
Palestine Journal of Mathematics

Vol 14(2)(2025) , 12–20 © Palestine Polytechnic University-PPU 2025
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Abstract In this article we introduce the Cesáro summable difference double sequence
spaces 2C1(∆, ru), 2C∞(∆, ru) and study their topological properties.

1 Introduction

Throughout the article 2ω(ru), 2C1(∆, ru), 2C∞(∆, ru), 2c(ru), 2C1(ru) denote the classes of
all relative uniform double sequence space, Cesáro summable relative uniform difference dou-
ble sequence space, Cesáro summable relative uniform bounded difference double sequence
space, relative uniform convergence in Pringsheim’s sense and Cesáro summable relative uni-
form convergence in Pringsheim’s sense over a compact domain D respectively.

Throughout the article, N denotes the set of natural numbers.

A double sequence is a double infinite array of numbers by (xnk). The notion of double sequence
was introduced by Pringsheim [19]. Some earlier works on double sequence spaces are found in
Bromwich [3]. Hardy [9] introduced the notion of regular convergence of double sequence. The
double sequence has been investigated from different aspects by Basarir and Sonalcan [1], Sahin
and Dirik [20], Tripathy and Sarma [22, 23, 24] and many others.

A double sequence (xnk) is said to be convergent in Pringshiem’s sense if

lim
n,k→∞

xnk = M, exists where n, k ∈ N.

The notion of uniform convergence of sequence of functions relative to a scale function was
introduced by Moore [4]. Chittenden [5] gave a formulation of the definition given by Moore as
follows:

Definition 1.1. A sequence (fn) of real, single-valued functions fn of a real variable x, ranging
over a compact subset D of real numbers, converges relatively uniformly on D in case there exist
functions g and σ, defined on D, and for every ε > 0, there exists an integer no (dependent on ε)
such that for every n ≥ no, the inequality

| g(x)− fn(x) |< ε | σ(x) |,

holds for every element x of D.
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The function σ of the above definition is called a scale function.

Convergence of positive linear operators was also studied by Mohiuddine and Alamri [13], Mo-
hiuddine et al. [14], Kadak and Mohiuddine [10], and many others.

Sahin and Dirik [20] were the first to define the notion of relative uniform convergence of double
sequences of functions from the perspective of statistical convergence.

Definition 1.2. [Definition 3, Sahin and Dirik [20]] A double sequence of function (fnk(x)) is
said to be statistically relatively uniform convergent to f on D if there exists a function σ(x, y),
|σ(x, y)| > 0, called a scale function σ(x, y) such that for every ε > 0,

δ2
(A)

({
(n, k) :

sup
(x, y) ∈ D

∣∣∣∣fnk(x)− f(x, y)

σ(x, y)

∣∣∣∣ ≥ ε

})
= 0.

Kizmaz [12] defined the difference sequence spaces ℓ∞(∆), c(∆), c0(∆) as follows:

Z(∆) = {x = (xk) : (∆xk) ∈ Z} ,

for Z = ℓ∞, c, c0 where ∆xk = xk − xk+1, k ∈ N .
These sequence spaces are Banach space under the norm

||(xk)||∆ =| x1 | + sup

k ∈ N
|∆xk|.

Tripathy and Goswami [26] studied the triple difference sequence in probabilistic normed spaces.

Devi and Tripathy [6, 7] studied relative uniform convergence of difference sequence of func-
tions from the perspectives of single sequence and double sequence of functions.

Definition 1.3. [Definition 2.5, Devi and Tripathy [7]] A difference double sequence of functions
(∆fnk(x)) defined on a compact domain D is said to be relatively uniformly convergent if there
exists a function σ(x) defined on D and for every ε > 0, there exists an integer n0 = n0(ε) such
that

| ∆fnk(x)− f(x) |< ε | σ(x) |,

for all n, k ≥ n0 holds for every element x of D.

A sequence space x = (xk) of complex numbers is said to be (C, 1) summable to L ∈ C if
lim
k

1
k

k∑
i=1

xi = L. We have C1 = {x = (xk) ∈ ω : ( lim
k

1
k

k∑
i=1

xi − L) = 0}, where ω denotes the

linear space of all complex sequences over C.

The Cesáro sequence space Ces∞, Cesp(1 < p < ∞) was introduced by Shiue [21] and it
has been shown that ℓ∞ ⊂ Cesp is strict for 1 < p < ∞. Later on the Cesáro sequence spaces
Xp and X∞ of non absolute type was defined by Ng and Lee [15, 16]. For a detailed account of
the Cesáro sequence space, one may refer to [2, 8, 17, 25, 18].

