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Abstract Let G be a finite simple group and X be a non-trivial conjugacy class of G. The
rank of X in G, denoted by rank(G:X), is defined to be the minimal number of elements of
X generating G. In this paper we establish the ranks of all the conjugacy classes of elements
for Chevalley group G2(3) using the structure constants method. The Groups, Algorithms and
Programming, GAP [13] is used frequently in our computations.

1 Introduction

Generation of finite groups by suitable subsets is of great interest and has many applications to
groups and their representations. For example, the computations of the genus of simple groups
can be reduced to the generations of the relevant simple groups (see Woldar [26] for details).
Also Di Martino et al. [16] established a useful connection between generation of groups by
conjugates and the existence of elements representable by almost cyclic matrices. Their moti-
vation was to study irreducible projective representations of sporadic simple groups. Recently
more attention was given to the generation of finite groups by conjugate elements. In his PhD
Thesis [24], Ward considered generation of a simple group by conjugate involutions satisfying
certain conditions. In [20, 23] the authors dealt with groups generated by a permutation which is
a product of disjoint cycles having equal lengths and also groups generated by arbitrary product
of infinite cycles.

We are interested in generation of finite simple groups by the minimal number of elements
from a given conjugacy class of the group. This motivates the following definition.

Definition 1.1. Let G be a finite simple group and X be a non-trivial conjugacy class of G. The
rank of X in G, denoted by rank(G:X) is defined to be the minimal number of elements of X
generating G.

One of the applications of ranks of conjugacy classes of a finite group is that they are involved
in the computations of the covering number of the finite simple group (see Zisser [27]).

In [17, 18, 19], J. Moori computed the the ranks of involutry classes of the Fischer sporadic
simple group Fi22. He found that rank(Fi22:2B) = rank(Fi22:2C) = 3, while rank(Fi22:2A) ∈
{5, 6}. The work of Hall and Soicher [14] implies that rank(Fi22:2A) = 6. Then in a consider-
able number of publications (for example but not limited to, see [1, 2, 3, 5, 6, 7] or [19]) Moori,
Ali and Basheer explored the ranks for various sporadic and alternating simple groups. In this
article we apply the structure constants method together with some results on generation to de-
termine all the ranks of non-trivial classes of elements for the simple Chevalley group G2(3).
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2 Preliminaries

Let G be a finite group and C1, C2, · · · , Ck be k ≥ 3 (not necessarily distinct) conjugacy classes
of G with g1, g2, · · · , gk being representatives for these classes respectively.

For a fixed representative gk ∈ Ck and for gi ∈ Ci, 1 ≤ i ≤ k − 1, denote by ∆G =
∆G(C1, · · · , Ck) the number of distinct (k − 1)-tuples (g1, · · · , gk−1) such that g1g2 · · · gk−1 =
gk. This number is known as class algebra constant or structure constant. With Irr(G) =
{χ1, χ2, · · · , χr} being the set of complex irreducible characters of G, the number ∆G is eas-
ily calculated from the character table of G through the formula

∆G(C1, C2, · · · , Ck) =

k−1∏
i=1

|Ci|

|G|

r∑
i=1

χi(g1)χi(g2) · · ·χi(gk−1)χi(gk)

(χi(1G))k−2 . (2.1)

Also for a fixed gk ∈ Ck we denote by ∆∗
G(C1, C2, · · · , Ck) the number of distinct (k − 1)-

tuples (g1, g2, · · · , gk−1) ∈ C1 × C2 × · · · × Ck−1 satisfying

g1g2 · · · gk−1 = gk and ⟨g1, g2, · · · , gk−1⟩ = G. (2.2)

Definition 2.1. If ∆∗
G(C1, C2, · · · , Ck) > 0, the group G is said to be (C1, C2, · · · , Ck)-generated.

Also if H ≤ G is any subgroup containing the fixed element gk ∈ Ck, we let ΣH(C1, · · · , Ck)
be the total number of distinct (k − 1)-tuples (g1, g2, · · · , gk−1) such that g1g2 · · · gk−1 = gk
and ⟨g1, g2, · · · , gk−1⟩ ≤ H. The value of ΣH(C1, C2, · · · , Ck) can be obtained as a sum of
the structure constants ∆H(c1, c2, · · · , ck) of H-conjugacy classes c1, c2, · · · , ck such that ci ⊆
H

⋂
Ci.

Theorem 2.2. Let G be a finite group and H be a subgroup of G containing a fixed element g
such that gcd(o(g), [NG(H):H]) = 1. Then the number h(g,H) of conjugates of H containing
g is χH(g), where χH(g) is the permutation character of G with action on the conjugates of H.
In particular

h(g,H) =
m∑
i=1

|CG(g)|
|CNG(H)(xi)|

,

where x1, x2, · · · , xm are representatives of the NG(H)-conjugacy classes fused to the G-class
of g.

Proof. See for example Ganief and Moori [10, 11, 12].

The above number h(g,H) is useful in giving a lower bound for ∆∗
G(C1, C2, · · · , Ck), namely

∆∗
G(C1, C2, · · · , Ck) ≥ ΘG(C1, C2, · · · , Ck), where

ΘG(C1, · · · , Ck) = ∆G(C1, · · · , Ck)−
∑

h(gk, H)ΣH(C1, · · · , Ck), (2.3)

gk is a representative of the class Ck and the sum is taken over all the representatives H of G-
conjugacy classes of maximal subgroups containing elements of all the classes C1, C2, · · · , Ck.

If ΘG > 0 then certainly G is (C1, C2, · · · , Ck)-generated. In the case C1 = C2 = · · · =
Ck−1 = C then G can be generated by k − 1 elements suitably chosen from C and hence
rank(G:C) ≤ k − 1.

