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Abstract In this paper, we study weak solutions to the following parabolic prob-
lem 

ut − ∆u+ u = 0 in Ω × (0, T ),
∂u
∂ν = µ|u|q−1u on ∂Ω × (0, T ),
u(x; 0) = u0(x) in Ω,

where Ω ⊂ RN (N ≥ 1) is an open bounded domain for with smooth boundary
∂Ω and µ > 0. We prove existence and blow-up of weak solutions for the above
problem with the critical initial condition A(u0) = h. Moreover, we shall discuss the
asymptotic behavior of solutions for problem.

1 Introduction

Problems parabolic have received a lot of consideration recently. Such problems have
applications in several branches of applied mathematics and physics. For example,
parabolic equations are commonly used to model the diffusion of heat in materi-
als, the propagation of acoustic or electromagnetic waves and thermal conduction
(see [2, 4, 6, 7, 8, 14, 18]). In addition, parabolic problems can be used to model
the growth and propagation of a population in a given environment. For example,
these problems can be used to study the spread of an infectious disease in a popu-
lation, the diffusion of nutrients in a biological tissue and the migration of species
[1, 3, 10, 11, 12, 16].

In this paper, we deal with the following problem:
ut − ∆u+ u = 0 in Ω × (0, T ),
∂u
∂ν = µ|u|q−1u on ∂Ω × (0, T ),
u(x; 0) = u0(x) in Ω,

(1.1)

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω, µ > 0 and
q satisfies

(P )

{
1 < q ≤ N

N−2 if N > 2,
1 < q < ∞ if N = 1; 2.

In the literature, the heat equation have been studied by many researchers (see
[5, 9, 13, 17] ). For example, in [9], F.Gazzola and T.Weth considered the following
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problem: 
ut − ∆u = |u|q−1u in Ω × (0, T ),
u = 0 on ∂Ω × (0, T ),
u(x; 0) = u0(x) in Ω,

and they proved the existence and finite time blow-up of solutions when u0 ∈ H1
0 (Ω)

and 1 < q < n+2
n−2 . Their approach was based on the comparison principle and

variational methods.
In [5], the semilinear heat equation with logarithmic nonlinearity of the following
form: 

ut − ∆u = u log|u| in Ω, t > 0,
u = 0 on ∂Ω, t > 0,
u(x; 0) = u0(x) in Ω,

was studied by H. Chen et al., by using Sobolev’s logarithmic inequality, they obtained
the existence of a global solution and an explosion at +∞ under certain appropriate
conditions. In addition, results for decay estimates of global solutions are also given.
In [17], L.Yacheng et al. considered the following Cauchy problem{

ut − ∆u = |u|p−1u x ∈ Rn, t > 0,
u(x; 0) = u0(x) x ∈ Rn,

and obtained the following results:

(i) The problem admits a global weak solution u(t) ∈ L∞ (0,∞;H1 (Rn)
)

with
ut(t) ∈ L2

(
0,∞;L2 (Rn)

)
for 0 ≤ t < ∞, provided I (u0) ≥ 0;

(ii) The global weak solution of problem decays to zero exponentially as t → +∞,
provided I (u0) > 0;

(iii) The weak solution of problem blows up in finite time, provided I (u0) < 0, where

I(u) = ∥∇u∥2 + ∥u∥2 − ∥u∥p+1
p+1.

Also, L. E. Payne and P. W. Schaefer, in [15], considered the heat equation subject to
a nonlinear boundary condition, i.e.

∂u
∂t − ∆u = 0 in Ω, t > 0,
∂u
∂ν = f(u) on ∂Ω, t > 0,
u(x, 0) = g(x) ≥ 0 in Ω,

where Ω is a bounded smooth convex domain in R3 and f satisfies the condition

0 ⩽ f(s) ⩽ ks(n+2)/2, s > 0,

for some positive constants k and n ⩾ 1. By using a differential inequality technique,
the authors determined a lower bound on the blow-up time for solutions of the heat
equation when the solution explosion occurs. In addition, a sufficient condition which
implies that blow-up does occur is determined.
Next, let us introduce some sets and functionals as follows

A(u) =
1
2
∥u∥2

H1 −
µ

q + 1
∥u∥q+1

q+1,∂Ω
, (1.2)

B(u) = ∥u∥2
H1 − µ∥u∥q+1

q+1,∂Ω
, (1.3)

V =
{
u ∈ H1 (Ω) | B(u) = 0, ∥u∥H1 ̸= 0

}
,

M =
{
u ∈ H1 (Ω) | B(u) > 0, A(u) < h

}
∪ {0},

and
h = inf

u∈V
A(u).
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Recently, in [13], A. Lamaizi et al. have shown the existence of weak global
solutions of problem (1.1) if A(u0) < h and B(u0) > 0. Moreover, they proved that
the weak solution u(x, t) of problem (1.1) must blows up in finite time provided that:

0 < A(u0) <
p− 1

2A(p+ 1)
∥u0∥2,

where

A = Sup
u∈H1(Ω)

∥u∥2

∥u∥2
H1

.

