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Abstract In this paper, we derive inequalities for quaternionic matrix norms. Afterward, we
provide bounds for the left and right spectral radii of quaternionic matrices. As a consequence,
we present localization theorems for the left and right eigenvalues of quaternionic matrices. We
also establish bounds for the zeros of quaternionic polynomials. Finally, we include numerical
examples to illustrate our results.

1 Introduction

Localization theorems for quaternionic matrices and bounds for zeros of quaternionic polyno-
mials have received much attention in the literature due to their applications in pure and applied
sciences [1, 4, 7, 12, 14, 15, 16, 18, 26]. The stability of system of differential equations of the
form

dx(t)

dt
= Ax(t), t ∈ R (1.1)

with constant quaternionic matrix coefficient A is studied in [5]. Localization theorems for
right eigenvalues of quaternionic matrix play an important role for the stability of the system
(1.1). The concept of perturbation bounds for the right eigenvalues of a quaternionic matrix is
given in [6]. Due to the noncommutativity of quaternions, there are three types of quaternionic
polynomials. The coefficients of the polynomials can be taken to be on the left, on the right or
on both sides of the indeterminant. However, throughout this paper, we follow the following
quaternionic polynomials:

pl(z) = qmzm + qm−1z
m−1 + · · ·+ q1z + q0, (1.2)

pr(z) = zmqm + zm−1qm−1 + · · ·+ zq1 + q0, (1.3)

where qj , z ∈ H, (0 ≤ j ≤ m). The polynomials (1.2) and (1.3) are called “simple” and
“monic” when qm = 1. These polynomials play an important role in quaternion linear algebra
since they are connected with linear difference and differential equations with quaternion coeffi-
cients. The corresponding companion matrices of the simple monic polynomials pl(z) and pr(z)
are given by

Cpl
=


0 1 0
...

. . .
0 0 1

−q0 −q1 . . . −qm−1

 and Cpr
= CT

pl
,



BOUNDS SPECTRAL RADII OF QUATERNIONIC MATRICES 147

respectively. Some recent developments on the location and computation of zeros of quater-
nionic polynomials can be found in [7, 9, 11, 13, 20, 25]. In the first part of this paper, we first
extend some existing results [24] to a quaternionic matrix. Next, we provide bounds for spectral
radii of a quaternionic matrix and their applications to find bounds for the zeros of quaternionic
polynomials. Finally, in this paper, we propose numerical examples to illustrate our results. The
paper is organized as follows: Section 2 reviews some existing results from [2, 6, 13, 15]. Section
3 discusses inequalities for quaternionic matrix norms and their applications. Section 4 explains
bounds of left and right spectral radii of a quaternionic matrix. Section 5 devotes bounds for
zeros of quaternionic polynomials. Finally, Section 6 presents numerical examples to illustrate
our results.

2 Notation and Preliminaries

Notation: Throughout the paper, R and C denote the fields of real and complex numbers, re-
spectively. The set of real quaternions is defined by

H = {q = a0 + a1i+ a2j+ a3k : a0, a1, a2, a3 ∈ R}

with i2 = j2 = k2 = ijk = −1. The conjugate of q ∈ H is q = a0 − a1i − a2j − a3k and

the modulus of q is |q| =
√
a2

0 + a2
1 + a2

2 + a2
3. ℑ(a) denotes the imaginary part of a ∈ C.

The real part of a quaternion q = a0 + a1i + a2j + a3k is defined as ℜ(q) = a0. The col-
lection of all n-column vectors with elements in H is denoted by Hn. For x ∈ Kn,where K ∈
{R,C,H}, the transpose of x is xT . If x = [x1, . . . , xn]T , the conjugate of x is defined as x =
[x1, . . . , xn]T and the conjugate transpose of x is defined as xH = [x1, . . . , xn]. For x, y ∈
Hn,the inner product is defined as ⟨x, y⟩ = yHx and the norm of x is defined as ∥x∥2 =

√
⟨x, x⟩.

