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Abstract In this research paper, using the notion of the exponential generating function of
bivariate Fibonacci and Lucas polynomials, we obtain some important combinatoric identities.

1 Introduction

Large classes of polynomials can be defined by Fibonacci-like recurrence relations and yield
Fibonacci numbers. Such polynomials called the Fibonacci polynomials, were studied in 1883
by E. Charles Catalan and E. Jacobsthal. Also, Lucas polynomials originally studied in 1970 [3].

In fact, these sequences of polynomials are crucial in a variety of fields, such as number
theory, probability, combinatorics, numerical analysis, and physics, so investigations of these se-
quences attract the attention of many mathematicians and scientists see [3, 10, 11, 12, 13, 14]. In
[1, 2, 4, 5, 6, 8] the authors have introduced and studied bivariate Fibonacci and Lucas polynomi-
als, and their generalizations, and provided many properties of this type of bivariate polynomials,
such as Binet’s formula, summation formulas, generating function, explicit formula, and some
important identities. For example, Bergum and Hoggatt [8] gave a list of more than twenty
identities for their definition of generalized Fibonacci polynomials.

In this paper, we will take a different path, where we use exponential generating functions to
establish some combinatoric identities for the bivariate Fibonacci and Lucas polynomials.

We organize this paper as follows.

• First, we list without proof some properties of infinite series necessary to our development
of exponential generating functions.

• Second, using the properties cited, we give some combinatoric identities for bivariate Fi-
bonacci and Lucas polynomials.

• Finally, using the differential operator
d

dt
, we obtain more generalized combinatoric iden-

tities of our polynomials studied.

Generating functions provide a powerful tool for solving linear homogeneous recurrence rela-
tions with constant coefficients, as will be seen shortly. In 1718, the French mathematician
Abraham De Moivre (1667 − 1754) invented generating functions to solve the Fibonacci recur-
rence relation. In [5], the authors discuss ordinary generating functions for identities relating
to Fibonacci and Lucas numbers. Also, H. W. Gould [4] has worked with generalized generat-
ing functions. Exponential generating functions are defined in a manner similar to generating
functions as follows.
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Definition 1.1. [3] Let a0, a1, a2, ..., an be a sequence of real numbers. Then the function

g(t) = a0 + a1
t

1!
+ a2

t2

2!
+ ... =

+∞∑
n=0

an
tn

n!
, (1.1)

is called the exponential generating function for the sequence (an)n.

Remark 1.2. [3] We can also define the exponential generating function for the finite sequence

a0, a1, ..., an by letting ai = 0 for i > n. Thus g(t) = a0 + a1
t

1!
+ a2

t2

2!
+ ... + an

tn

n!
is the

exponential generating function of the finite sequence a0, a1, ..., an.

The bivariate Fibonacci and Lucas polynomials are defined as follows

Fn(x, y) = xFn−1(x, y) + yFn−2(x, y), (F0(x, y) = 0, F1(x, y = 1), (1.2)

Ln(x, y) = xLn−1(x, y) + yLn−2(x, y), (L0(x, y) = 2, L1(x, y = x), (1.3)

for any integer n ⩾ 2. It is assumed x2 + 4y > 0. The characteristic equation of bivariate
Fibonacci and Lucas polynomials is t2 − xt− y = 0, which has two distinct roots,

α := α(x, y) =
x+

√
x2 + 4y
2

, β := β(x, y) =
x−

√
x2 + 4y
2

.

Note that,

α+ β = x, αβ = −y, α− β =
√

x2 + 4y.

If y = 1, then (Fn(x, y))n is the Fibonacci polynomials noted by (Fn(x)), and if we assume
x = y = 1, (Fn(x, y))n is the known Fibonacci numbers noted by (Fn)n.
The Binet’s formulas of bivariate Fibonacci and Lucas polynomials are given by [1]

Fn(x, y) =
αn − βn

α− β
, (∀n ∈ N), Ln(x, y) = αn + βn, (∀n ∈ N).