In the present paper, some new results on global existence and blow-up of solu-
tions for problem (1.1) with the critical initial condition A(u0) = h are established.
Moreover, we shall discuss the asymptotic behavior of solutions.

Theorem 1.1. (Global Existence)
Let u0(x) ∈ H1 (Ω) and (P) hold. Suppose also that A (u0) = h and B (u0) ≥
0. Then problem (1.1) admits a global weak solution u(t) ∈ L∞ (0,∞;H1 (Ω)

)
∩

C
(
[0, T ];L2 (Ω)× L2 (∂Ω, ρ)

)
with ut(t) ∈ L2

(
0,∞;L2 (Ω)

)
and u(t) ∈ M for

t ≥ 0.

Theorem 1.2. (Finite Time Blow-up)
Let u0(x) ∈ H1 (Ω) and (P) hold. Suppose also that A (u0) = h and B (u0) < 0.
Then the weak solution of problem (1.1) blow up in a finite time, i.e. there exists a
T > 0 such that

lim
t→T

∫ t

0
∥u∥2dτ = +∞. (1.4)

Theorem 1.3. (Asymptotic Behavior)
Let u0(x) ∈ H1 (Ω) and (P) hold. Suppose also that A (u0) < h and B (u0) > 0.
Then, for the weak global solution u(t) of problem (1.1), there exists a constant ω > 0
such that

∥u∥2 ≤ ∥u0∥2 e−ωt, 0 ≤ t < ∞. (1.5)

2 Preliminaries

Let Ω be an open domain of RN and let p ∈ R with 1 ≤ p < +∞.
Define the Lebesgue space by

Lp(Ω) =

{
u : Ω → R is a measurable and

∫
Ω

|u(x)|pdx < +∞
}

equipped with the standard norm

∥u∥p =

(∫
Ω

|u(x)|pdx
) 1

p

.

For p = ∞, we denote

L∞(Ω) =

{
u : Ω → R is a measurable such that ess- sup

Ω

|u| < +∞
}

endowed with the norm

ess- sup
Ω

|u| = inf{C > 0 such that |u(x)| ≤ C a.e. Ω}.

In addition, we designate the usual Sobolev space by

H1(Ω) =
{
u ∈ L2 (Ω) : |∇u| ∈ L2 (Ω)

}
,
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equipped with the norm
∥u∥2

H1 = ∥u∥2 + ∥∇u∥2.

Throughout the paper, for simplicity we denote

⟨u, v⟩ =
∫

Ω

uv dx, ⟨u, v⟩0 =

∮
∂Ω

uv dρ,

where dρ denotes the restriction to ∂Ω.

Let X be a Banach space and T > 0. Denote the following spaces:

C([0, T ];X) = {u : [0, T ] −→ X continue },

Lp(0, T ;X) =

{
u : [0, T ] −→ X is a measurable such that

∫ T

0
∥u(t)∥pXdt < ∞

}
,

equipped with the norm

∥u∥Lp(0,T ;X) =

(∫ T

0
∥u(t)∥pXdt

) 1
p

,

and

L∞(0, T ;X) = {u : [0, T ] −→ X is a measurable such that : ∃C > 0; ∥u(t)∥X < C a.e.t} ,

equipped with the norm

∥u∥L∞(0,T ;X) = inf {C > 0; ∥u(t)∥X < C a.e.t} .

In addition, for η > 0 we define

Bη(u) = η∥u∥2
H1 − µ∥u∥q+1

q+1,∂Ω
,

Mη =
{
u ∈ H1 (Ω) | Bη(u) > 0, A(u) < h(η)

}
∪ {0},

where
h(η) = inf

u∈Vη

A(u),

and
Vη =

{
u ∈ H1 (Ω) | Bη(u) = 0, ∥u∥H1 ̸= 0

}
.