The sets of m×n real, complex, and quaternionic matrices are denoted by Mm×n(R), Mm×n(C),
and Mm×n(H), respectively. When m = n, these sets are denoted by Mn(K), K ∈ {R,C,H}.
For A ∈ Mm×n(K), the conjugate, transpose, and conjugate transpose of A are defined as
A = (aij), AT = (aji) ∈ Mn×m(K), and AH = (A)T ∈ Mn×m(K), respectively. For
z ∈ Hn, the vector p-norm on Hn is defined by ∥z∥p = (

∑n
i=1 |zi|p)1/p, where 1 ≤ p < ∞

and ∥z∥∞ := max1≤i≤n{|zi|}. The set

[q] = {r ∈ H : r = ρ−1 q ρ for all 0 ̸= ρ ∈ H}

is called an equivalence class of q ∈ H. We define the 2-norm and Frobenius-norm on
A ∈ Mn(H) by

||A||2 = sup
x̸=0

{
∥Ax∥2

∥x∥2
: x ∈ Hn

}
= ∥AH∥2 and ||A||F =

[
trace(AHA)

]1/2
, respectively.

A matrix A ∈ Mn(H) is said to be Hermitian if AH = A, normal if AHA = AAH , and
invertible (nonsingular) if AB = BA = I for some B ∈ Mn(H), where I is the identity matrix.

Definition 2.1. The set of all n×n non-negative matrices, often denoted by Rn×n,
+ consists of all

square matrices of size n×n whose entries are non-negative real numbers. Formally, we define
this set as : Rn×n,

+ = {A ∈ Rn×n : Aij ≥ 0 for all 1 ≤ i, j ≤ n}.

Definition 2.2. Let A ∈ Mn(H). Then the left, right and the standard right eigenvalues, respec-
tively, are given by

Λl(A) = {λ ∈ H : Ay = λy for some non-zero y ∈ Hn} ,
Λr(A) = {λ ∈ H : Ay = yλ for some non-zero y ∈ Hn} , and

Λs(A) = {λ ∈ C : Ay = yλ for some non-zero y ∈ Hn, ℑ(λ) ≥ 0} .

Then the left and right spectral radii of a matrix A are defined by

ρl(A) = max{|λ| : λ ∈ Λl(A)} and ρr(A) = max{|λ| : λ ∈ Λr(A)}, respectively.
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Definition 2.3. Let A ∈ Mn(H). Then A can be uniquely expressed as A = A1 + A2j, where
A1, A2 ∈ Mn(C). Define the function Ψ : Mn(H) → M2n(C) by

ΨA =

[
A1 A2

−A2 A1

]
.

The matrix ΨA is called the complex adjoint matrix of the quaternionic matrix A.

Lemma 2.4. ([21], Theorem 4.1). Let A ∈ Mn(H). Then ΨA ∈ M2n(C) and

max
||x||2 ̸=0

||Ax||2
||x||2

= max
||y||2 ̸=0

||ΨAy||2
||y||2

.

Next, we give a relation between the spectral norm and the Frobenius norm of a quaternionic
matrix.

Theorem 2.5. ([2], Lemma 3.5). Let A = (aij) ∈ Mn(H). Then ||A||2 ≤ ||A||F .

3 Inequalities for quaternionic matrix norms

Let Un be the set of all n× n quaternionic unitary matrices. For any A ∈ Mn(H), its diagonal
part, strictly lower triangular part, and strictly upper triangular part are denoted by D, L, and U,
respectively. The trace of A is denoted by trace(A). The set Un is defined as

Un(A) = {U ∈ Un : U∗AU is upper triangular}.

For A = (aij) ∈ Mn(H), we define ξL(A) and ξU (A) as follows:

ξL(A) = max{i− j : aij ̸= 0, i > j},

ξU (A) = max{j − i : aij ̸= 0, i < j}.
Another quantity η(A) is defined as

η(A) =

(
||A||2F − 1

n
|trace(A)|2

)1
2

which is well-defined because ||A||2F ≥ 1
n
|trace(A)|2 for all A ∈ Mn(H). Now in this sec-

tion, we develope several useful properties for normal matrices. The following lemma gives an
identity on the entries of a normal matrix.

Lemma 3.1. Let A = (aij) ∈ Mn(H) be a normal matrix. Then

n−1∑
i=1

n∑
j=i+1

(j − i)|aij |2 =
n−1∑
j=1

n∑
i=j+1

(i− j)|aij |2. (3.1)

Proof. Let A be partitioned as A =

(
Ak Bk

Ck Dk

)
,where Ak ∈ Mk×k(H). Then from AHA =

AAH it follows that

AkA
H
k +BkB

H
k = AH

k Ak + CH
k Ck, k = 1, 2, ..., n− 1.

By taking the trace on both sides, we get

||Bk||2F = ||Ck||2F , k = 1, 2, ...., n− 1.