Now, we list without proof some properties of infinite series necessary to our work. We can
add and multiply exponential generating functions, such operations are performed the same way
as combined polynomials.

Lemma 1.3. [3] let

A(t) =
+∞∑
n=0

an
tn

n!
and B(t) =

+∞∑
n=0

bn
tn

n!
.

be two exponential generating functions. Then we have

A(t)B(t) =
+∞∑
n=0

(
n∑

k=0

(
n

k

)
akbn−k

)
tn

n!
. (1.4)

For all real number t.

Lemma 1.4. Let (Fn(x, y))n and (Ln(x, y))n be the bivariate Fibonacci and Lucas polynomials,
respectively. Then we have

eαt − eβt

α− β
=

+∞∑
n=0

Fn(x, y)

n!
tn, (1.5)

eαt + eβt =
+∞∑
n=0

Ln(x, y)

n!
tn. (1.6)

For all real number t.
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Proof. Since

et =
+∞∑
n=0

tn

n!

for any real number t, it follows that

eαt =
+∞∑
n=0

αntn

n!
and eβt =

+∞∑
n=0

βntn

n!
.

So, we we have

eαt − eβt

α− β
=

+∞∑
n=0

(
αn − βn

α− β

)
tn

n!
=

+∞∑
n=0

Fn(x, y)

n!
tn,

eαt + eβt =
+∞∑
n=0

(αn + βn)
tn

n!
=

+∞∑
n=0

Ln(x, y)

n!
tn.

As required.

The theorem 1.4 means that the exponential functions
eαt − eβt

α− β
and eαt + eβt generate the

numbers
Fn(x, y)

n!
and

Ln(x, y)

n!
, respectively.

2 Some combinatoric identities involving bivariate Fibonacci and Lucas
polynomials

In this section, using the exponential generating function, we give some new combinatoric iden-
tities for bivariate Fibonacci and Lucas polynomials.

Theorem 2.1. For all positive integer n, we have

n∑
k=0

(
n

k

)
xkyn−kFk(x, y) = F2n(x, y). (2.1)

Proof. By putting an = xnFn(x, y) and bn = yn, we found that

A(t) =
+∞∑
n=0

xnFn(x, y)
tn

n!
and B(t) =

+∞∑
n=0

yn
tn

n!
.

Using lemma 1.3, we have

A(t)B(t) =
+∞∑
n=0

(
n∑

k=0

(
n

k

)
xkyn−kFk(x, y)

)
tn

n!
. (2.2)

On the other hand, from lemma 1.4 we have

A(t) =
+∞∑
n=0

xnFn(x, y)
tn

n!
=

exαt − exβt

α− β
and B(t) =

+∞∑
n=0

yn
tn

n!
= eyt.
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So we can write

A(t)B(t) =
eyt(exαt − exβt)

α− β

=
e(xα+y)t − e(xβ+y)t

α− β

=
eα

2t − eβ
2t

α− β

=
+∞∑
n=0

α2n

α− β
× tn

n!
−

+∞∑
n=0

β2n

α− β
× tn

n!

=
+∞∑
n=0

(α2n − β2n)

α− β

tn

n!

=
+∞∑
n=0

F2n(x, y)
tn

n!
.

That is

A(t)B(t) =
+∞∑
n=0

F2n(x, y)
tn

n!
. (2.3)

By (2.2) and (2.3) we found

+∞∑
n=0

F2n(x, y)
tn

n!
=

+∞∑
n=0

(
n∑

k=0

(
n

k

)
xkyn−kFk(x, y)

)
tn

n!
.

Equating the coefficients of
tn

n!
yields the following combinatorial identity

n∑
k=0

(
n

k

)
xkyn−kFk(x, y) = F2n(x, y).

As required.

