, i = 1, 2, ......,M (4.2)

M∑
i=1

yij ≤ dj , j = 1, 2, ......, N (4.3)

yij ≥ 0 ∀ i, j. (4.4)

The mathematical model of TTP with fermatean fuzzy parameters is represented as follows:

Minf∗ =
M∑
i=1

N∑
i=1

cij
𭟋yij (4.5)

s.t.
N∑
j=1

yij ≤ si
𭟋, i = 1, 2, ......,M (4.6)

M∑
i=1

yij ≤ dj
𭟋, j = 1, 2, ......, N (4.7)

such that

si
𭟋 = (αsi , βsi) where 0 ≤ α3

si + β3
si ≤ 1

di
𭟋 = (αdi

, βdi
) where 0 ≤ α3

di
+ β3

di
≤ 1

cij
𭟋 = (αcij , βcij ) where 0 ≤ α3

cij + β3
cij ≤ 1,

yij ≥ 0 ∀ i, j.

Now, we convert the above mathematical model into the crisp form using the new fermatean
fuzzy score function under the fermatean fuzzy environment.

Minf∗ =
M∑
i=1

N∑
i=1

S(c𭟋ij)yij (4.8)

s.t.
N∑
j=1

yij ≤ S(si
𭟋), i = 1, 2, ......,M (4.9)

M∑
i=1

yij ≤ S(dj
𭟋), j = 1, 2, ......, N (4.10)

yij ≥ 0 ∀ i, j.
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4.2 Mathematical model of multi-objective transportation problem (MOTP)

The formulation for the mathematical model of the multi-objective transportation problem with
fermatean fuzzy parameters under the fermatean fuzzy environment is represented as follows:

Minft
∗ =

M∑
i=1

N∑
j=1

cijt
𭟋yij ,∀t = 1, 2, ..., T (4.11)

s.t.
N∑
j=1

yij ≤ si
𭟋, i = 1, 2, ......,M (4.12)

M∑
i=1

yij ≤ dj
𭟋, j = 1, 2, ......, N (4.13)

such that

si
𭟋 = (αsi , βsi) where 0 ≤ α3

si + β3
si ≤ 1

di
𭟋 = (αdi , βdi) where 0 ≤ α3

di
+ β3

di
≤ 1

cij
𭟋 = (αcij , βcij ) where 0 ≤ α3

cij + β3
cij ≤ 1,

yij ≥ 0 ∀ i, j.

Where s𭟋i = (αsi , βsi) units are available at the ith supply node, and d𭟋j = (αdj
, βdj

) units
are in demand on the jth demand node. Let the transportation cost cij𭟋 = (αcij , βcij ) is the unit
fermatean fuzzy transportation cost and the ith source node to the jth demand node, and δij is
the number of items that are carried from the ith source node to the jth demand node.

Now, we convert this MOTP mathematical model with fermatean fuzzy parameters into crisp
form using the proposed new fermatean fuzzy score function. The following is a representation
of the crisp model for MOTP.

Minft
∗ =

M∑
i=1

N∑
j=1

S(cijt
𭟋)yij , t = 1, 2, ..., T (4.14)

s.t.
N∑
j=1

yij ≤ S(si
𭟋), i = 1, 2, ......,M (4.15)

M∑
i=1

yij ≥ S(dj
𭟋), j = 1, 2, ......, N (4.16)

yij ≥ ∀ i, j.

5 Proposed mathematical modeling for fermatean fuzzy programming
approach

The proposed mathematical modeling for the fermatean fuzzy programming approach involves
defining membership and non-membership functions that satisfy the properties of fermatean
fuzzy sets. These functions are then integrated into the objective function and subject to the
constraints of multi-objective optimization problems, allowing for a more flexible and accurate
representation of uncertainty and vagueness in decision-making scenarios. Senapati and Yager
[39] introduced fermatean fuzzy sets (FFSs) as an extension of Intuitionistic fuzzy sets and com-
pared them comprehensively with Pythagorean and Intuitionistic fuzzy sets when the sum of
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truth and false grades is greater than 1. However, the truth grade and false grade square sum is
less than or equal to 1.

FFSs are considered more realistic and capable of handling more significant uncertainty than
Intuitionistic and Pythagorean fuzzy sets. They discussed the fundamental properties of FFSs,
including the complement operator and the entire set of operations. Silambarasan [75] examined
the algebraic properties of these operators, providing valuable insights into the mathematical
foundation of FFSs. They expand upon the theoretical framework of FFSs and provide a deeper
understanding of their operational characteristics. Akram et al. [76] evaluated interval-valued
FFSs as a robust approach for handling uncertain and incomplete data. They also proposed a
novel method for directly solving interval-valued fermatean fuzzy fractional TP, avoiding the
need to convert the original problem into a crisp equivalent, streamlining the solution process. It
enhances the resilience and efficiency of addressing uncertainties in TP.