We now quote some results for establishing generation and non-generation of finite simple
groups. These results are also important in determining the ranks of the finite simple groups.

Lemma 2.3 (e.g. see Ali and Moori [3] or Conder et al. [8]). Let G be a finite simple group such
that G is (lX,mY, nZ)-generated. Then G is (lX, lX, · · · , lX︸ ︷︷ ︸

m−times

, (nZ)m)-generated.

Proof. Since G is (lX,mY, nZ)-generated group, it follows that there exists x ∈ lX and y ∈ mY

such that xy ∈ nZ and ⟨x, y⟩ = G. Let N :=
〈
x, xy, xy2

, · · · , xym−1
〉
. Then N �G. Since G is

simple group and N is non-trivial subgroup we obtain that N = G. Furthermore we have

xxyxy2
xym−1

= x(yxy−1)(y2xy−2) · · · (ym−1xy1−m)

= (xy)m ∈ (nZ)m.
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Since xyi ∈ lX for all i, the result follows.

Corollary 2.4 (e.g. see Ali and Moori [3]). Let G be a finite simple group such that G is
(lX,mY, nZ)-generated. Then rank(G:lX) ≤ m.

Proof. Follows immediately by Lemma 2.3.

Lemma 2.5 (e.g. see Ali and Moori [3]). Let G be a finite simple (2X,mY, nZ)-generated
group. Then G is (mY,mY, (nZ)2)-generated.

Proof. Since G is (2X,mY, nZ)-generated group, it is also (mY, 2X, tK)-generated group. The
result follows immediately by Lemma 2.3.

Corollary 2.6. If G is a finite simple (2X,mY, nZ)-generated group. Then rank(G:mY ) = 2.

Proof. By Lemma 2.5 and Corollary 2.4 we have rank(G:mY ) ≤ 2. But a non-abelian simple
group cannot be generated by one element. Thus rank(G:mY ) = 2.

The following two results are in some cases useful in establishing non-generation for finite
groups.

Lemma 2.7 (e.g. see Ali and Moori [3] or Conder et al. [8]). Let G be a finite centerless group.
If ∆∗

G(C1, C2, · · · , Ck) < |CG(gk)|, gk ∈ Ck, then ∆∗
G(C1, C2, · · · , Ck) = 0 and therefore G is

not (C1, C2, · · · , Ck)-generated.

Proof. We prove the contrapositive of the statement, that is if ∆∗
G(C1, C2, · · · , Ck) > 0 then

∆∗
G(C1, C2, · · · , Ck) ≥ |CG(gk)|, for a fixed gk ∈ Ck. So let us assume that ∆∗

G(C1, C2, · · · , Ck) >
0. Thus there exists at least one (k−1)-tuple (g1, g2, · · · , gk−1) ∈ C1×C2×· · ·×Ck−1 satisfying
Equation (2.2). Let x ∈ CG(gk). Then we obtain

x(g1g2 · · · gk−1)x
−1 = (xg1x

−1)(xg2x
−1) · · · (xgk−1x

−1) = (xgkx
−1) = gk.

Thus the (k − 1)-tuple (xg1x
−1, xg2x

−1, · · · , xgk−1x
−1) will generate G. Moreover if x1 and

x2 are distinct elements of CG(gk), then the (k − 1)-tuples (x1g1x
−1
1 , x1g2x

−1
1 , · · · , x1gk−1x

−1
1 )

and (x2g1x
−1
2 , x2g2x

−1
2 , · · · , x2gk−1x

−1
2 ) are also distinct since G is centerless. Thus we have

at least |CG(gk)| (k − 1)-tuples (g1, g2, · · · , gk−1) generating G. Hence ∆∗
G(C1, C2, · · · , Ck) ≥

|CG(gk)|.

The following result is due to Ree [21].

Theorem 2.8. Let G be a transitive permutation group generated by permutations g1, g2, · · · , gs
acting on a set of n elements such that g1g2 · · · gs = 1G. If the generator gi has exactly ci cycles

for 1 ≤ i ≤ s, then
s∑

i=1

ci ≤ (s− 2)n+ 2.

Proof. See for example Ali and Moori [3].

The following result is due to Scott ([8] and [22]).

Theorem 2.9 (Scott’s Theorem). Let g1, g2, · · · , gs be elements generating a group G such that
g1g2 · · · gs = 1G and V be an irreducible module for G with dimV = n ≥ 2. Let CV(gi) denote

the fixed point space of ⟨gi⟩ on V and let di be the codimension of CV(gi) in V. Then
s∑

i=1

di ≥ 2n.

With χ being the ordinary irreducible character afforded by the irreducible module V and
1⟨gi⟩ being the trivial character of the cyclic group ⟨gi⟩ , the codimension di of CV(gi) in V can
be computed using the following formula ([10]):

di = dim(V)− dim(CV(gi)) = dim(V)−
〈
χ↓G⟨gi⟩,1⟨gi⟩

〉
= χ(1G)−

1
| ⟨gi⟩ |

o(gi)−1∑
j=0

χ(gji ). (2.4)
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3 The ranks of the classes of G2(3)

In this section we apply the results, discussed in Section 2, to the group G2(3). We determine
the ranks for all its non-trivial conjugacy classes of elements.

The group G2(3) is a simple group of order 4245696 = 26 × 36 × 7 × 13. By the Atlas [9],
the group G2(3) has exactly 23 conjugacy classes of its elements and 10 conjugacy classes of its
maximal subgroups. Representatives of these classes of maximal subgroups can be taken as in
Table 1.