2 Preliminaries

For the stated definitions of the topological properties of sequence space E, one can adhere to
Kamthan and Gupta [11].

Definition 2.1. A subset E of the set of all double sequence 2w is said to be solid or normal if
(fnk(x)) ∈ E ⇒ (αnkfnk(x)) ∈ E, for all (αnk) of sequence of scalars with | αnk |≤ 1, for all
n, k ∈ N .
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Definition 2.2. Let

K =
{
(ni, kj) : i, j ∈ N ;n1 < n2 < n3 < ...... and

k1 < k2 < k3 < ....
}
⊆ N ×N

and E be a subset of the set of all double sequence 2w. A K-step space of E is a sequence space

λE
K = {(fnikj

(x)) ∈2 ω : (fnk(x)) ∈ E}.

A canonical pre-image of a sequence of functions (fnk(x)) ∈ E is a sequence of functions
(gnk(x)) ∈ E defined by

gnk(x) =

{
fnk(x), if (n, k) ∈ K;
θ, otherwise.

Definition 2.3. A double sequence space E is said to be monotone if it contains the canonical
pre-images of all its step spaces.

Remark 2.4. From the above notions, it follows that if a sequence space E is solid then, E is
monotone.

Definition 2.5. A double sequence space E is said to be symmetric if (fnk(x)) ∈ E ⇒ (fπ(n,k)(x))
∈ E, where π is a permutation of N .

Definition 2.6. A double sequence space E is said to be sequence algebra if (fnk(x)), (gnk(x)) ∈
E ⇒ (fnk(x).gnk(x)) ∈ E.

Definition 2.7. A double sequence space E is said to be convergence free if (fnk(x)) ∈ E and if
gnk(x) = 0 whenever fnk(x) = 0, then (gnk(x)) ∈ E.

Definition 2.8. We define the following Cesáro summable difference double sequence spaces:

2C1(∆, ru) =
{
f = (fnk(x)) ∈ 2ω(ru) :

lim
p, q → ∞

1
pq

p∑
n=1

q∑
k=1

(
∆fnk(x)σ(x)− f(x)

)
= 0

}
.

2C∞(∆, ru) =
{
f = (fnk(x)) ∈ 2ω(ru) :

sup
x ≤ 1

sup
p ≥ 1; q ≥ 1

1
pq

p∑
n=1

q∑
k=1

∆fnk(x)σ(x) < ∞
}
.

3 Main Results

We state the following results without proof, since it can be established using standard technique.

Theorem 3.1. The sequence spaces 2C1(∆, ru) and 2C∞(∆, ru) are normed linear space.

Theorem 3.2. The sequence spaces 2C1(∆, ru) and 2C∞(∆, ru) are Banach spaces normed by

||f ||(∆,σ) =
sup

n ≥ 1
sup

||x|| ≤ 1
||fn1(x)|| ||σ(x)||

||x||
+

sup
k ≥ 1

sup
||x|| ≤ 1

||f1k(x)|| ||σ(x)||
||x||

+

sup
p ≥ 1; q ≥ 1

sup
||x|| ≤ 1

1
pq

p∑
n=1

q∑
k=1

||∆fnk(x)|| ||σ(x)||

||x||
.

Theorem 3.3. 2C1(∆, ru) ⊂ 2C∞(∆, ru) and the inclusion is strict.

The proof is obvious and hence omitted.

The inclusion is strict is shown in the following example.
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Example 3.4. Let us consider a sequence of functions (fnk(x)), fnk : [a, 1] → R, 0 < a < 1
defined by

fnk(x) = fn,Lp+1=Lm−1+v+1(x) =

{
nx, for all n ∈ N ;
0, otherwise;

where, k = (Lp+1 = Lm−1 + v + 1), m ≥ 2 and p,m, v ∈ N .

We get, (fnk(x)) ∈ 2C∞(∆, ru) with respect to the scale function

σ(x) =
{

1
x , for x ∈ [a, 1].

But one cannot get a scale function which makes (fnk(x)) ∈ 2C1(∆, ru).

Hence, (fnk(x)) /∈ 2C1(∆, ru).

Theorem 3.5. 2C1(ru) ⊂ 2C1(∆, ru) inclusion being strict.

Proof. Let (fnk(x)) ∈ 2C1(ru).

Then, for all x ∈ D and for all n, k ∈ N,

lim
p, q → ∞

1
pq

fnk(x)σ(x) = 0.

Therefore, for all x ∈ D, lim
p,q→∞

1
pq

p∑
n=1

q∑
k=1

∆fnk(x)σ(x) = 0.

This implies (fnk(x)) ∈ 2C1(∆, ru).