3 Proof of Main Results

3.1 Proof of Theorem 1.1

Before giving the proof of first result, we give the definition of weak solution and state
some lemmas which will be used later.

Definition 3.1. A weak solution of problem (1.1) is a function u : Ω×(0;T ) → R
such that

(i) u ∈ L∞ (0, T ;H1 (Ω)
)
∩C

(
[0, T ];L2 (Ω)× L2 (∂Ω, ρ)

)
, ut ∈ L2

(
0, T ;L2 (Ω)

)
;

(ii)

⟨ut, w⟩+⟨∇u,∇w⟩+⟨u,w⟩ = µ⟨|u|∂Ω
|q−1 u|∂Ω

, w⟩0, ∀w ∈ H1 (Ω) , t ∈ [0, T );
(3.1)

(iii) u(x, 0) = u0(x) in H1 (Ω) ;
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(iv) ∫ t

0
∥uτ∥2 dτ +A(u) ≤ A (u0) , ∀t ∈ [0, T ). (3.2)

Lemma 3.2. Let u ∈ H1 (Ω) and ∥u∥H1 ̸= 0. Then

(i) lim
α→0

A(αu) = 0, lim
α→+∞

A(αu) = −∞;

(ii) For 0 < α < ∞, there exists a unique α∗ = α∗(u) such that

d
dα

A(αu)

∣∣∣∣
α=α∗

= 0;

(iii) A(αu) is increasing for 0 ≤ α ≤ α∗, decreasing for α∗ ≤ α < ∞ and takes the
maximum at α = α∗;

(iv) B(αu) > 0 for 0 < α < α∗, B(αu) < 0 for α∗ < α < ∞, and B (α∗u) = 0.

Proof. (i) From (1.2), we obtain

A(αu) =
α2

2
∥u∥2

H1 −
µαq+1

q + 1
∥u∥q+1

q+1,∂Ω
,

these give the conclusion of first assertion.

(ii) It is easy to see

d
dα

A(αu) = α
(
∥u∥2

H1 − µαq−1∥u∥q+1
q+1,∂Ω

)
, (3.3)

hence the conclusion holds.

(iii) From (3.3), we can deduce that

d
dα

A(αu) > 0 for 0 < α < α∗;
d

dα
A(αu) < 0 for α∗ < α < ∞,

which leads to the conclusion.

(iv) By (1.3) and (3.3), we can deduce

B(αu) = α2∥u∥2
H1 − µαq+1∥u∥q+1

q+1,∂Ω
= α

d
dα

A(αu).

these give the conclusion of last assertion.

Lemma 3.3. ([13]) . Let q satisfy (P), u0(x) ∈ H1 (Ω) , 0 < c < h, η1 < η2 be the
two roots of equation h(η) = c. Assume that B (u0) > 0, then all weak solutions u of
problem (1.1) with A (u0) = c belong to Mη for η1 < η < η2, 0 ≤ t < T.

Proof of Theorem 1.1. Let us take a sequence {αm} such that 0 < αm < 1,m =
1, 2, . . . , and αm → 1 as m → ∞.

Consider the problem
ut − ∆u+ u = 0 in Ω × (0, T ),
∂u
∂ν = µ|u|q−1u on ∂Ω × (0, T ),
u(x; 0) = u0m(x) in Ω,

(3.4)

with u0m(x) = αmu0(x).
Since A (u0) = h, then ∥u0∥H1 ̸= 0. On the other hand B (u0) ≥ 0 and Lemma
3.2 implies α∗ = α∗ (u0) ≥ 1, therefore B (u0m) = B (αmu0) > 0 and A (u0m) =
A (αmu0) < A (u0) = h.
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Thus, by [13, Theorem 1.2] it follows that for each m problem (3.4) admits a global
weak solution um ∈ L∞ (0,∞;H1 (Ω)

)
∩C

(
[0, T ];L2 (Ω)× L2 (∂Ω, ρ)

)
with umt(t) ∈

L2
(
0,∞;L2 (Ω)

)
and um(t) ∈ M for 0 ≤ t < ∞ satisfying

⟨umt, w⟩+⟨∇um,∇w⟩+⟨um, w⟩ = µ⟨|um|∂Ω|q−1 um|∂Ω, w⟩0, ∀w ∈ H1 (Ω) , t > 0,
(3.5)

and ∫ t

0
∥umτ∥2 dτ +A (um) ≤ A (u0m) < h, 0 ≤ t < ∞. (3.6)