Taking summation on both sides from k = 1 to n-1, we have

n−1∑
k=1

||Bk||2F =
n−1∑
k=1

||Ck||2F . (3.2)

The identity (3.2) is clearly equivalent to (3.1).
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Using Lemma 3.1, we obtain the following relations between ||U ||F and ||L||F .

Lemma 3.2. Let A = (aij) ∈ Mn(H) be a normal matrix. Then

||U ||F ≤
√
ξL(A)||L||F , (3.3)

||L||F ≤
√
ξU (A)||U ||F . (3.4)

Proof. By definition of U(.), we obtain

||U ||2F =
n−1∑
i=1

n∑
j=i+1

|aij |2 ≤
n−1∑
i=1

n∑
j=i+1

(i− j)|aij |2.

By Lemma 3.1, we have

||U ||2F ≤
n−1∑
i=1

n∑
j=i+1

(i− j)|aij |2

≤ ξL(A)
n−1∑
j=1

n∑
i=j+1

|aij |2 = ξL(A)||L||2F .

Similarly, we can prove the second inequality.

Lemma 3.3. Let A = (aij) ∈ Mn(H). Then

||L||2F + ||U ||2F ≤ η(A)2. (3.5)

Proof. According to the fact that A = D + L + U, then we have

||A||2F = ||D||2F + ||L||2F + ||U ||2F .

Using the Cauchy-Schwarz’s inequality, we get

||L||2F + ||U ||2F = ||A||2F −
n∑

i=1

|aii|2 ≤ ||A||2F − 1
n

(
n∑

i=1

|aii|

)2

.

Since
n∑

i=1

|aii| ≥

∣∣∣∣∣
n∑

i=1

aii

∣∣∣∣∣ = |trace(A)|.

Hence, we obtain
||L||2F + ||U ||2F ≤ η(A)2.

For a quaternionic matrix A ∈ Mn(H), we may obtain other upper bounds for ||L||2F +||U ||2F .
The Hadamard product of A = (aij) ∈ Mn(H) and B = (bij) ∈ Mn(H) is defined as A ◦ B =
(aijbij) ∈ Mn(H). According to the proof of Lemma 3.3, we obtain

||L||2F + ||U ||2F = ||A||2F −
n∑

i=1

|a2
ii| ≤ ||A||2F −

∣∣∣∣∣
n∑

i=1

a2
ii

∣∣∣∣∣ ,
which gives

||L||2F + ||U ||2F ≤ ||A||2F − |trace(A ◦A)|.
For a quaternionic matrix A ∈ Mn(H), the entry-wise absolute value of A is defined as |A| =

(|aij |) ∈ Rn×n
+ , where Rn×n

+ denotes the set of all n × n non-negative matrices from definition
2.1. We can also prove that

||L||2F + ||U ||2F = ||A||2F − trace(|A| ◦ |A|) and ||L||2F + ||U ||2F ≤ ||A||2F − 1
n
(trace(A))2.

Next, we derive the following result to find bounds of spectral radii of a quaternionic matrix.
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Theorem 3.4. Let A ∈ Mn(H) be a quaternionic normal matrix. Then

||U ||F ≤

√
ξL(A)

1 + ξL(A)
η(A) (3.6)

and

||L||F ≤

√
ξU (A)

1 + ξU (A)
η(A). (3.7)

Proof. From Lemma 3.2, we have

(1 + ξL(A))||U ||2F ≤ ξL(A)(||L||2F + ||U ||2F ).

Now, using Lemma 3.3, we have

(1 + ξL(A))||U ||2F ≤ ξL(A)η(A)
2,

which gives

||U ||F ≤

√
ξL(A)

1 + ξL(A)
η(A).

Similarly, using Lemma 3.2 and Lemma 3.3, we obtain

||L||F ≤

√
ξU (A)

1 + ξU (A)
η(A).

4 Bounds of left and right spectral radii of a quaternionic matrix

First in this section, we derive bounds for left and right spectral radii of a quaternionic matrix
which are as follows:

Lemma 4.1. Let A = (aij) ∈ Mn(H). Then

ρl(A), ρr(A) ≤
√
max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+ ||A||2F − 1

n
|trace(A)|2. (4.1)

Proof. Let A = (aij) ∈ Mn(H). Then

ρl(A), ρr(A) ≤ ||A||2 = ||D + L+ U ||2
≤ ||D||2 + ||L||2 + ||U ||2

≤
√
max{|a11|2, |a22|2, |a33|2|, ...|ann|2}+ ||L||2F + ||U ||2F

≤
√
max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+ ||A||2F − 1

n
(
∑

|aii|)2

≤
√
max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+ ||A||2F − 1

n
|trace(A)|2.