Zimmermann [77] applied fuzzy linear programming (FLP) to the linear vector maximum
issues. He discusses the effects of using different techniques to combine distinct objective
functions to find the best compromise solution. He also provides valuable insights into the
effectiveness of FLP in tackling multi-objective transportation problems and offers guidance
on selecting appropriate approaches for achieving optimal compromise solutions. Fermatean
fuzzy programming approach (FFPA) utilizes linear, exponential, or hyperbolic truth functions
to achieve optimal solutions to problems through compromise. Intuitionistic fuzzy programming
approaches have been developed for multi-objective transportation problems. This environment
allows truth and false grades to be represented as linear, exponential, or hyperbolic functions.
The Pythagorean fuzzy programming approach can also solve similar challenges in a fuzzy en-
vironment. The non-linear programming method, FFPA, is now presented to find a compromise
optimal solution for multi-objective optimization problems in FFE and other contexts. This ap-
proach allows simultaneous consideration of all objectives. The FFPA is defined as follows:

For the objective function ft
∗(y), FFPA incorporates upper bounds Ut and lower bounds

Lt. Additionally; it involves the membership function µ(ft
∗(y)) and non-membership function

θ(ft
∗(y)) for the objective function ft

∗(y). This model aims to optimize decision-making under
uncertainty, leveraging FFS to handle imprecision and uncertainty in objective functions. In-
cluding upper and lower bounds and membership and non-membership functions allows for a
comprehensive representation of uncertainty, enabling robust decision-making in scenarios lack-
ing precise information.

Then, the proposed mathematical model for FFPA is as follows:

Max δτ1
3 − τ2

3 (5.1)

Where,

µ(ft
∗(y)) =


1, ifft∗(y) ≤ Lt

Ut − ft
∗(y)

Ut − Lt
, ifLt ≤ ft

∗(δ) ≤ Ut and

0, ifft∗(y) ≥ Ut

θ(ft
∗(y)) =


0, ifft∗(y) ≤ Lt

ft
∗(y)− Lt

Ut − Lt
, ifLt ≤ ft

∗(δ) ≤ Ut

1, ifft∗(y) ≥ Ut

i.e., (Ut − ft)3 ≥ dt
3τ1

3, (ft
∗(y)− Lt)3 ≤ dt

3τ2
3 where dt = Ut − Lt

S.t

y11 + y12 + .................+ y1N ≤ s1
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y21 + y22 + .................+ y2N ≤ s2
...

yM 1 + yM 2 + .................+ yMN ≤ sM
y11 + y21 + .................+ yM 1 ≤ d1
y12 + y22 + .................+ yM 2 ≤ d2

...
y1M + y2M + .................+ yNM ≤ dN∑M

i=1 si =
∑N

j=1 dj , yij ≥ 0, 0 ≤ τ1
3, τ2

3 ≤ 1, 0 ≤ τ1
3 + τ2

3 ≤ 1, τ1
3 ≥ τ2

3

6 Neutrosophic goal programming approach

This section introduces a new strategy for solving the multi-objective transportation problem
(MOTP) using a neutrosophic goal programming approach. This approach builds on Zimmer-
mann’s [77] neutrosophic extension. The proposed neutrosophic compromise programming
technique provides a fresh way to handle uncertainty in optimization problems [78, 79]. It aims
to optimize three aspects of a neutrosophic decision: the degree of truth (satisfaction), the degree
of falsity (dissatisfaction), and the degree of indeterminacy (partial satisfaction). Bellman and
Zadeh [80] introduced three critical concepts for fuzzy sets: the fuzzy decision, the fuzzy goal,
and the fuzzy constraints. These concepts have been widely applied in decision-making scenar-
ios involving fuzziness. Here is a brief explanation:

Fuzzy Decision (Fd): A decision that incorporates the fuzziness of the problem’s parameters.
Fuzzy Goal (Fg): The desired outcome expressed in fuzzy terms. Fuzzy Constraints (Fc): The
limitations or restrictions of the problem are described using fuzzy sets. This new methodology
leverages these foundational concepts to enhance decision-making where indeterminacy is a sig-
nificant factor. The fuzzy decision is defined as follows;

Fd = Fg ∩ Fc (6.1)

Accordingly, the neutrosophic decision set (Fd)N , which represents a combination of neutro-
sophic objectives and constraints, is defined as follows:

(Fd)N = (∩T
t=1(Fg)K)(∩M

i=1(Fc)i) = (y, φF d(y), θF d(y), ϕF d(y)) (6.2)

Where

φF d(y) = min

{
φF g

1, φF g
2, ...., φF g

t ∀y ∈ Y

φF c
1, φF c

2, ...., φF c
t ∀y ∈ Y

θF d(y) = min

{
θF g

1, θF g
2, ...., θF g

t ∀y ∈ Y

θF c
1, θF c

2, ...., θF c
t ∀y ∈ Y

ϕF d(y) = min

{
ϕF g

1, ϕF g
2, ...., ϕF g

t ∀y ∈ Y

ϕF c
1, ϕF c

2, ...., ϕF c
t ∀y ∈ Y

Where φF d(y) represents the truth membership function, θF d(y) denotes the indeterminacy
membership function, and ϕF d(y) signifies the falsity membership function of neutrosophic de-
cision set (Fd)N .

To formulate the membership function for the MOTP, we start by determining the bounds for
each objective function. Each objective’s lower and upper bounds are denoted by ft

L and ft
U ,

respectively. These bounds are calculated by optimizing each objective as a single objective,
subject to the problem’s constraints. By solving each T objective independently, we obtain T
solutions, y1, y2, ...., yT . These solutions are then substituted into each objective function to
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determine the bounds for each objective as follows:

ft
L = min{ft∗(y)}Tt=1 (6.3)

ft
U = max{ft∗(y)}Tt=1 (6.4)

Next, the bounds within the neutrosophic environment are determined as follows:

ft
L(φ) = ft

L, ft
U (φ) = ft

U for the truth membership, ft
L(θ) = L(θ), ft

L(θ) =
ft

U (φ) + st(ft
U (φ)− ft

L(φ)), for the indeterminacy membership, ftL(ϕ) =
ft

L(φ) + tt(ft
U (φ)− ft

L(φ)), ft
U (ϕ) = ft

U (φ) for the false membership

Where tt and st are predetermined real numbers within the interval (0, 1). Based on these
bounds, the membership function can be defined as follows:

φt(ft
∗(y)) =


1, ifft∗(y) < ft

L(φ)

1 − ft
∗(y)− ft

L(φ)

ft
U (φ)− ft

L(φ)
, ifftL(φ) ≤ ft

∗(φ) ≤ ft
U (φ)

0, ifft∗(y) ≥ ft
U (φ)

(6.5)

θt(ft
∗(y)) =


1, ifft∗(y) < ft

L(θ)

1 − ft
∗(y)− ft

L(θ)

ft
U (θ)− ft

L(θ)
, ifftL(θ) ≤ ft

∗(θ) ≤ ft
U (θ)

0, ifft∗(y) ≥ ft
U (θ)

(6.6)

ϕt(ft
∗(y)) =


1, ifft∗(y) < ft

U (ϕ)

1 − ft
U (ϕ)− ft

∗(y)

ft
U (ϕ)− ft

L(ϕ)
, ifftL(ϕ) ≤ ft

∗(ϕ) ≤ ft
U (ϕ)

0, ifft∗(y) ≥ ft
L(ϕ)

(6.7)

Where ft
U (.) ̸= ft

L(.) for all objectives. If ftU (.) = ft
L(.) For any membership, the value of

this membership is set to 1. Utilizing equations (6.5)– (6.7) and following the principle outlined
by Bellman and Zadeh [80], the neutrosophic optimization model for the MOTP can be expressed
as follows:

MaxMin
∑

t=1,2,...,T

φt(ft
∗(y))

MaxMin
∑

t=1,2,...,T

θt(ft
∗(y))

MaxMin
∑

t=1,2,...,T

ϕt(ft
∗(y))

(6.8)

S.t

∑N
j=1 yij ≤ si, i = 1, 2, ...,M∑M
i=1 yij ≥ dj , j = 1, 2, ...,M

yij ≥ 0 ∀ i, j

Through the utilization of auxiliary parameters, problem (6.8) can be reformulated as follows:

Maxα,Maxβ,Minγ (6.9)
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φft(y ≥ α), θft(y) ≥ β, ϕft(y) ≥ γ

S.t

∑N
j=1 yij ≤ si, i = 1, 2, ...,M∑N
j=1 yij ≤ si, i = 1, 2, ..., N

yij ≥ 0 ∀ i, j; α ≥ β, α ≥ γ, α+ β + γ ≥ 3, α, β, γ ∈ [0, 1], t = 1, 2, ..., T.

The mathematical problem presented in equation (6.9) can be depicted as follows:

Maxα− γ + β (6.10)

f∗
t (y) + (fU

t (φ)− fL
t (φ))α ≤ fU

t (φ)
f∗
t (y) + (fU

t (θ)− fL
t (θ))β ≤ fU

t (θ)
f∗
t (y) + (fU

t (ϕ)− fL
t (ϕ))γ ≤ fU

t (ϕ)
S.t∑N

j=1 yij ≤ si, i = 1, 2, ...,M∑M
i=1 yij ≥ dj , j = 1, 2, ..., N

yij ≥ 0 ∀ i, j; α ≥ β, α ≥ γ, α+ β + γ ≥ 3, α, β, γ ∈ [0, 1], t = 1, 2, ..., T.

The mathematical problem presented in (6.10) can be rewritten as:

Max α− γ + β (6.11)

ft
∗(y) + (ft

U (φ)− ft
L(φ))α− ft

U (φ) ≤ 0
ft

∗(y) + (ft
U (θ)− ft

L(θ))β − ft
U (θ) ≤ 0

ft
∗(y) + (ft

U (ϕ)− ft
L(ϕ))γ − ft

U (ϕ) ≤ 0
S.t∑N

j=1 yij ≤ si, i = 1, 2, ...,M∑M
i=1 yij ≥ dj , j = 1, 2, ..., N

yij ≥ 0 ∀ i, j; α ≥ β, α ≥ γ, α+ β + γ ≥ 3, α, β, γ ∈ [0, 1], t = 1, 2, ..., T.

7 Proposed methodology

We propose a comprehensive methodology for addressing the mathematical model of MOTP
within the fermatean fuzzy programming approach (FFPA) framework. The methodology en-
hances efficiency and robustness in solving MOTP instances. The following essential steps are
part of the suggested methodology:

Step 1: Formulate the balance MOTP model within the fermatean fuzzy environment (FFE).

Step 2: Then, convert the MOTP problems into the crisp form using the new fermatean fuzzy
score function.

Step 3: At this point, individually deal with this problem for all objectives. We obtain possi-
ble primary responses for every objective function.

Step 4: Develop a pay-off matrix to capture objective-performance relationships in the FFE.
Calculate upper Ut and lower Lt bounds for each objective ft

∗(y) using fermatean fuzzy aggre-
gation techniques applied to the pay-off matrix δ.

Step 5: A problem model will be built using the proposed FFPA and solved using the SciPy
library in the Python programming language. In Figure 1, the architecture is displayed. Table
1,2,3,4,5 provide the suggested technique’s computations numerically.
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Figure 1. Shows the flow chart of the proposed methodology.