Table 1. Maximal subgroups of G2(3)

Maximal Subgroup Order

U3(3) : 2 = M1 12096 = 26 × 33 × 7
U3(3) : 2 = M2 12096 = 26 × 33 × 7

(3231+2) : 2S4 = M3 11664 = 24 × 36

(3231+2) : 2S4 = M4 11664 = 24 × 36

L3(3) : 2 = M5 11232 = 25 × 33 × 13
L3(3) : 2 = M6 11232 = 25 × 33 × 13
L2(8) : 3 = M7 1512 = 23 × 33 × 7
23.L3(2) = M8 1344 = 26 × 3 × 7
L2(13) = M9 1092 = 22 × 3 × 7 × 13

21+4 : 32 : 2 = M10 576 = 26 × 32

In this section we let G = G2(3). By the electronic Atlas of Wilson [25], G has two generators
a and b in terms of 14× 14 matrices over F2. For the sake of computations with GAP, we started
with the two generators a and b of G and with some GAP subroutine we were able to obtain a
permutation representation for G in terms of 351 point. Generators g1 and g2 for this permutation
representation can be taken as follows:

g1 = (1, 183)(2, 226)(3, 265)(4, 338)(5, 251)(6, 202)(7, 327)(8, 128)(9, 298)(11, 158)(12, 86)

(13, 340)(14, 36)(15, 164)(16, 250)(17, 117)(18, 156)(19, 87)(20, 221)(21, 205)(22, 314)

(23, 64)(24, 297)(26, 113)(27, 157)(28, 116)(29, 93)(30, 200)(31, 174)(32, 275)(33, 55)

(34, 207)(35, 237)(37, 324)(38, 88)(40, 51)(41, 246)(42, 315)(43, 255)(44, 137)(46, 349)

(47, 280)(48, 317)(49, 54)(50, 288)(52, 305)(53, 274)(56, 125)(57, 348)(58, 163)(59, 325)

(60, 188)(61, 356)(62, 196)(63, 208)(65, 258)(66, 82)(67, 111)(68, 106)(69, 333)(70, 165)

(71, 127)(72, 318)(73, 229)(74, 170)(75, 361)(76, 108)(77, 104)(78, 353)(79, 186)(80, 322)

(81, 282)(83, 235)(84, 351)(85, 239)(89, 161)(90, 331)(91, 357)(92, 294)(94, 287)(95, 123)

(96, 319)(97, 261)(98, 109)(99, 310)(100, 149)(101, 133)(102, 172)(105, 167)(110, 136)

(112, 332)(114, 243)(115, 344)(118, 278)(119, 292)(120, 268)(121, 233)(122, 241)(124, 263)

(126, 179)(129, 337)(130, 358)(131, 180)(132, 160)(134, 339)(135, 173)(138, 189)(139, 336)

(140, 354)(141, 228)(143, 212)(144, 215)(145, 206)(146, 175)(147, 198)(148, 234)(150, 218)

(151, 176)(153, 293)(154, 270)(155, 285)(159, 217)(162, 256)(166, 177)(168, 307)(169, 191)

(171, 302)(181, 219)(182, 350)(187, 224)(190, 323)(192, 271)(193, 304)(194, 326)(195, 260)

(197, 308)(199, 330)(201, 313)(203, 301)(204, 267)(209, 312)(210, 248)(211, 232)(213, 223)

(214, 238)(216, 363)(220, 296)(222, 284)(230, 334)(231, 316)(236, 347)(240, 320)(242, 352)

(245, 286)(247, 272)(249, 262)(252, 266)(253, 264)(257, 329)(259, 341)(269, 303)(273, 311)

(277, 321)(281, 335)(283, 299)(290, 309)(291, 300)(295, 359)(328, 343)(342, 362)(345, 364)

(355, 360),
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g2 = (2, 54, 216)(3, 243, 211)(4, 269, 210)(5, 240, 63)(6, 177, 239)(7, 75, 205)(8, 338, 26)

(9, 194, 140)(10, 271, 132)(11, 250, 279)(12, 220, 291)(13, 262, 201)(14, 280, 242)

(15, 198, 230)(16, 358, 350)(17, 346, 196)(18, 180, 295)(19, 219, 33)(20, 222, 36)

(21, 235, 106)(22, 105, 231)(23, 31, 145)(24, 265, 110)(25, 241, 171)(27, 316, 238)

(28, 143, 343)(29, 228, 136)(30, 292, 361)(32, 37, 236)(34, 179, 267)(35, 303, 337)

(38, 134, 360)(39, 260, 164)(40, 301, 64)(41, 304, 65)(42, 115, 66)(43, 92, 208)

(44, 322, 218)(45, 321, 212)(46, 286, 98)(47, 152, 69)(48, 73, 149)(49, 101, 326)

(50, 108, 160)(51, 111, 300)(53, 90, 246)(55, 83, 178)(56, 193, 95)(57, 150, 67)

(58, 116, 165)(59, 263, 138)(60, 86, 357)(61, 123, 293)(62, 356, 119)(68, 275, 151)

(70, 197, 362)(71, 329, 129)(72, 348, 299)(74, 162, 147)(76, 159, 347)(77, 223, 137)

(78, 252, 130)(79, 155, 255)(80, 168, 364)(81, 328, 330)(82, 146, 120)(84, 258, 202)

(85, 355, 226)(87, 191, 224)(88, 257, 270)(89, 256, 272)(93, 335, 99)(94, 203, 268)

(96, 100, 325)(97, 206, 277)(102, 273, 187)(103, 188, 336)(107, 204, 290)