Hence, 2C1(ru) ⊂ 2C1(∆, ru).

The inclusion is strict is followed from the following example.

Example 3.6. Consider a sequence of functions (fnk(x)), fnk : [a, 1] → R, 0 < a < 1 defined
by

fnk(x) =
{
(n+ k)x, for all n, k ∈ N.

This implies ∆fnk(x) = 0.

Therefore, (fnk(x)) ∈ 2C1(∆, ru) with respect to constant scale function σ(x) = 1.

But one cannot find a scale function which makes (fnk(x)) ∈ 2C1(ru).

Hence, (fnk(x)) /∈ 2C1(ru).

Theorem 3.7. 2c(ru) ⊂ 2C1(∆, ru), inclusion being strict.

The proof is obvious and hence omitted.

The inclusion is strict is shown in the following example.

Example 3.8. Let us consider a sequence of functions (fnk(x)), fnk : [a, 1] → R, 0 < a < 1
defined by

fnk(x) =

{
x, for n and k both are odd;
θ, otherwise.

∆fnk(x) =

{
x, for n+ k is even;
−x, for n+ k is odd.
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(fnk(x)) ∈ 2C1(∆, ru) with respect to σ(x) defined by

σ(x) =
{

1
x , for x ∈ [a, 1].

But one cannot find a scale function which makes (fnk(x)) ∈ 2c(ru).

Hence, the inclusion is strict.

Theorem 3.9. The spaces 2C1(∆, ru) and 2C∞(∆, ru) are not monotone and hence are not solid.

Proof. The proof is followed from the the following example.

Example 3.10. Let us consider a sequence of functions (fnk(x)), fnk : [a, 1] → R,
0 < a < 1 defined by

fnk(x) =

{
(n+ k)x, for n = 1, k ∈ N ;
nkx, otherwise.

This implies ∆fnk(x) = x, for all x ∈ [a, 1].

We get, (fnk(x)) ∈ 2C1(∆, ru) with respect to σ(x) defined by

σ(x) =
{

1
x , for x ∈ [a, 1].

Let (gnk(x)) be the pre-image of (fnk(x)) defined by

gnk(x) =

{
fnk(x), for n and k are odd;
0, otherwise.

This implies (gnk(x)) /∈ 2C1(∆, ru).

Hence, 2C1(∆, ru) and 2C∞(∆, ru) are not monotone and hence are not solid.

Theorem 3.11. The spaces 2C1(∆, ru) and 2C∞(∆, ru) are not convergence free.

Proof. The proof of the theorem is followed from the following example.

Example 3.12. Consider a sequence of functions (fnk(x)), fnk : [a, 1] → R, 0 < a < 1 defined
by

fnk(x) =

{
x, for n is odd; k ∈ N ;
0, otherwise.

This implies ∆fnk(x) = 0.

Hence, (fnk(x)) ∈ 2C1(∆, ru) with respect to the constant scale function 1.

Let us consider another sequence of functions (gnk(x)), gnk : [a, 1] → R, 0 < a < 1 defined by

gnk(x) =

{
kx, for n, k both are odd and n, k ∈ N ;
0, otherwise.

This implies (gnk(x)) /∈ 2C1(∆, ru).

One cannot find a scale function which makes (gnk(x)), a Cesáro summable sequence of func-
tions.

Hence, 2C1(∆, ru) and 2C∞(∆, ru) are not convergence free.



Cesáro Summable Relative Uniform Difference Double Sequence 17

Theorem 3.13. The spaces 2C1(∆, ru) and 2C∞(∆, ru) are not symmetric.

Proof. The proof of the theorem is followed from the following example.

Example 3.14. Consider a sequence of functions (fnk(x)), fnk : [a, 1] → R, 0 < a < 1 defined
by

fnk(x) =
{
(n+ k)x, for all n, k ∈ N.

This implies ∆fnk(x) = 0.

(fnk(x)) ∈ 2C1(∆, ru) with respect to the constant scale function 1.

Let (gnk(x)) be the re-arranged sequence of (fnk(x)) defined by

gnk(x) =

{
(n+ k)x, for k is odd n, k ∈ N ;
(nk)x, for k is even n, k ∈ N.

This implies (gnk(x)) /∈ 2C1(∆, ru).

One cannot find a scale function which makes (gnk(x)), a Cesáro summble sequence of
functions.

Hence, 2C1(∆, ru) and 2C∞(∆, ru) are not symmetric space.

Theorem 3.15. The spaces 2C1(∆, ru) and 2C∞(∆, ru) are sequence algebra.