Theorem 2.2. Let n be a positive integer, we have

n∑
k=0

(−x)n−k

(
n

k

)
Fk(x, y) = (−1)n+1Fn(x, y). (2.4)

Proof. By setting an = Fn(x, y) and bn = xn, we get

A(t) =
+∞∑
n=0

Fn(x, y)

n!
tn and B(t) =

+∞∑
n=0

xn

n!
tn.

On one hand, using lemma 1.4, we deduce that

A(t)B(−t) =
+∞∑
n=0

(
n∑

k=0

(
n

k

)
(−x)n−kFk(x, y)

)
tn

n!
. (2.5)

On the other hand, from lemma 1.4 we have

A(t) =
+∞∑
n=0

Fn(x, y)

n!
tn =

eαt − eβt

α− β
and B(t) =

+∞∑
n=0

xn

n!
tn = ext.
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So, we can write

A(t)B(−t) =
e−xt(eαt − eβt)

α− β

=
e(α−x)t − e(β−x)t

α− β

=
e−β − e−α

α− β

= −e−α − e−β

α− β

=
+∞∑
n=0

(−1)n+1Fn(x, y)
tn

n!
.

So

A(t)B(−t) =
+∞∑
n=0

(−1)n+1Fn(x, y)
tn

n!
. (2.6)

By (2.5) and (2.6) we found

+∞∑
n=0

(−1)n+1Fn(x, y)
tn

n!
=

+∞∑
n=0

(
n∑

k=0

(
n

k

)
(−x)n−kFk(x, y)

)
tn

n!
. (2.7)

Equating the coefficients of
tn

n!
yields the following combinatorial identity

n∑
k=0

(−x)n−k

(
n

k

)
Fk(x, y) = (−1)n+1Fn(x, y).

As required.

Theorem 2.3. Let n be a positive integer, we have

n∑
k=0

(
n

k

)
Fk(x, y)Ln−k(x, y) = 2nFn(x, y). (2.8)

Proof. By setting an = Fn(x, y) and bn = Ln(x, y), we have

A(t) =
+∞∑
n=0

Fn(x, y)

n!
tn and B(t) =

+∞∑
n=0

Ln(x, y)

n!
tn.

On one hand, using the lemma 1.3 we found that

A(t)B(t) =
+∞∑
n=0

(
n∑

k=0

(
n

k

)
Fk(x, y)Ln−k(x, y)

)
tn

n!
. (2.9)

On the other hand, from lemma 1.4 we have

A(t) =
+∞∑
n=0

Fn(x, y)

n!
tn =

eαt − eβt

α− β
and B(t) =

+∞∑
n=0

Ln(x, y)

n!
tn = eαt + eβt.

So, we can easily prove that

A(t)B(t) =
+∞∑
n=0

2nFn(x, y)
tn

n!
. (2.10)
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By equating the coefficients of
tn

n!
in (2.9) and (2.10), we get the following identity

n∑
k=0

(
n

k

)
Fk(x, y)Ln−k(x, y) = 2nFn(x, y).

As required.

Theorem 2.4. For all n ∈ N, we have

n∑
k=0

(
n

k

)
Fk(x, y)Fn−k(x, y) =

2nLn(x, y)− 2xn

x2 + 4y
, (2.11)

n∑
k=0

(
n

k

)
Lk(x, y)Ln−k(x, y) = 2nLn(x, y) + 2xn. (2.12)

The proof of theorem 2.4 will be seen in the proof of theorem 2.7, which is a generalization
of it.
Before that, we present a generalization of lemma 1.4 as follows

Lemma 2.5. For all m,n ∈ N, we have

eα
mt − eβ

mt

α− β
=

+∞∑
n=0

Fmn(x, y)
tn

n!
. (2.13)

eα
mt + eβ

mt =
+∞∑
n=0

Lmn(x, y)
tn

n!
. (2.14)

for all real number t.