(109, 131, 112)(113, 344, 281)(114, 139, 170)(117, 294, 302)(118, 158, 214)(121, 225, 297)

(122, 296, 333)(124, 282, 327)(125, 284, 133)(126, 359, 192)(127, 251, 289)(128, 176, 249)

(135, 167, 227)(141, 154, 215)(142, 308, 207)(144, 254, 200)(148, 349, 173)(153, 183, 221)

(156, 229, 174)(157, 259, 331)(161, 185, 248)(163, 354, 341)(166, 189, 232)(169, 352, 233)

(172, 199, 278)(181, 307, 288)(182, 184, 261)(186, 340, 283)(190, 310, 287)(195, 305, 237)

(213, 253, 313)(234, 276, 309)(244, 324, 245)(247, 345, 323)(266, 315, 285)(274, 298, 306)

(311, 319, 339)(312, 342, 314)(317, 332, 353)

with o(g1) = 2, o(g2) = 3 and o(g1g2) = 13.
We firstly list in Table 2 the values of h(g,Mi) for all the non-identity classes represented by

g and maximal subgroups Mi, 1 ≤ i ≤ 10, of G2(3).

Table 2. The values h(g,Mi), 1 ≤ i ≤ 10 for non-identity classes and maximal subgroups of
G2(3)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

2A 15 15 20 20 18 18 24 39 48 91
3A 27 0 13 40 0 54 0 0 0 81
3B 0 27 40 13 54 0 0 0 0 81
3C 0 0 13 13 0 0 27 0 0 0
3D 0 0 4 4 9 9 0 0 27 9
3E 9 9 4 4 0 0 18 27 0 9
4A 3 3 4 0 6 2 0 3 0 7
4B 3 3 0 4 2 6 0 3 0 7
6A 3 0 5 8 0 6 0 0 0 1
6B 0 3 8 5 6 0 0 0 0 1
6C 0 0 2 2 3 3 0 0 3 1
6D 3 3 2 2 0 0 6 3 0 1
7A 1 1 0 0 0 0 1 2 3 0
8A 1 1 2 0 2 0 0 1 0 1
8B 1 1 0 2 0 2 0 1 0 1
9A 0 0 1 1 0 0 3 0 0 0
9B 0 0 1 1 0 0 3 0 0 0
9C 0 0 1 1 0 0 3 0 0 0
12A 3 0 1 0 0 2 0 0 0 1
12B 0 3 0 1 2 0 0 0 0 1
13A 0 0 0 0 1 1 0 0 1 0
13B 0 0 0 0 1 1 0 0 1 0

We start our investigation on the ranks of the non-trivial classes of G2(3) by looking at the
unique class of involutions 2A. It is well-known that two involutions generate a dihedral group.
Thus the lower bound for the rank of a class of involutions in a finite simple group G is 3.
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Lemma 3.1. The group G is (2A, 3X, 13A)-generated for X ∈ {C,E}.

Proof. See Proposition 7(ii) of [4].

Proposition 3.2. rank(G:2A) = 3.

Proof. Since by Lemma 3.1, G is (2A, 3C, 13A)-generated group, it follows by applications
of Lemma 2.3 that G is (2A, 2A, 2A, (13A)3)-generated; that is (2A, 2A, 2A, 13A)-generated
group. Thus rank(G:2A) ≤ 3. Since rank(G:2A) ̸∈ {1, 2}, it follows that rank(G:2A) =
3.

The group G2(3) has 14-dimensional complex irreducible module V. For any conjugacy
class nX, let dnX = dim(V/CV(nX)) denote the codimension of the fixed space (in V) of a
representative of nX. Using Equation (2.4) together with the power maps associated with the
character table of G2(3) given in the Atlas, we were able to compute all the values of dnX for all
non-trivial classes nX of G, with respect to V and we list these values in Table 3.

Table 3. dnX = dim(V/CV(nX)), nX is a non-trivial class of G and dim(V) = 14

nX 2A 3A 3B 3C 3D 3E 4A 4B 6A 6B 6C
dnX 8 6 6 12 12 10 10 10 10 10 12

nX 6D 7A 8A 8B 9A 9B 9C 12A 12B 13A 13B
dnX 12 12 12 12 12 14 14 12 12 12 12

The above values of codimension of the fixed space will help us much in determining the
ranks of many non-trivial classes of G.

Lemma 3.3. rank(G:3X) ̸= 2, for X ∈ {A,B}.

Proof. To show that G can not be generated by only two elements from class 3A or 3B, we
use Scott’s Theorem. If G is (3X, 3X,nY )-generated group for any non-trivial class nY of
G, then we must have d3X + d3X + dnY ≥ 2 × 14. However, it is clear from Table 3 that
2 × d3X + dnY < 28, for each nY of G. Thus G is not (3X, 3X,nY )-generated group and it
follows that rank(G:3X) ̸= 2, for X ∈ {A,B}.