The proposed methodology is significant due to its innovative approach to addressing the
complexities and uncertainties inherent in MOTP. Previous research has shown that traditional
methods often must catch up in handling the multi-dimensional and uncertain nature of real-
world transportation scenarios [81, 82, 83]. The fermatean fuzzy programming approach lever-
ages the advanced capabilities of fermatean fuzzy sets to model and manage uncertainty more
effectively than classical fuzzy sets or intuitionistic fuzzy sets [84, 85, 86, 87, 88]. This research
approach aligns with prior findings emphasizing the need for more robust and adaptable tech-
niques in MOTP [89, 90]. By incorporating the fermatean fuzzy environment and NFFSF, this
approach enhances the precision of solutions and ensures their applicability in dynamic and un-
certain contexts. Thus, the research methodology and anticipated results are consistent with and
build upon existing literature, advancing knowledge and practice in transportation optimization.

8 Numerical example

In our multi-objective transportation problem (MOTP), we aim to minimize three key objectives:
total transportation cost, total transportation time, and deterioration cost during transportation.
In this framework, we consider a network of suppliers and demand places where adequate trans-
portation of commodities is required. Each supplier has associated transportation costs, times,
and deterioration costs for delivering goods to each demand point. These parameters are ex-
pressed as fermatean fuzzy parameters (FFP), representing the uncertainty inherent in real-world
transportation scenarios. To facilitate analysis, we employ the NFFSF to convert these fuzzy pa-
rameters into crisp values. This conversion enables us to quantify and optimize our objectives
effectively. For instance, the total transportation cost objective is calculated by summing the
crisp transportation costs from each supplier to each demand point. Similarly, transportation
time and deterioration cost during transportation objectives are determined. By integrating fuzzy
parameter handling with multi-objective optimization, our approach offers a robust methodol-
ogy for tackling transportation logistics problems, promoting efficiency and sustainability in the
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transportation sector.

Table 1. Total transportation cost.
Source β1 β2 β3 β4

α1 (0.8, 0.7) (0.7, 0.2) (0.1, 0.6) (0.2, 0.9)
α2 (0.5, 0.8) (0.1, 0.9) (0.2, 0.6) (0.2, 0.1)
α3 (0.3, 0.4) (0.7, 0.99) (0.1, 0.8) (0.7, 0.9)

Table 2. Total transportation time.
Source β1 β2 β3 β4

α1 (0.4, 0.8) (0.7, 0.5) (0.2, 0.9) (0.6, 0.9)
α2 (0.7, 0.5) (0.1, 0.99) (0.6, 0.8) (0.4, 0.7)
α3 (0.6, 0.8) (0.8, 0.6) (0.5, 0.1) (0.3, 0.9)

Table 3. Deterioration cost during transportation.
Source β1 β2 β3 β4

α1 (0.5, 0.7) (0.6, 0.8) (0.2, 0.7) (0.8, 0.7)
α2 (0.4, 0.5) (0.1, 0.2) (0.8, 0.1) (0.4, 0.7)
α3 (0.8, 0.4) (0.6, 0.4) (0.4, 0.9) (0.5, 0.9)

Table 4. Supply of the transportation problem.
i α1 α2 α3

(α𭟋i
, β𭟋i

) (0.3, 0.5) (0.4, 0.8) (0.6, 0.4)

Table 5. Demand of the transportation problem.
j β1 β2 β3 β4

(α𭟋j
, β𭟋j

) (0.4, 0.7) (0.2, 0.5) (0.6, 0.4) (0.2, 0.5)

Next, we used the NFFSF to transform the fermatean fuzzy data into the crisp form. The
crisp data of the proposed problem are represented as follows.

Table 6. Total transportation cost.
Source β1 β2 β3 β4

α1 (0.2695) (0.03) (0.0025) (0.006)
α2 (0.0875) (0.001) (0.012) (0.0055)
α3 (0.0405) (0.1739) (0.0015) (0.196)

Table 7. Total transportation time.
Source β1 β2 β3 β4

α1 (0.048) (0.15) (0.006) (0.126)
α2 (0.15) (0.00055) (0.144) (0.056)
α3 (0.144) (0.216) (0.007) (0.018)
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Table 8. Deterioration cost during transportation.
Source β1 β2 β3 β4

α1 (0.1) (0.144) (0.01) (0.2695)
α2 (0.072) (0.0045) (0.0085) (0.056)
α3 (0.112) (0.096) (0.04) (0.075)

Table 9. Supply of the transportation problem.
i α1 α2 α3

(α𭟋i , β𭟋i) (0.036) (0.048) (0.096)

Table 10. Demand of the transportation problem.
j β1 β2 β3 β4

(α𭟋j
, β𭟋j

) (0.056) (0.014) (0.096) (0.014)

Since
∑M

i=1 S(si
𭟋) =

∑N
i=1 S(dj

𭟋) = 0.18. The best solutions for each objective were then
found by solving the three TP problems.

For the first objective function (Total transportation cost),

f1
∗(y) = 0.2695y11 + 0.03y12 + 0.0225y13 + 0.006y14 + 0.0875y21 + 0.001y22

+0.012y23 + 0.0055y24 + 0.0405y31 + 0.1739y32 + 0.0015y33 + 0.196y34

S.t

y11 + y12 + y13 + y14 ≤ 0.036,

y21 + y22 + y23 + y24 ≤ 0.048,

y31 + y32 + y33 + y34 ≤ 0.096,

y11 + y21 + y31 ≤ 0.056,

y12 + y22 + y32 ≤ 0.014,

y13 + y23 + y33 ≤ 0.096,

y14 + y24 + y34 ≤ 0.014,
M∑
i=1

si =
N∑
j=1

dj , yij ≥ 0.