Proof. Since

et =
+∞∑
n=0

tn

n!

for all real number t, so it follows that

eα
mt =

+∞∑
n=0

αnmtn

n!
and eβ

mt =
+∞∑
n=0

βnmtn

n!
.

So, we can write

eα
mt − eβ

mt

α− β
=

+∞∑
n=0

(
αnm − βnm

α− β

)
tn

n!
=

+∞∑
n=0

Fnm(x, y)

n!
tn,

eα
mt + eβ

mt =
+∞∑
n=0

(αnm + βnm)
tn

n!
=

+∞∑
n=0

Lnm(x, y)

n!
tn.

As required.

Now, using lemma 2.5, we generalize the theorem 2.3.

Theorem 2.6. For all n,m ∈ N, we have

n∑
k=0

(
n

k

)
Fmk(x, y)Lmn−mk(x, y) = 2nFnm(x, y). (2.15)

We note that by setting m = 1, we obtain the identity of theorem 2.3.
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Proof. By setting

A(t) =
+∞∑
n=0

Fnm(x, y)

n!
tn and B(t) =

+∞∑
n=0

Lnm(x, y)

n!
tn,

on one hand, using the lemma 1.4 with an = Fnm(x, y) and bn = Lnm(x, y) we found that

A(t)B(t) =
+∞∑
n=0

(
n∑

k=0

(
n

k

)
Fmk(x, y)Lmn−mk(x, y)

)
tn

n!
. (2.16)

On the other hand, we have from lemma 2.5

A(t) =
+∞∑
n=0

Fnm(x, y)

n!
tn =

eα
mt − eβ

mt

α− β
and B(t) =

+∞∑
n=0

Lnm(x, y)

n!
tn = eα

mt + eβ
mt,

so, we have

A(t)B(t) =
+∞∑
n=0

2nFnm(x, y)

n!
tn. (2.17)

by (2.16) and (2.17) we get

+∞∑
n=0

2nFnm(x, y)

n!
tn =

+∞∑
n=0

(
n∑

k=0

(
n

k

)
Fmk(x, y)Lmn−mk(x, y)

)
tn

n!
.

Equating the coefficients of
tn

n!
gives the following identity

n∑
k=0

(
n

k

)
Fmk(x, y)Lmn−mk(x, y) = 2nFnm(x, y).

As required.

Finally, we present a more general result of theorem 2.4.

Theorem 2.7. For all n,m ∈ N, we have

n∑
k=0

(
n

k

)
Fmk(x, y)Fmn−mk(x, y) =

2nLmn(x, y)− 2Ln
m(x, y)

x2 + 4y
, (2.18)

n∑
k=0

(
n

k

)
Lmk(x, y)Lmn−mk(x, y) = 2nLmn(x, y) + 2Ln

m(x, y). (2.19)

We note that by setting m = 1, we obtain the identity of theorem 2.4.

Proof. By setting

A(t) =
+∞∑
n=0

Fnm(x, y)

n!
tn.

On the one hand, using lemma 1.4 we have

(A(t))2 =
+∞∑
n=0

(
n∑

k=0

(
n

k

)
Fmk(x, y)Fmn−mk(x, y)

)
tn

n!
. (2.20)

On the other hand we have

A(t) =
+∞∑
n=0

Fnm(x, y)

n!
tn =

eα
mt − eβ

mt

α− β
.
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So, we have

(A(t))2 =

(
eα

mt − eβ
mt

α− β

)2

=
e2αmt − e2βmt − 2e(α

m+βm)

(α− β)2

=
1

x2 + 4y

+∞∑
n=0

(2n(αnm + βnm)− 2(αm + βm)n)
tn

n!

=
+∞∑
n=0

2nLmn(x, y)− 2Ln
m(x, y)

x2 + 4y
tn

n!
. (2.21)

From (2.20) and (2.21), we get

+∞∑
n=0

2nLmn(x, y)− 2Ln
m(x, y)

x2 + 4y
tn

n!
=

+∞∑
n=0

(
n∑

k=0

(
n

k

)
Fmk(x, y)Fmn−mk(x, y)

)
tn

n!
.