Remark 4.2. From Lemma 4.1, it is clear that all the left and right eigenvalues of A = (aij) ∈
Mn(H) are located in the ball

Ω(A) = {z ∈ H : |z| ≤
√

max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+ ||A||2F − 1
n
|trace(A)|2}.
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Remark 4.3. In particular, if A is Hermitian matrix. Then we have the following results

• ||L||F = ||U ||
F

• ||L||2 = ||U ||2
• |L||1 = ||U ||1
• ||L||∞ = ||U ||∞

Lemma 4.4. Let A = (aij) ∈ Mn(H) be a normal matrix. Then

ρl(A), ρr(A) ≤
√
max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+

(
ξL(A)

1 + ξL(A)
+

ξU (A)

1 + ξU (A)

)
η(A)2.(4.2)

Proof. Let A = (aij) ∈ Mn(H). Then

ρl(A), ρr(A) ≤ ||A||2 = ||D + L+ U ||2
≤ ||D||2 + ||L||2 + ||U ||2

≤
√

max{|a11|2, |a22|2, |a33|2|, ...|ann|2}+ ||L||2F + ||U ||2F

ρl(A), ρr(A) ≤
√
max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+

(
ξL(A)

1 + ξL(A)
+

ξU (A)

1 + ξU (A)

)
η(A)2.

Remark 4.5. From Lemma 4.4, it is clear that all the left and right eigenvalues of normal matrix
A = (aij) ∈ Mn(H) are located in the ball,

T (A) = {z ∈ H : |z| ≤
√
max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+

(
ξL(A)

1 + ξL(A)
+

ξU (A)

1 + ξU (A)

)
η(A)2}.

Lemma 4.6. Let A = (aij) ∈ Mn(H) be a normal matrix. Then

ρl(A), ρr(A) ≤
√
max{|a11|2, |a22|2, |a33|2|, ...|ann|2}+ 2

√
n− 1
n

η(A)2. (4.3)

Proof. Let A = (aij) ∈ Mn(H). Then, we have

ρl(A), ρr(A) ≤ ||A||2 = ||D + L+ U ||2
≤ ||D||2 + ||L||2 + ||U ||2

≤
√

max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+ ||L||2F + ||U ||2F

≤
√
max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+

(√
n− 1
n

+

√
n− 1
n

)
η(A)2

≤
√
max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+ 2

√
n− 1
n

η(A)2.

Remark 4.7. From Lemma 4.6, it is clear that all the left and right eigenvalues of normal matrix
A = (aij) ∈ Mn(H) are located in the ball,

F (A) = {z ∈ H : |z| ≤
√

max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+ 2

√
n− 1
n

η(A)2}.

Lemma 4.8. Let A = (aij) ∈ Mn(H) be a Hermitian matrix. Then

ρl(A), ρr(A) ≤
√

max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+ 2
(

ξL(A)

1 + ξL(A)

)
η(A)2. (4.4)
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Proof. Let A = (aij) ∈ Mn(H). Then, we have

ρl(A), ρr(A) ≤ ||A||2 = ||D + L+ U ||2
≤ ||D||2 + ||L||2 + ||U ||2

≤
√
max{|a11|2, |a22|2, |a33|2|, ...|ann|2}+ ||L||2F + ||U ||2F

ρl(A), ρr(A) ≤
√
max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+ 2

(
ξL(A)

1 + ξL(A)

)
η(A)2.

Remark 4.9. From Lemma 4.8, it is clear that all the left and right eigenvalues of Hermitian
matrix A = (aij) ∈ Mn(H) are located in the ball

B(A) = {z ∈ H : |z| ≤
√
max{|a11|2, |a22|2, |a33|2|, ..., |ann|2}+ 2

(
ξL(A)

1 + ξL(A)

)
η(A)2.

5 Bounds for zeros of quaternionic polynomials

In this section, we derive bounds for the zeros of quaternionic polynomials by applying the
localization theorems for the left eigenvalues of quaternionic matrix. Due to noncommutivity of
quaternions, we first define some facts on multiplication of quaternions. For p, q ∈ H, define p
× q = pq. For 0 ̸= p ∈ H and q ∈ H, define

1
p
× q = p−1 × q = p−1q, q × 1

p
= q × p−1 = qp−1

Recall the quaternionic polynomials pl(z) and pr(z) from (1.2) and (1.3). Then the correspond-
ing companion matrices of the simple monic polynomials pl(z) and pr(z) are given by

Cpl
=


0 1 0
...