Proof. Let (fnk(x)) = (gnk(x)) and (fnk(x)) ∈ 2C∞(∆, ru).

Then, there exists a positive integer M such that

sup
x ≤ 1

sup
p ≥ 1; q ≥ 1

1
pq

p∑
n=1

q∑
k=1

∆fnk(x)σ(x) < M.

Then, by the term multiplication and addition of the double infinite array, we get

sup
x ≤ 1

sup
p ≥ 1; q ≥ 1

1
pq

p∑
n=1

q∑
k=1

∆(fnk(x).gnk(x))σ(x) < M1.

Therefore, (fnk(x).gnk(x)) ∈ 2C∞(∆, ru).

In the similar process we can show that 2C1(∆, ru) is a sequence algebra.

Example 3.16. Consider a sequence of functions (fnk(x)) = (gnk(x)), fnk : [a, 1] → R,
0 < a < 1 defined by

fnk(x) = gnk(x) =
{
(n+ k)x, for all n, k ∈ N.

This implies ∆fnk(x) = 0.

Hence, (fnk(x)) ∈ 2C1(∆, ru) with respect to the constant scale function 1.

Let the number of rows and the number of columns of the arrays (fnk(x)) and (gnk(x)) are equal.

Then, fnk(x).gnk(x) = nx, for all n, k ∈ N.

This implies ∆fnk(x).gnk(x) = 0.

Therefore, (fnk(x).gnk(x)) ∈ 2C1(∆, ru) with respect to the constant scale function 1.

Hence, the sequence spaces 2C1(∆, ru) and 2C∞(∆, ru) are sequence algebra.
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Theorem 3.17. 2C1(∆, ru) is a closed subspace of 2C∞(∆, ru).

Proof. Let 2C1(∆, ru) be a subspace of 2C∞(∆, ru).

Since, 2C1(∆, ru) is a Banach space, (fnk(x)) ∈ 2C1(∆, ru) implies fnk(x) converges uniformly
relatively to f(x) ∈ 2C∞(∆, ru) and therefore (fnk(x)) is Cauchy in 2C∞(∆, ru).

Since, 2C1(∆, ru) is a Banach space, (fnk(x)) converges in 2C1(∆, ru) to a limit function g(x) ∈
2C1(∆, ru).

This implies f(x) = g(x).

Hence, 2C1(∆, ru) is closed.

Theorem 3.18. 2C1(∆, ru) is a nowhere dense subset of 2C∞(∆, ru).

Proof. The proof follows from the fact that 2C1(∆, ru) is a proper and complete subspace of
2C∞(∆, ru).

Theorem 3.19. 2C1(∆, ru) is not seperable.

Proof. We consider 2C1(∆, ru) and assume that M is the set of functions such that
M ⊆ 2C1(∆, ru).

Let F be the set of all double sequence of functions on compact domain D where

F =

{
0, if n, k both are odd;
x, otherwise.

∆F =

{
−x, if n, k both are odd;
x, otherwise.

Let (fnk(x)) ∈ F, fnk : [a, 1] → R, 0 < a < 1 defined by

fnk(x) =

{
0 or x, if (n, k) ∈ Mwith respect to σ(x) = 1

x , x ∈ [a, 1];
0, otherwise.

We get, F ⊂ 2C1(∆, ru) with respect to the scale function σ(x) = 1
x , x ∈ [a, 1] and F is un-

countable.

Let D ⊆ F be everywhere dense in 2C1(∆, ru).

Then, D̄ = F , where D̄ denotes the closure of F .

Since, (||.||(∆,σ),2 C1(∆, ru)) is a normed space and every derived set in a metric space is closed,
we have, D̄ = D.

Hence, D = F and since F is uncountable, there exists no D ⊆ F such that it is countable and
everywhere dense.

Hence, our assumption that D is everywhere dense in 2C1(∆, ru) is wrong.

Therefore, 2C1(∆, ru) is not seperable.

Theorem 3.20. 2C1(∆, ru) is not a Schauder basis.

Proof. The proof follows from the fact that 2C1(∆, ru) is not a Schauder basis since 2C1(∆, ru)
is not a seperable space.
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4 Conclusion

In this article, we have introduced the class of Cesáro summable relative uniform difference
double sequence space 2C1(∆, ru) and Cesáro summable relative uniform bounded difference
double sequence space 2C∞(∆, ru). We have shown that 2C1(∆, ru) and 2C∞(∆, ru) are not
monotone, solid, convergence free, and symmetric but are sequence algebra and provided exam-
ples that support the result. We also discussed the inclusion, denseness and separability property
of 2C1(∆, ru) and 2C∞(∆, ru).
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