Equating the coefficients of
tn

n!
gives the following identity

n∑
k=0

(
n

k

)
Fmk(x, y)Fmn−mk(x, y) =

2nLmn(x, y)− 2Ln
m(x, y)

x2 + 4y
. (2.22)

Which is the identity (2.18). Now, to prove the identity (2.19) we consider

B(t) =
+∞∑
n=0

Lnm(x, y)

n!
tn.

On the one hand, using lemma 1.4 we have

(B(t))2 =
+∞∑
n=0

(
n∑

k=0

(
n

k

)
Lmk(x, y)Lmn−mk(x, y)

)
tn

n!
. (2.23)

On the other hand we know from lemma 2.5 that

B(t) =
+∞∑
n=0

Lnm(x, y)

n!
tn = eα

mt + eβ
mt.

So we write

(B(t))2 =
(
eα

mt + eβ
mt
)2

= e2αmt + e2βmt + 2e(α
m+βm)t

=
+∞∑
n=0

(2n(αnm + βnm) + 2(αm + βm)n)
tn

n!

=
+∞∑
n=0

(2nLmn(x, y) + 2Ln
m(x, y))

tn

n!
(2.24)

Equating the coefficients of
tn

n!
in (2.23) and (2.24), we get what is required.

We can realize more generalized families of identities by using the differential operator
d

dt
,

before that, we present the following Lemma.
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Lemma 2.8. [3] Let

A(t) =
+∞∑
n=0

an
tn

n!
,

be an exponential generating function. Then we have

dm

dtm
A(t) =

+∞∑
n=0

an+m
tn

n!
, (2.25)

for all positive integer m.

Theorem 2.9. For all positive integers n and m, we have

n∑
k=0

(
n

k

)
xm+kyn−kFm+k(x, y) = xmF2n+m(x, y). (2.26)

Proof. puting

A(t) =
exαt − exβt

α− β
=

+∞∑
n=0

xnFn(x, y)
tn

n!
and B(t) = eyt =

+∞∑
k=0

yn
tn

n!
.

Using the lemma 2.8, we have

dm

dtm
A(t) =

xm(αmerαt − βmerβt)

α− β
=

+∞∑
n=0

xn+mFn+m(x, y)
tn

n!
, (2.27)

So, we have

eyt
dm

dtm
A(t) =

xmeyt(αmexαt − βmexβt)

α− β

=
xm(αme(xα+y)t − βme(xβ+y)t)

α− β

=
xm(αmeα

2t − βmeβ
2t)

α− β

=
+∞∑
n=0

xmF2n+m(x, y)
tn

n!
. (2.28)

Using lemma 1.4, we can also write

eyt
dm

dtm
A(t) =

(
+∞∑
k=0

yn
tn

n!

)(
+∞∑
n=0

xn+mFn+m(x, y)
tn

n!

)

=
+∞∑

n=0=0

(
n∑

k=0

(
n

k

)
xm+kyn−kFm+k(x, y)

)
tn

n!
. (2.29)

from (2.28) and 2.29 we get

+∞∑
n=0

xmF2n+m(x, y)
tn

n!
=

+∞∑
n=0=0

(
n∑

k=0

(
n

k

)
xm+kyn−kFm+k(x, y)

)
tn

n!
.

Equating the coefficients of
tn

n!
yields the following combinatorial identity

n∑
k=0

(
n

k

)
xm+kyn−kFm+k(x, y) = xmF2n+m(x, y).

As required.
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3 Conclusion remarks

In this work, we gave some new combinatoric identities involving bivariate Fibonacci and Lucas
polynomials. We intend to continue this study to give more properties and identities for this type
of bivariate polynomials. And also get the same results for other types of bivariate polynomials
such as bivariate Pell, Jacobsthal, and Mersenne polynomials.
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