Remark 3.4. An alternative way to show that two elements from class 3X, for X ∈ {A,B}
cannot generate G is by using a theorem by Brauer (see for example [15]), which states that if
χ is a character of a group G such that ⟨χ, 1⟩ = 0 and if H,K ≤ G such that

〈
χ↓GH , 1H

〉
+〈

χ↓GK , 1K

〉
>

〈
χ↓GH ⋂

K , 1H
⋂

K

〉
, then ⟨H,K⟩ < G. Now let G = G2(3), χ ∈ Irr(G)

such that deg(χ) = 14, H = ⟨x⟩ and K = ⟨y⟩ , where x, y ∈ 3X for X ∈ {A,B} and
x ̸= y. Then ⟨χ, 1⟩ = 0 and H

⋂
K = {1G}. Moreover,

〈
χ↓GH , 1H

〉
=

〈
χ↓GK , 1K

〉
= 8 and〈

χ↓G{1G}, 1{1G}

〉
= 14. Since

〈
χ↓GH , 1H

〉
+
〈
χ↓GK , 1K

〉
= 8+8 = 16 > 14 =

〈
χ↓G{1G}, 1{1G}

〉
,

it follows by Brauer’s Theorem that ⟨x, y⟩ < G. Hence two elements from class 3X for X ∈
{A,B} cannot generate the group G2(3), meaning that rank(G:3X) ̸= 2, for X ∈ {A,B}.
Another way to prove that G is not (3X, 3X,nY )-generated group for X ∈ {A,B} and any non-
trivial class nY of G, we note that the direct computations yield ∆G(3A, 3A,nY ) = 0 for all
non-trivial classes nY of G except for nY ∈ {3A, 3D, 4B, 6A} and also ∆G(3B, 3B,nY ) = 0
for all non-trivial classes nY of G except for nY ∈ {3B, 3D, 4A, 6B}. The group G cannot be
generated by the triples (3A, 3A, 3A), (3A, 3A, 3D), (3B, 3B, 3B) and (3B, 3B, 3D) since each
of these triples violate the condition 1

p + 1
q +

1
r < 1. For the remaining cases we have

∆G(3A, 3A, 4B) = 4 < 96 = |CG(g)|, g ∈ 4B,

∆G(3A, 3A, 6A) = 3 < 72 = |CG(g)|, g ∈ 6A,

∆G(3B, 3B, 4A) = 4 < 96 = |CG(g)|, g ∈ 4A,

∆G(3B, 3B, 6B) = 3 < 72 = |CG(g)|, g ∈ 6B.



RANKS OF THE CLASSES OF G2(3) 121

Then using Lemma 2.7 we deduce that G is neither (3A, 3A,nY )-generated group for nY ∈
{3A, 3D, 4B, 6A} nor (3B, 3B,nY )-generated for nY ∈ {3B, 3D, 4A, 6B}. It follows that
rank(G:3X) ̸= 2, for X ∈ {A,B}.

Lemma 3.5. rank(G:3X) ̸= 3, for X ∈ {A,B}.

Proof. The direct computations with GAP give ∆G(3X, 3X, 3X, 6C) = ∆G(3X, 3X, 3X, 12X) =
0, for X ∈ {A,B}. Also for X,Y ∈ {A,B} and X ̸= Y, we have

∆G(3X, 3X, 3X, 2A) = 216 < 576 = |CG(g)|, g ∈ 2A,

∆G(3X, 3X, 3X, 3X) = 4350 < 5832 = |CG(g)|, g ∈ 3X,

∆G(3X, 3X, 3X, 3Y ) = 216 < 5832 = |CG(g)|, g ∈ 3Y,

∆G(3X, 3X, 3X, 3C) = 54 < 729 = |CG(g)|, g ∈ 3C,

∆G(3X, 3X, 3X, 3E) = 54 < 162 = |CG(g)|, g ∈ 3E.

Using Lemma 2.7 we can see that G is not (3X, 3X, 3X,nY )-generated for X ∈ {A,B} and
nY ∈ {2A, 3A, 3B, 3C, 3E}.

Next we handle the remaining cases (3X, 3X, 3X,nY ), X ∈ {A,B} and nY ∈ {3D, 4A, 4B,
6A, 6B, 7A, 8A, 8B, 9A, 9B, 9C, 12A, 12B, 13A, 13B}. When it is clear from the context which
quadruple (3X, 3X, 3X,nY ) we are dealing with, we will use the notation Σ(M) instead of
ΣM (3x, 3y, 3z, nt).

Case (3X, 3X, 3X, 3D), X ∈ {A,B}:
For x, y, z ∈ 3A and a fixed g ∈ 3D, the computations with GAP reveal that |{(x, y, z) ∈
3X × 3X × 3X|xyz = g}| = 576; i.e. ∆G(3X, 3X, 3X, 3D) = 576. Out of these 576 triples,
90 triples generate groups that are isomorphic to 32:3 which is clearly of order 27, while the
remaining 486 triples generate groups that are isomorphic to (32:8):3, which is clearly of order
216. In either case, non of the above 576 triples generate the entire group G. We deduce that G
is not (3X, 3X, 3X, 3D)-generated for X ∈ {A,B}.

Case (3X, 3X, 3X, 4X), X ∈ {A,B}:
The maximal subgroups M1, M3, M6 and M10 together with the maximal subgroup PSU(3, 3)
of M1 are the only ones with conjugacy classes that fuse into the conjugacy classes 3A and
4A of G. Computations with GAP give Σ(M3) = Σ(M6) = Σ(M10) = 0, while Σ(M1) =
96 = Σ(PSU(3, 3)). Also no maximal subgroup of PSU(3, 3) contribute to the computations of
Σ∗(PSU(3, 3)) and therefore Σ∗(PSU(3, 3)) = Σ(PSU(3, 3)) = 96. There is a unique conju-
gate subgroup of PSU(3, 3) in M1 containing a fixed element g ∈ 4A, namely PSU(3, 3) itself.
It follows that Σ∗(M1) = Σ(M1) − 1 · Σ∗(PSU(3, 3)) = 96 − 96 = 0. Finally the number of
conjugate subgroups of M1 and PSU(3, 3) in G containing fixed element g ∈ 4A are 3 and 1
respectively. Therefore

∆
∗
G(3A, 3A, 3A, 4A) = ∆G(3A, 3A, 3A, 4A)− 3 · Σ

∗(M1)− 1 · Σ
∗(PSU(3, 3))

= 96 − 0 − 96 = 0,

showing that G is not a (3A, 3A, 3A, 4A)-generated group.
Same conclusion is reached for (3B, 3B, 3B, 4B) with M1 replaced by M2 and other involved
subgroups contributing Σ(M4) = Σ(M5) = Σ(M10) = 0.