After solving this problem using the SciPy optimization library in Python, we obtain the optimal
solutions as follows:

Optimal Value f1
∗(y) : 1.6563000993102234e− 13
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Optimal solution:
y11 = 6.701462050627256e− 14,

y12 = 5.447537900889634e− 13,

y13 = 6.540701226004457e− 13

y14 = 2.3433877894449986e− 12

y21 = 1.6269086281778882e− 13

y22 = 2.8037183688672324e− 12

y23 = 1.1917212705073402e− 12

y24 = 2.4672960645959706e− 12

y31 = 3.4491566715606586e− 13

y32 = 8.160054271726014e− 14

y33 = 8.95759410927497e− 12

y34 = 8.134841315142161e− 14.

For the second objective function (Total transportation time),

f2
∗(y) = 0.048y11 + 0.15y12 + 0.0065y13 + 0.126y14 + 0.15y21 + 0.00055y22

+0.144y23 + 0.056y24 + 0.114y31 + 0.216y32 + 0.007y33 + 0.018y34

S.t
y11 + y12 + y13 + y14 ≤ 0.036,

y21 + y22 + y23 + y24 ≤ 0.048,

y31 + y32 + y33 + y34 ≤ 0.096,

y11 + y21 + y31 ≤ 0.056,

y12 + y22 + y32 ≤ 0.014,

y13 + y23 + y33 ≤ 0.096,

y14 + y24 + y34 ≤ 0.014,
M∑
i=1

si =
N∑
j=1

dj , yij ≥ 0.

After solving this problem using the SciPy library in Python, we obtain the optimal solution as
follows: Optimal Value f2

∗(y) : 4.211826137490883e− 12

Optimal solution:
y11 = 8.263438891810004e− 12,

y12 = 2.5838370001640527e− 12,

y13 = 6.335818003711425e− 11,

y14 = 3.0146972331010592e− 12,

y21 = 2.5299779571885494e− 12,

y22 = 8.790645598327858e− 12,

y23 = 2.669450392021306e− 12,

y24 = 6.670724613805137e− 12,

y31 = 2.6400866542766385e− 12,

y32 = 1.800596343315708e− 12,

y33 = 5.36625998899776e− 11,

y34 = 2.1142895443476957e− 11.
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For the last objective function (Deterioration cost during transportation),

f3
∗(y) = 0.1y11 + 0.144y12 + 0.01y13 + 0.2695y14 + 0.072y21 + 0.0045y22

+0.0085y23 + 0.056y24 + 0.112y31 + 0.096y32 + 0.04y33 + 0.075y34

S.t
y11 + y12 + y13 + y14 ≤ 0.036,

y21 + y22 + y23 + y24 ≤ 0.048,

y31 + y32 + y33 + y34 ≤ 0.096,

y11 + y21 + y31 ≤ 0.056,

y12 + y22 + y32 ≤ 0.014,

y13 + y23 + y33 ≤ 0.096,

y14 + y24 + y34 ≤ 0.014,
M∑
i=1

si =
N∑
j=1

dj , yij ≥ 0.

After solving this problem using the SciPy optimization library in Python, we obtain the optimal
solution as follows:

Optimal Value f2
∗(y) : 7.110957493321067e− 12

Optimal solution:
y11 = 6.1746254985444975e− 12,

y12 = 4.317295196854511e− 12,

y13 = 6.194365813830885e− 11,

y14 = 2.30864320123096e− 12,

y21 = 8.587199756168197e− 12,

y22 = 7.54519853118348e− 11,

y23 = 6.803357681972516e− 11,

y24 = 1.0962059083018053e− 11,

y31 = 5.5603385632255506e− 12,

y32 = 6.461011159919284e− 12,

y33 = 1.5425548584548254e− 11,

y34 = 8.269047323003344e− 12.

Once we have a solution to each objective individually, we can create the pay-off matrix this
way, see .

Table 11. Pay-off matrix.
f∗

1 f∗
2 f∗

3

f∗
1 0.0000037438 0.000888743 0.00134174
f∗

2 0.0018528783 0.000025878 0.00995687
f∗

3 0.0115596912 0.014590691 0.00004369

Finding the upper and lower bounds for every objective function and dt = Ut − Lt, which
are as follows:

Li = 0.0000037438382, U1 = 0.001341743, d1 = 0.001337991618

L2 = 0.0000258783, U2 = 0.00995687, d2 = 0.0099309917

L3 = 0.00004369123, U3 = 0.014590691, d3 = 0.01454699977



MATHEMATICAL MULTI-OBJECTIVE PROBLEMS 1005

Now, we solved the mathematical model using the proposed FFPA.