. . .
0 0 1

−q0 −q1 . . . −qm−1

 and, Cpr = CT
pl
,

respectively. Let q0 ̸= 0, and define simple monic reversal polynomials pl(z) and pr(z) as
follows:

ql(z) =
1
q0

× pl(
1
z
)× zm = zm + q−1

0 q1z
m−1 + ...+ q−1

0 qm−1z + q−1
0 ,

qr(z) = zm × pr(
1
z
)× 1

q0
= zm + zm−1q1q

−1
0 + ...+ zqm−1q

−1
0 + q−1

0 ,

respectively. The corresponding companion matrices of the simple monic polynomials ql(z) and
qr(z) are denoted by Cql and Cqr, respectively. We observe that the zeros of ql(z) and qr(z) are
the reciprocal of zeros of pl(z) and pr(z), respectively. Now, we need the following result for
bounds of zeros of quaternionic polynomials.

Proposition 5.1. ([24, Proposition 1]). Let λ ∈ H. Then λ is a zero of the simple monic
polynomial pl(z) if and only if λ is a left eigenvalue of its corresponding companion matrix Cpl.

In general, a right eigenvalue of Cpl is not necessarily a zero of monic polynomial pl(z).
For example, let a simple monic polynomial pl(z) = z2 + jz + 2. Then its companion matrix is
given by

Cpl
=

[
0 1
−2 j

]
.

Here i is a right eigenvalue of Cpl. However, i is not a zero of pl(z). Similar to Proposition 5.1
the following result is presented for pr(z).
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Proposition 5.2. Let λ ∈ H. Then λ is a zero of the simple monic polynomial pr(z) if and only
if λ is a left eigenvalue of its corresponding companion matrix Cpr.

We now present bound for the zeros of pl(z) which is as follows.

Lemma 5.3. Let pl(z) be a simple monic polynomial over H of degree n. Then every zero of z̃
of pl(z) satisfies the following inequality:

1
α

≤ |z̃| ≤ β,

where,

α = |q−1
0 q1|+ (n− 1) + |q−1

0 |2 + |q−1
0 qm−1|2 + ...+ |q−1

0 q1|2 −
1
n
|q−1

0 q1|2 and

β = |qm−1|+ (n− 1) + |q0|2 + |q1|2 + ...+ |qm−1|2 −
1
n
|qm−1|2.

Proof. The companion matrix for pl(z) is given by

Cpl
=


0 1 0
...

. . .
0 0 1

−q0 −q1 . . . −qm−1

 .

Therefore,√
max{|a11|2, |a22|2, |a33|2|, ..., |ann|2} =

√
max{0, 0, , ..., |qm−1|2} = |qm−1|,

||Cpl
||2F = |q0|2 + 1 + |q1|2 + ....+ 1 + |qm−1|2 = (n− 1) + |q0|2 + |q1|2 + ....+ |qm−1|2

and trace(Cpl
) = −qm−1. Hence from Lemma 4.1, we obtain

β = |qm−1|+ (n− 1) + |q0|2 + |q1|2 + ....+ |qm−1|2 −
1
n
|qm−1|2.

Similarly, the companion matrix for ql(z) is given by

Cql =


0 1 0
...

. . .
0 0 1

−q−1
0 −q−1

0 qm−1 . . . −q−1
0 q1

 .

Now, √
max{|a11|2, |a22|2, |a33|2|, ..., |ann|2} =

√
max{0, 0, , ..., |q−1

0 q1|2} = |q−1
0 q1|,

||Cql ||2F = |q−1
0 |2+1+|q−1

0 qm−1|2+....+1+|q−1
0 q1|2 = (n−1)+|q−1

0 |2+|q−1
0 qm−1|2+....+|q−1

0 q1|2

and trace(Cql) = −q−1
0 q1. From facts and Lemma 4.1, we obtain

α = |q−1
0 q1|+ (n− 1) + |q−1

0 |2 + |q−1
0 qm−1|2 + ....+ |q−1

0 q1|2 −
1
n
|q−1

0 q1|2.