Case (3X, 3X, 3X, 4Y ), X,Y ∈ {A,B} and X ̸= Y :
For x, y, z ∈ 3A and a fixed g ∈ 4B, the computations with GAP reveal that |{(x, y, z) ∈
3A × 3A × 3A|xyz = g}| = 528; i.e. ∆G(3A, 3A, 3A, 4B) = 528. Out of these 528 triples, 16
triples generate groups that are isomorphic to SL(2, 3), where we know that |SL(2, 3)| = 24,
while the remaining 512 triples generate groups that are isomorphic to (32:8):3, which is clearly
of order 216. In either case, non of the above 528 triples generate the entire group G. We
deduce that G is not (3A, 3A, 3A, 4B)-generated. Similar argument reveals that G is also not
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(3B, 3B, 3B, 4A)-generated.

Case (3X, 3X, 3X, 6X), X ∈ {A,B}:
For x, y, z ∈ 3X and a fixed g ∈ 6X, the computations with GAP reveal that |{(x, y, z) ∈
3X×3X×3X|xyz = g}| = 450; i.e. ∆G(3X, 3X, 3X, 6X) = 450. Out of these 450 triples, 18
triples generate groups that are isomorphic to SL(2, 3) which has order 24, while the remaining
432 triples generate groups that are isomorphic to (32:8):3, which is clearly of order 216. In
either case, non of the above 450 triples generate the entire group G. We deduce that G is not
(3X, 3X, 3X, 6X)-generated for X ∈ {A,B}.

Case (3X, 3X, 3X, 6Y ), X,Y ∈ {A,B} and X ̸= Y :
When X ̸= Y, calculations with GAP yield ∆G(3X, 3X, 3X, 6Y ) = 72. Contributions of the
involved maximal subgroups are Σ(M3) = 0 = Σ(M10) and Σ(M4) = 72. The largest maximal
subgroup M41 of M4, which is isomorphic to ((32 × (32:3)):Q8):3, contributes Σ(M41) = 72.
Since non of the maximal subgroups of M41 has classes that fuse to 3X and 6Y of G together for
X ∈ {A,B}, it renders that Σ∗(M41) = Σ(M41) = 72. Also there is only one conjugate subgroup
of M41 in M4 that contain a fixed g ∈ 6Y. Thus Σ∗(M4) = Σ(M4)− 1 · Σ(M41) = 72 − 72 = 0.
We computed the number of conjugate subgroups of M41 and M4 in G containing a fixed element
g ∈ 6Y of G and we found these numbers to be 1 and 5 respectively. Hence

∆
∗
G(3X, 3X, 3X, 6Y ) = ∆G(3X, 3X, 3X, 6Y )− 5 · Σ

∗(M4)− 1 · Σ
∗(M41)

= 72 − 0 − 72 = 0.

Therefore G is not (3X, 3X, 3X, 6Y )-generated for X,Y ∈ {A,B} and X ̸= Y.

Case (3X, 3X, 3X, 7A), X ∈ {A,B}:
The subgroup M1 and its maximal subgroup PSU(3, 3) are the only ones with conjugacy classes
that fuse into the conjugacy classes 3A and 7A of G. Computations with GAP give Σ(M1) =
49 = Σ(PSU(3, 3)). Also no maximal subgroup of PSU(3, 3) has conjugacy classes that fuse
to the classes 3A and 7A of G together. There is only one conjugate subgroup of PSU(3, 3)
in M1 that contain a fixed g ∈ 7A. Thus Σ∗(PSU(3, 3)) = Σ(PSU(3, 3)) = 49. Therefore
Σ∗(M1) = Σ(M1) − 1 · Σ∗(PSU(3, 3)) = 49 − 49 = 0. Finally the number of conjugate
subgroups of M1 and PSU(3, 3) in G containing fixed element g ∈ 7A are 1 respectively. Hence

∆
∗
G(3A, 3A, 3A, 7A) = ∆G(3A, 3A, 3A, 7A)− 1 · Σ

∗(M1)− 1 · Σ
∗(PSU(3, 3))

= 49 − 0 − 49 = 0,

showing that G is not a (3A, 3A, 3A, 7A)-generated group.
Same conclusion is reached for (3B, 3B, 3B, 7A) with M1 replaced by M2.

Case (3X, 3X, 3X, 8X), X ∈ {A,B}:
The subgroups with conjugacy classes that fuse into the conjugacy classes 3A and 8A of G
are M1,M3,M10 and PSU(3, 3), where the latter is a maximal subgroup of M1. Computa-
tions with GAP give Σ(M1) = 32 = Σ(PSU(3, 3)) and Σ(M3) = 0 = Σ(M10.). Now no
maximal subgroup of PSU(3, 3) contribute to Σ∗(PSU(3, 3)) and therefore Σ∗(PSU(3, 3)) =
Σ(PSU(3, 3)) = 32. Since PSU(3, 3) is a proper subgroup of M1 we have Σ∗(M1) = Σ(M1)−
1 · Σ∗(PSU(3, 3)) = 32 − 32 = 0. Therefore

∆
∗
G(3A, 3A, 3A, 8A) = ∆G(3A, 3A, 3A, 8A)− 1 · Σ

∗(M1)− 1 · Σ
∗(PSU(3, 3))

= 32 − 0 − 32 = 0,

showing that G is not (3A, 3A, 3A, 8A)-generated. Similarly ∆∗
G(3B, 3B, 3B, 8B) = 0 with the

subgroups M2,M4,M10 and PSU(3, 3) being the ones involved in the calculations.