By (3.6) and

A (um) =
q − 1

2(q + 1)
∥um∥2

H1 +
1

q + 1
B (um) ,

we conclude that∫ t

0
∥umτ∥2 dτ +

q − 1
2(q + 1)

∥um∥2
H1 < h, 0 ≤ t < ∞,

for sufficiently large m, then∫ t

0
∥umτ∥2 dτ < h, 0 ≤ t < ∞, (3.7)

and

∥um∥2
H1 <

2(q + 1)
q − 1

h, 0 ≤ t < ∞ . (3.8)

Thus it follows from [13, Proposition 2.1] that

∥u∥q+1
q+1,∂Ω

≤ Cq+1
∗ ∥u∥q+1

H1 ≤ Cq+1
∗

(
2(q + 1)
q − 1

h

) q+1
2

, 0 ≤ t < ∞. (3.9)

Therefore

∥∥∥|um|q−1
um

∥∥∥p
p,∂Ω

= ∥um∥q+1
q+1,∂Ω

≤ Cq+1
∗

(
2(q + 1)
q − 1

h

) q+1
2

, p =
q + 1
q

, 0 ≤ t < ∞.

(3.10)
Consequently, there exists a u and a subsequence {us} of {um} such that

ust → ut weakly in L2
(
0,∞;L2 (Ω)

)
,

us → u weak star in L∞ (0,∞;H1 (Ω)
)

and a.e. in Ω × [0,∞),

|us|q−1
us → |u|q−1u weak star in L∞ (0,∞;Lp (Ω)× Lp (∂Ω, ρ)).

In (3.5), letting m = s → ∞, we obtain

⟨ut, w⟩+ ⟨∇u,∇w⟩+ ⟨u,w⟩ = µ⟨|u|∂Ω|q−1 u|∂Ω, w⟩0, ∀w ∈ H1 (Ω) ,

and
u(x, 0) = u0(x) in H1 (Ω) .

Accordingly, Lemma 3.3 leads to u(t) ∈ M for t ≥ 0.

3.2 Proof of Theorem 1.2

Let

Ψ(t) :=
∫ t

0
∥u∥2dτ.
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Thus, we get
Ψ

′(t) = ∥u∥2,

and
Ψ

′′(t) =
d

dt
∥u∥2 = −2

(
∥u∥2

H1 − µ∥u∥q+1
q+1,∂Ω

)
= −2B(u). (3.11)

By virtue of (3.11), (3.2) and

A(u) =
q − 1

2(q + 1)
∥u∥2

H1 +
1

q + 1
B(u),

we obtain

Ψ
′′(t) ≥ 2(q + 1)

∫ t

0
∥uτ∥2 dτ + (q − 1)Ψ′(t)− 2(q + 1)A (u0) ,

then

Ψ(t)Ψ′′t)− q + 1
2

(Ψ′(t))2 ≥2(q + 1)

(∫ t

0
∥u∥2 dτ

∫ t

0
∥uτ∥2 dτ −

(∫ t

0
⟨uτ , u⟩dτ

)2)
+ (q − 1)Ψ(t)Ψ′(t)− (q + 1) ∥u0∥2

Ψ
′(t)− 2(q + 1)A (u0)Ψ(t).

Using the Schwartz inequality, we obtain

Ψ(t)Ψ′′(t)−q + 1
2

(Ψ′(t))2 ≥ (q−1)Ψ(t)Ψ′(t)−(q+1) ∥u0∥2
Ψ

′(t)−2(q+1)A (u0)Ψ(t).

(3.12)
Put

S(η) =

(
η

Cq+1
∗

) 1
q−1

where C∗ is the embedding constant form H1 (Ω) into Lq+1 (∂Ω, ρ) .
Next, we show that

B(u) < 0 for t > 0. (3.13)

If it is false, then there exists a t0 > 0 such that B (u (t0)) = 0, B(u) < 0 and
∥u∥H1 > S(1) for 0 ≤ t < t0.

Therefore we get
∥u (t0)∥H1 ≥ S(1) and A (u (t0)) ≥ h.

We deduce from (3.11) that

⟨ut, u⟩ > 0 for 0 ≤ t < t0.

Hence we obtain

ut ̸= 0 in L2 (Ω) and
∫ t

0
∥uτ∥2 dτ is increasing on 0 ≤ t ≤ t0.