Where,

µ(ft
∗(y))3 ≥ τ 3

1 ,∀t, θ(ft
∗(y))3 ≤ τ 3

2 ,∀t

i.e.,

(Ut − f∗
t (y))

3 ≥ d3
tτ

3
1 , (f

∗
t (y)− Lt)

3 ≤ d3
tτ

3
2 where dt = Ut − Lt

For upper bound: =⇒ (0.001341743−f3
1 )

3 ≥ 0.0000000023897975τ 3
1 , (0.00995687−f∗

2 )
3 ≥

0.000000979146657τ 3
1 , (0.014590691 − f∗

3 )
3 ≥ 0.000003077731643τ 3

1

For lower bound: =⇒ (f∗
1 −0.0000037438382)3 ≥ .0000000023897975τ 3

2 , (f
∗
2 −0.0000258783)3 ≥

0.000000979146657τ 3
2 , (f

∗
3 − 0.00004369123)3 ≥ 0.000003077731643τ 3

2

S.t

y11 + y12 + · · ·+ y1N ≤ s1,

y21 + y22 + · · ·+ y2N ≤ s2,

...

yM 1 + yM 2 + · · ·+ yMN ≤ sM

y11 + y21 + · · ·+ yM 1 ≤ d1

y12 + y22 + · · ·+ yM 2 ≤ d2

...

y1M + y2M + .........+ yNM ≤ dN

M∑
i=1

si =
N∑
j=1

dj , yij ≥ 0, 0 ≤ τ 3
1 , τ

3
2 ≤ 1, 0 ≤ τ 3

1 + τ 3
2 ≤ 1, τ 3

1 ≥ τ 3
2

To solve this problem using the SciPy library, we obtain the optimal values of all objective func-
tions, such that f∗

1 = 0.004191344499158313, f∗
2 = 0.003977749589394637, f∗

3 = 0.002018492386056,
τ1 = 0.001289240882763909, τ2 = 0.0006606981979325261, y11 = 0.30573288027448287, y12 =
0.02845428401361542, y13 = 0.0011005037929001924, y14 = 0.0010085155145783693, y21 =
0.017421950162707155, y22 = 0.001010127111597806, y23 = 0.0011462979936144556, y24 =
0.0010634351469773963, y31 = 0.01747142198034052, y32 = 0.0010542754473920062, y33 =
0.02057583566682344, y34 = 0.0009997035453720312.

Solutions by NGPA

f∗
1 (y) = 0.2695y11 + 0.03y12 + 0.0225y13 + 0.006y14 + 0.0875y21 + 0.001y22

+0.012y23 + 0.0055y24 + 0.0405y31 + 0.1739y32 + 0.0015y33 + 0.196y34

f∗
2 (y) = 0.048y11 + 0.15y12 + 0.006y13 + 0.126y14 + 0.15y21 + 0.00055y22

+0.144y23 + 0.056y24 + 0.144y31 + 0.216y32 + 0.007y33 + 0.018y34

f∗
3 (y) = 0.1y11 + 0.144y12 + 0.01y13 + 0.2695y14 + 0.072y21 + 0.0045y22

+0.0085y23 + 0.056y24 + 0.112y31 + 0.096y32 + 0.04y33 + 0.075y34
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S.t
y11 + y12 + y13 + y14 ≤ 0.036,

y21 + y22 + y23 + y24 ≤ 0.048,

y31 + y32 + y33 + y34 ≤ 0.096,

y11 + y21 + y31 ≤ 0.056,

y12 + y22 + y32 ≤ 0.014,

y13 + y23 + y33 ≤ 0.096,

y14 + y24 + y34 ≤ 0.014,
M∑
i=1

si =
N∑
j=1

dj , yij ≥ 0, i = 1, 2, 3 j = 1, 2, 3, 4.

Using the proposed neutrosophic goal programming approach, we have solved the above numer-
ical example in each objective function individually as a single objective transportation problem.
The individual solution of the problem is presented as:

Y1 = (6.701462050627256e− 14, 5.447537900889634e− 13, 6.540701226004457e− 13,
2.3433877894449986e-12, 1.6269086281778882e-13, 2.8037183688672324e-12,
1.1917212705073402e-12, 2.4672960645959706e-12, 3.4491566715606586e-13,

8.160054271726014e-14, 8.95759410927497e-12, 8.134841315142161e-14),
Y2 = (8.263438891810004e− 12, 2.5838370001640527e− 12, 6.335818003711425e− 11,

3.0146972331010592e-12, 2.5299779571885494e-12, 8.790645598327858e-12,
2.669450392021306e-12, 6.670724613805137e-12, 2.6400866542766385e-12,
1.800596343315708e-12, 5.36625998899776e-11, 2.1142895443476957e-11),

Y3 = (6.1746254985444975e− 12, 4.317295196854511e− 12, 6.194365813830885e− 11,
2.30864320123096e-12, 8.587199756168197e-12, 7.54519853118348e-11,

6.803357681972516e-11, 1.0962059083018053e-11, 5.5603385632255506e-12,
6.461011159919284e-12, 1.5425548584548254e-11, 8.269047323003344e-12).

We are using the pay-off matrix from Table 11 to obtain the solutions of each objective function
and calculate the lower and upper bounds for each objective function. These bounds are assigned
using the following formula: fL

t = min{f∗
t (y)}3

t=1, f
U
t = max{f∗

t (y)}(t = 1)3. The bounds
of each objective function are determined by 0.0000037 ≤ f∗

1 ≤ 0.002743, 0.0000258 ≤ f∗
2 ≤

0.009735, 0.0000436 ≤ f∗
3 ≤ 0.00531. Define the membership function of each objective func-

tion using the NGPA.