Case (3X, 3X, 3X, 8Y ), X,Y ∈ {A,B} and X ̸= Y :
The subgroups with conjugacy classes that fuse into the conjugacy classes 3A and 8B of G are
M1,M4,M6,M10 and PSL(3, 3), where the latter is a maximal subgroup of M6. Computations
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with GAP give Σ(M1) = Σ(M4) = Σ(M10) = 0 and Σ(M6) = 128 = Σ(PSL(3, 3)). Now no
maximal subgroup of PSL(3, 3) contribute to Σ∗(PSL(3, 3)) and therefore Σ∗(PSL(3, 3)) =
Σ(PSL(3, 3)) = 128. Since PSL(3, 3) is a proper subgroup of M6 we have Σ∗(M6) = Σ(M6)−
1 · Σ∗(PSL(3, 3)) = 128 − 128 = 0. Therefore

∆
∗
G(3A, 3A, 3A, 8B) = ∆G(3A, 3A, 3A, 8B)− 2 · Σ

∗(M6)− 1 · Σ
∗(PSL(3, 3))

= 128 − 0 − 128 = 0,

showing that G is not (3A, 3A, 3A, 8B)-generated. Similarly we obtain that ∆∗
G(3B, 3B, 3B, 8A)

= 0 with the subgroups M2,M3,M5,M10 and PSL(3, 3) being the ones involved in the calcula-
tions.

Case (3X, 3X, 3X, 9Y ), X ∈ {A,B} and Y ∈ {A,B,C}:
Only the maximal subgroups M3 and M4 have classes that fuse into classes 3X and 9Y of G
where X ∈ {A,B} and Y ∈ {A,B,C}. The intersection M3 ∩ M4 has no class of elements
of order 9. Computations with GAP yield Σ∗(M3) = Σ(M3) = 81 and Σ∗(M4) = Σ(M4) = 0
for X = A and Y ∈ {A,B,C}, while Σ∗(M3) = Σ(M3) = 0 and Σ∗(M4) = Σ(M4) = 81 for
X = B and Y ∈ {A,B,C}. Thus

∆
∗
G(3A, 3A, 3A, 9Y ) = ∆G(3A, 3A, 3A, 9Y )− 1 · Σ

∗(M3)− 1 · Σ
∗(M4) = 81 − 81 − 0 = 0,

∆
∗
G(3B, 3B, 3B, 9Y ) = ∆G(3B, 3B, 3B, 9Y )− 1 · Σ

∗(M3)− 1 · Σ
∗(M4) = 81 − 0 − 81 = 0.

Therefore G is not (3X, 3X, 3X, 9Y )-generated for X ∈ {A,B} and Y ∈ {A,B,C}.

Case (3X, 3X, 3X, 12Y ), X,Y ∈ {A,B} and X ̸= Y :
For the 4-tuple (3A, 3A, 3A, 12B) the involved maximal subgroups are M3 and M10. We have
Σ(M10) = 0 and Σ(M3) = 48. The subgroup M3 has a maximal subgroup M31 = (32 ×
(32:3):Q8):3 with Σ∗(M31) = 48. This gives Σ∗(M3) = Σ(M3) − 1 · Σ∗(M31) = 48 − 48 = 0.
Therefore

∆
∗
G(3A, 3A, 3A, 12B) = ∆G(3A, 3A, 3A, 12B)− 1 · Σ

∗(M3)− 1 · Σ
∗(M31)

= 48 − 0 − 48 = 0,

showing that G is not (3A, 3A, 3A, 12B)-generated. Similar computations with M3 replaced by
M4 show that (3B, 3B, 3B, 12A) does not generate the group G.

Finally for the case (3X, 3X, 3X, 13Y ) for X,Y ∈ {A,B}, we firstly deal with the case X =
A and Y ∈ {A,B}, i.e., the case (3A, 3A, 3A, 13Y ). Only the subgroup M6 and its maximal sub-
group PSL(3, 3) have conjugacy classes that fuse into classes 3A and 13Y, Y ∈ {A,B}, of G.
We have Σ(M6) = 169 and Σ∗(PSL(3, 3)) = 169. Thus Σ∗(M6) = Σ(M6)−1·Σ∗(PSL(3, 3)) =
169 − 169 = 0. Therefore

∆
∗
G(3A, 3A, 3A, 13Y ) = ∆G(3A, 3A, 3A, 13Y )− 1 · Σ

∗(M6)− 1 · Σ
∗(PSL(3, 3))

= 169 − 0 − 169 = 0 for Y ∈ {A,B},

showing that G is not (3A, 3A, 3A, 13Y )-generated. With M5 replacing M6 and mimic the pre-
ceding computations we find that G is not (3B, 3B, 3B, 13Y )-generated for Y ∈ {A,B}.

This completes the proof that G is not (3X, 3X, 3X,nY )-generated for X ∈ {A,B} and all
the conjugacy classes nY of G. Hence rank(G:3X) ̸= 3 for X ∈ {A,B}.

Lemma 3.6. The group G is (3X, 4Y, 7A)-generated for X,Y ∈ {A,B} and X ̸= Y .