Thus, we have ∫ t0

0
∥uτ∥2 dτ > 0,

and by (3.2) we can deduce
A (u (t0)) < h,

which contradicts
A (u (t0)) ≥ h,

then (3.13) holds.
On the other hand, by (3.11), we get

⟨ut, u⟩ > 0 and
∫ t

0
∥uτ∥2 dτ is increasing for t ≥ 0.
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For any t1 > 0, let

h1 = h−
∫ t1

0
∥uτ∥2 dτ

η1 < η2 be the two roots of equation h(η) = h1, thus (3.2) implies A(u) ≤ h1 for
t ≥ t1.
Hence, by (3.13) and

A(u) ≤ h1 < h(η), η1 < η < η2, t ≥ t1,

we can deduce

Bη(u) < 0 and ∥u∥H1 > S(η) for 1 < η < η2, t ≥ t1.

Then, we get
Bη2(u) ≤ 0 and ∥u∥H1 ≥ S (η2) for t ≥ t1,

together with (3.11) gives

Ψ
′′(t) = −2B(u) = 2 (η2 − 1) ∥u∥2

H1 − 2Bη2(u)

≥ 2 (η2 − 1) ∥u∥2
H1 ≥ 2 (η2 − 1)S2 (η2) , t ≥ 0,

Ψ
′(t) ≥ 2 (η2 − 1)S2 (η2) t+ Ψ

′(0) ≥ 2 (η2 − 1)S2 (η2) t, t ≥ 0,

Ψ(t) ≥ (η2 − 1)S2 (η2) t
2, t ≥ 0.

Hence, for sufficiently large t, we get

1
2
(q − 1)Ψ(t) > (q + 1) ∥u0∥2

,

1
2
(q − 1)Ψ′ (t) > 2(q + 1)A (u0) ,

which together with (3.12) we have

Ψ (t)Ψ
′′ (t)−

q + 1
2

(Ψ′ (t))2 > 0.

Since, for t > 0(
Ψ

−β (t)
)′′

= − β

Ψβ+2 (t)

(
Ψ (t)Ψ

′′ (t)− (β + 1)Ψ′ (t)
2
)
,

we see that for β = q−1
2 we have

(
Ψ−β (t)

)′′
< 0. Therefore Ψ−β (t) is concave for

sufficiently large t, and there exists a finite time T for which Ψ−β (t) → 0.
Consequently

lim
t→T−

Ψ(t) = +∞.

3.3 Proof of Theorem 1.3

By [13], we know that there exists a global weak solution to problem (1.1). Let u(t)
be any global weak solution of problem (1.1) with A (u0) < h and B (u0) > 0.
Consequently, (3.1) holds for 0 ≤ t < ∞.
Multiplying (3.1) by any h(t) ∈ C[0,∞), we have

⟨ut, h(t)w⟩+⟨∇u,∇ (h(t)w)⟩+⟨u, h(t)w⟩ = µ⟨|u|∂Ω
|q−1 u|∂Ω

, h(t)w⟩0,∀ h(t) ∈ C[0,∞),

and ∀ w ∈ H1 (Ω) . Consequently

⟨ut, φ⟩+ ⟨∇u,∇φ⟩+ ⟨u, φ⟩ = µ⟨|u|∂Ω
|q−1 u|∂Ω

, φ⟩0, ∀ φ ∈ L∞ (0,∞;H1 (Ω)
)
.

(3.14)
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Setting φ = u, (3.14) implies

1
2

d
dt

∥u∥2 +B(u) = 0, 0 ≤ t < ∞. (3.15)

By 0 < A (u0) < h,B (u0) > 0 and Lemma 3.3, we get u(t) ∈ Mη for η1 < η < η2
and 0 ≤ t < ∞, where η1 < η2 are the two roots of equation h(η) = A (u0) .
Consequently, we obtain Bη(u) ≥ 0 for η1 < η < η2 and Bη1(u) ≥ 0 for 0 ≤ t < ∞.
Then, (3.15) leads to

1
2

d
dt

∥u∥2 + (1 − η1) ∥u∥2
H1 +Bη1(u) = 0, 0 ≤ t < ∞,

accordingly
1
2

d
dt

∥u∥2 + (1 − η1) ∥u∥2 ≤ 0, 0 ≤ t < ∞.

Finally, Gronwall’s inequality, leads to

∥u∥2 ≤ ∥u0∥2 e−2(1−η1)t, 0 ≤ t < ∞.

This completes the proof of the Theorem.
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