For the first objective function f∗
1 :

fL
1 (φ) = 0.0000037, fU

1 (φ) = 0.002743, for the truth membership, fL
1 (θ) = 0.0000037, fU

1 (θ) =
fU

1 (φ) + s1(fU
1 (φ) − fL

1 (φ)) = 0.0000037 + s1, for the indeterminacy membership, fL
1 (ϕ) =

fL
1 (φ) + t1(fU

1 (φ) − fL
1 (φ)) = 0.0000037 + t1, f

U
1 (ϕ) = 0.002743, for the falsity member-

ship, where t1 and s1 are predetermined real numbers within the interval (0, 1). Based on these
bounds, the membership function can be defined as follows:

φ1(f
∗
1 (y)) =


1, if f∗

1 (y) < 0.0000037

1 −
f∗

1 (y)− 0.0000037
0.0027

, if 0.0000037 ≤ f∗
1 (y) ≤ 0.002743

0, if f∗
1 (y) > 0.002743

θ1(f
∗
1 (y)) =


1, if f∗

1 (y) < 0.0000037

1 −
f∗

1 (y)− 0.0000037
s1

, if 0.0000037 ≤ f∗
1 (y) ≤ 0.002743 + s1

0, if f∗
1 (y) > 0.002743 + s1
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ϕ1(f
∗
1 (y)) =


1, if f∗

1 (y) > 0.002743

1 − 0.002743 − f1(y)

0.0027 − t1
, if 0.0000037 + t1 ≤ f∗

1 (y) ≤ 0.002743

0, if f∗
1 (y) > 0.0000037 + t1

For the second objective function f∗
2 :

fL
2 (φ) = 0.0000258, fU

2 (φ) = 0.00973, for the truth membership, fL
2 (θ) = 0.0000258, fU

2 (θ) =
fU

2 (φ) + s2(fU
2 (φ) − fL

2 (φ)) = 0.0000258 + s2, for the indeterminacy membership, fL
2 (ϕ) =

fL
2 (φ) + t2(fU

2 (φ)− fL
2 (φ)) = 0.0000258 + t2, f

U
2 (ϕ) = 0.00973, for the falsity membership,

where t2 and s2 are predetermined real numbers within the interval (0, 1). Based on these bounds,
the membership function can be defined as follows:

φ2(f
∗
2 (y)) =


1, if f∗

2 (y) < 0.000025

1 −
f∗

2 (y)− 0.000025
0.0094

, if 0.000025 ≤ f∗
2 (y) ≤ 0.00973

0, if f∗
2 (y) > 0.00973

θ2(f
∗
2 (y)) =


1, if f∗

2 (y) < 0.0000025

1 −
f∗

2 (y)− 0.000025
s2

, if 0.000025 ≤ f∗
2 (y) ≤ 1.0982 + s2

0, if f∗
2 (y) > 0.000025 + s2

ϕ2(f
∗
2 (y)) =


1, if f∗

2 (y) > 0.00973

1 − 0.00973 − f2(y)

0.0094 − t2
, if 0.000025 + t2 ≤ f∗

2 (y) ≤ 0.00973

0, if f∗
2 (y) < 0.000025 + t2

For the third objective function f∗
3 :

fL
3 (φ) = 0.000043, fU

3 (φ) = 0.00531, for the truth membership fL
3 (θ) = 0.000043, fU

3 (θ) =
fU

3 (φ) + s3(fU
3 (φ) − fL

3 (φ)) = 0.000043 + s3, for the indeterminacy membership, fL
3 (ϕ) =

fL
3 (φ) + t3(fU

3 (φ) − fL
3 (φ)) = 0.000043 + t3, f

U
3 (ϕ) = 0.00531, for the falsity membership,

where t3 and s3 are predetermined real numbers within the interval (0, 1). Based on these bounds,
the membership function can be defined as follows:

φ3(f
∗
3 (y)) =


1, if f∗

3 (y) < 0.000043

1 −
f∗

3 (y)− 0.000043
0.00526

, if 0.000043 ≤ f∗
3 (y) ≤ 0.00531

0, if f∗
3 (y) > 0.00531

θ3(f
∗
3 (y)) =


1, if f∗

3 (y) < 0.000043

1 −
f∗

3 (y)− 0.000043
s3

, if 0.000043 ≤ f∗
3 (y) ≤ 0.000043 + s3

0, if f∗
3 (y) > 0.000043 + s3

ϕ3(f
∗
3 (y)) =


1, if f∗

3 (y) > 0.00531

1 − 0.00531 − f3(y)

0.00526 − t3
, if 0.000043 + t3 ≤ f∗

3 (y) ≤ 0.00531

0, if f∗
3 (y) < 0.000043 + t3

The construction of an equivalent neutrosophic programming model for the proposed problem is
presented as follows;

Maxα− γ + β
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S.t

y11 + y12 + y13 + y14 ≤ 0.036,

y21 + y22 + y23 + y24 ≤ 0.048,

y31 + y32 + y33 + y34 ≤ 0.096,

y11 + y21 + y31 ≤ 0.056,

y12 + y22 + y32 ≤ 0.014,

y13 + y23 + y33 ≤ 0.096,

y14 + y24 + y34 ≤ 0.014,

0.048y11 + 0.15y12 + 0.006y13 + 0.126y14 + 0.15y21 + 0.00055y22 + 0.144y23 + 0.056y24 +
0.144y31 + 0.216y32 + 0.007y33 + 0.018y34 + 0.0094α ≤ 0.009735

0.1y11 + 0.144y12 + 0.01y13 + 0.2695y14 + 0.072y21 + 0.0045y22 + 0.0085y23 + 0.056y24 +
0.112y31 + 0.096y32 + 0.04y33 + 0.075y34 + 0.00526α ≤ 0.00531

0.2695y11+0.03y12+0.0225y13+0.006y14+0.0875y21+0.001y22+0.012y23+0.0055y24+
0.0405y31 + 0.1739y32 + 0.0015y33 + 0.196y34 + s1γ − s1 ≤ 0.0000037