Proof. Here we show that G is (3A, 4B, 7A)- and (3B, 4A, 7A)-generated group. For the first
case (3A, 4B, 7A), we have ∆G(3A, 4B, 7A) = 7. The only maximal subgroups of G that may
possibly contribute in the computations of ∆∗

G(3A, 4B, 7A) are M1 and M2. However there is
no fusion from the classes of M2 into the classes 3A, 4B and 7A of G (this could be seen from
Table 2 too). Also the computations with GAP render ΣM1(3A, 4B, 7A) = 0. It follows that

∆
∗
G(3A, 4B, 7A) = ∆G(3A, 4B, 7A) = 7,
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establishing the generation of G by (3A, 4B, 7A).
For the case (3B, 4A, 7A), we interchange the roles of M1 and M2 in the above case and it
follows that G is (3B, 4A, 7A)-generated, completing the proof.

Proposition 3.7. rank(G:3X) = 4 for X ∈ {A,B}.

Proof. Since by Lemma 3.6, G is (3X, 4Y, 7A)-generated for X,Y ∈ {A,B} and X ̸= Y ,
it follows by applications of Lemma 2.3 that G is (3X, 3X, 3X, 3X, (7A)4)-generated; that is
(3X, 3X, 3X, 3X, 7A)-generated group. Thus rank(G:3X) ≤ 4 for X ∈ {A,B}. We know by
Lemmas 3.3 and 3.5 that rank(G:3X) ̸∈ {2, 3}. Therefore we deduce that rank(G:3X) = 4 for
X ∈ {A,B}.

Lemma 3.8. The group G is (3D, 3D, 7A)-generated.

Proof. See Proposition 13 of [4].

Proposition 3.9. rank(G:3X) = 2 for X ∈ {C,D,E}.

Proof. By Lemma 3.8, G is (3D, 3D, 7A)-generated. Therefore rank(G:3D) = 2. By Lemma
3.1 we also know that G is (2A, 3X, 13A)-generated for X ∈ {C,E}. It follows by applications
of Lemma 2.3 that G is (3X, 3X, (13A)2)-generated; that is (3X, 3X, 13B)-generated group for
X ∈ {C,E}. Thus rank(G:3X) = 2 for X ∈ {C,D,E}, completing the proof.

Proposition 3.10. rank(G:7A) = 2.

Proof. The result follows directly by Proposition 22 of [4] since we have G is (7A, 7A, 7A)-
generated group.

Proposition 3.11. rank(G:13X) = 2 for X ∈ {A,B}.

Proof. By Proposition 10 of [4] we have that G is a (2A, 13X, 13Y )-generated group for X,Y ∈
{A,B}. It follows by Lemma 2.5 that G is (13X, 13X, (13Y )2)-generated group. Therefore
rank(G:13X) = 2, for X ∈ {A,B}.

Proposition 3.12. Let T := {4A, 4B, 6A, 6B, 6C, 6D, 8A, 8B, 9A, 9B, 9C, 12A, 12B}. Then
rank(G:nX) = 2 for all nX ∈ T.

Proof. The aim here is to show that G is a (2A,nX, 13A)-generated group for any nX ∈ T.
We firstly note that the maximal subgroups of G that contain elements of order 13 are M5,
M6 and M9. The intersections M5

⋂
M9 and M6

⋂
M9 do not contain classes of elements of

order 13. Thus we only consider M5, M6, M9 and M5
⋂

M6 ∼= 13:6. From Table 2 note
that h(g,M5) = h(g,M6) = h(g,M9) = 1 for a fixed g ∈ 13A. Also it is easy to show
that h(g,M5

⋂
M6) = 1. For all the classes nX ∈ T we give in Table 4 the computations

obtained for ∆G(2A,nX, 13A) := ∆G, ΣM5(2A,nX, 13A) := Σ(M5), ΣM6(2A,nX, 13A) :=
Σ(M6), ΣM9(2A,nX, 13A) := Σ(M9), ΣM5

⋂
M6(2A,nX, 13A) := Σ(M5

⋂
M6) and finally

∆∗
G(2A,nX, 13A) := ∆∗

G, where from Equation 2.3 we know that:

∆
∗
G ≥ ∆G(2A,nX, 13A)−1·ΣM5(2a, nx, 13a)−1·ΣM6(2a, nx, 13a)+1·ΣM5

⋂
M6(2a, nx, 13a).
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Table 4. Some information on the classes nX ∈ T

∆G Σ(M5) Σ(M6) Σ(M9) Σ(M5
⋂
M6) ∆∗

G ≥

4A 52 0 13 0 0 39
4B 52 13 0 0 0 39
6A 52 13 0 0 0 39
6B 52 0 13 0 0 39
6C 520 0 0 13 0 507
6D 208 0 0 0 0 208
8A 910 0 26 0 0 884
8B 910 26 0 0 0 884
9A 195 0 0 0 0 195
9B 312 0 0 0 0 312
9C 312 0 0 0 0 312
12A 702 0 0 0 0 702
12B 702 0 0 0 0 702

The last column of Table 4 shows that G is (2A,nX, 13A)-generated group for all nX ∈
T. It follows by Lemma 2.5 that G is (nX, nX, (13A)2)-generated, i.e., G is (nX, nX, 13B)-
generated. Hence rank(G:nX) = 2 for all nX.

Now we gather the results on ranks of all the non-trivial classes of G.

Theorem 3.13. Let G be the Chevalley group G2(3) and nX be a non-trivial class of G. Then

(i) rank(G:2A) = 3,

(ii) rank(G:3A) = rank(G:3B) = 4,

(iii) rank(G:nX) = 2 for all nX ̸∈ {1A, 2A, 3A, 3B}.

Proof. The result follows by Propositions 3.2, 3.7, 3.10, 3.11 and 3.12.
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