0.048y11 + 0.15y12 + 0.006y13 + 0.126y14 + 0.15y21 + 0.00055y22 + 0.144y23 + 0.056y24 +
0.144y31 + 0.216y32 + 0.007y33 + 0.018y34 + s2γ − s2 ≤ 0.0000258

0.1y11 + 0.144y12 + 0.01y13+ 0.2695y14 + 0.072y21 + 0.0045y22 + 0.0085y23 + 0.056y24 +
0.112y31 + 0.096y32 + 0.04y33 + 0.075y34 + s3γ − s3 ≤ 0.0000436

0.2695y11+0.03y12+0.0225y13+0.006y14+0.0875y21+0.001y22+0.012y23+0.0055y24+
0.0405y31 + 0.1739y32 + 0.0015y33 + 0.196y34 − (0.0027 − t1)β − t1 ≤ 0.0000037

0.048y11 + 0.15y12 + 0.006y13 + 0.126y14 + 0.15y21 + 0.00055y22 + 0.144y23 + 0.056y24 +
0.144y31 + 0.216y32 + 0.007y33 + 0.018y34 − (0.0094 − t2)β − t2 ≤ 0.0000258

0.1y11 + 0.144y12 + 0.01y13 + 0.2695y14 + 0.072y21 + 0.0045y22 + 0.0085y23 + 0.056y24 +
0.112y31 + 0.096y32 + 0.04y33 + 0.075y34 − (0.00526 − t3)− t3 ≤ 0.0000436∑M

i=1 si =
∑N

j=1 dj , yij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4, α ≥ β, α ≥ γ, α + β + γ ≤
3, α, β, γ ∈ [0, 1], t = 1, 2, 3.

Now, we obtain the best compromise solutions using the SciPy optimization library in Python.
The compromise solutions are presented in Table12.

Table 12. Compromise solution of the proposed problem using FFPA and NGPA.
Methods f∗1 f∗2 f∗3

FFPA 0.004191344 0.00397775 0.002018492
NGPA 0.00325317 0.00314763 0.001723742
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Figure 2. . Shows that the compromise solutions for three objective functions using FFPA and
NGPA.

Table 12 presents the compromise solutions for multi-objective transportation using the FFPA
and the NGPA. The results indicate that NGPA outperforms FFPA across all three objective
functions. Furthermore, NGPA achieves the minimum values for total transportation time, total
transportation cost, and deterioration cost during transportation, suggesting that NGPA provides
a more efficient and cost-effective solution for the given muti-objective transportation problem.

9 Conclusion

This study introduced the fermatean fuzzy programming approach (FFPA) and neutrosophic goal
programming approach (NGPA) to solve the multi-objective transportation problem. Initially, we
developed the mathematical model of TTP and MOTP, converting these models into crisp form
using NFFSF within FFE. Various methods exist for converting fuzzy data into crisp data, ex-
tending fuzzy data to Intuitionistic, Pythagorean, fermatean, and other uncertain data. Among
these methods, the NGPA has proven to be more effective in solving MOTP than FFPA. Nonethe-
less, the proposed FFPA provides a robust alternative solution approach for multi-objective
decision-making in the FFE. A numerical example was provided to validate the effectiveness
of these approaches in solving the MOTP using the SciPy library in Python. The results demon-
strate that the proposed approaches can effectively identify compromise optimal solutions for
multi-objective optimization problems.

Furthermore, FFPA and NGPA show great potential for application in solving muti-objective
decision-making problems in other fuzzy environments, offering versatile and adaptive solutions
to complex and uncertain scenarios. This research advances optimization techniques, providing
valuable insights and methodologies in multi-objective optimization under uncertainty.

9.1 Managerial and Practical Implications

The proposed fermatean fuzzy programming approach (FFPA) and neutrosophic goal program-
ming approach (NGPA) offer significant advancements for addressing traditional transportation
problems under uncertainty. These methods enhance decision-making by accurately modeling
multiple objectives, such as minimizing costs and transit times and optimizing resource utiliza-
tion and operational efficiency. Their versatility across various industries, including logistics,
manufacturing, and public transportation, allows for more precise and adaptive planning, cru-
cial in dynamic environments with fluctuating demand and supply chain disruptions [91]. By
integrating these techniques, managers can develop resilient transportation plans, leading to sus-
tainable and long-term benefits [92]. Moreover, the practical implementation of these methods
using tools like the SciPy library in Python, LINGO, and GAMS ensures their scalability and
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ease of integration into existing systems. It enables organizations to adopt advanced optimiza-
tion techniques without significant infrastructure changes, transforming their approach to trans-
portation problem-solving [93]. Consequently, FFPA and NGPA provide a comprehensive and
robust framework for improving efficiency, adaptability, and overall effectiveness in transporta-
tion management.

9.2 Limitations and future research

While presenting innovative approaches with FFPA and NGPA for solving multi-objective trans-
portation problems, this study has several limitations. First, the computational complexity of
these methods can be high, potentially making them less practical for large-scale problems with-
out further optimization. Second, the reliance on specific fuzzy aggregation techniques may
limit the ability to generalize the results to different types of fuzzy environments. Finally, the
proposed methods were tested in controlled scenarios, which might need to capture the vari-
ability and unpredictability of real-world applications [94, 95]. Future research could focus on
developing more efficient algorithms to reduce computational complexity, exploring alternative
fuzzy aggregation techniques to enhance robustness, and conducting extensive empirical studies
across diverse real-world cases to validate and refine the proposed methodologies.
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