Finally we get,

1
α

≤ |z̃| ≤ β,

where,

α = |q−1
0 q1|+ (n− 1) + |q−1

0 |2 + |q−1
0 qm−1|2 + ...+ |q−1

0 q1|2 −
1
n
|q−1

0 q1|2 and

β = |qm−1|+ (n− 1) + |q0|2 + |q1|2 + ...+ |qm−1|2 −
1
n
|qm−1|2.

Remark 5.4. Similar result can be obtained for the quaternionic polynomial pr(z) as well.
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6 Numerical examples

In this section, we give some numerical examples to illustrate our results.

Example 6.1. Let us consider a quaternionic matrix

A =

 2i −2j j + k
−k 2 −1
-j 1 − i 1,



then D =

2i 0 0
0 2 0
0 0 1

 , L =

 0 0 0
-k 0 0
-j 1 − i 0

 and U =

0 −2j j+k
0 0 −1
0 0 0.

. Now,

||A||2F = trace(AHA) = 20, trace(A) = 3 + 2i and ||L||2F = trace(LHL) = 4.

||U ||2F = trace(UHU) = 7 and η(A)2 = ||A||2F − 1
n
|trace(A)|2.

Therefore, η(A)2 =
47
3
.

Putting the values of ||L||2F , ||U ||2F and η(A)2 in (3.5), we have 11 <
47
3
.

Example 6.2. Consider the quaternionic matrix

A =

 2i −2j j + k
−k 2 −1
-j 1 − i 1.


Then, the complex adjoint matrix of A is given by

ΨA =



2i 0 0 0 −2 1 + i
0 2 −1 i 0 0
0 1 − i 1 −1 0 0
0 2 −1 + i −2i 0 0
i 0 0 0 2 −1
1 0 0 0 1 + i 1


.

The right spectrum of the matrix A is

Λr(A) = [2.3707 + 0.9591i] ∪ [1 + i] ∪ [−0.3707 + 1.9591i].

Also, ||A||2F = 20 and
1
n
|trace(A)|2 = 13

3

and
√
max{|a11|2, |a22|2, |a33|2} =

√
max{4, 4, 1} = 2.

Therefore, ρr(A) = 2.5573. Now, substituting the values required in (4.1), we have

2.5573 < 17.67.

Example 6.3. Let A =

[
2i j
−j 1.

]
. Then L =

[
0 0
−j 0

]
and U =

[
0 j
0 0.

]
. Now, we have

||L||2F = 1 and ||U ||2F = 1.

By the definition of ξL(A) and ξU (A), we get

ξL(A) = 1 and ξU (A) = 1.

Putting all the values required in (3.3), we have

1 = 1.

Similarly, we find (3.4) is also true for above values.
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Example 6.4. Let A =

[
2i j
−j 1

]
. Then, we have the following values:

||A||2F = 7,
1
n
|trace(A)|2 = 5

2
, ||L||2F = 1||U ||2F = 1,

ξL(A) = 1, ξU (A) = 1 and η(A) =

√
9
2
.

Using the above values in (3.6), we have 1 < 1.5. Similarly we can also verify (3.7).

Example 6.5. Let A =

[
2i j
−j 1.

]
Then the complex adjoint matrix of A is given by

ΨA =


2i 0 0 1
0 1 −1 0
0 −1 −2i 0
1 0 0 1

 .

The right spectrum of the matrix A is

Λr(A) = [−0.3002 + 1.6248i] ∪ [1.3002 + 0.3742i].

Also, ξL(A) = 1, ξU (A) = 1, η(A) =

√
9
2
,

ρr(A) = 1.6522 and
√
max{|a11|, |a22|} = 2.

Putting all the above values in (4.4), we get 1.6522 < 6.5.

Example 6.6. Consider the following polynomials pl(z) and pr(z) over H:

pl(z) = z6 + (i + 3k)z5 + (3 + j)z4 + (5i + 15k)z3 + (−4 + 5j)z2 + (6i + 18k)z + (6j − 12),

pr(z) = z6 + z5(i + 3k) + z4(3 + j) + z3(5i + 15k) + z2(−4 + 5j) + z(6i + 18k) + (6j − 12).

The zeros of pl(z) are given in [13]. Moreover, we find the zeros of pr(z) by Niven’s algorithm
[19]. Thus, the zeros and bounds for the zeros of pl(z) and pr(z) are given in the following table.

z1 |z1| z2 |z2|

-i − 2k 2.2361 -0.4i − 2.2k 2.2361
[i
√

3] 1.7321 [i
√

3] 1.7321
[i
√

2] 1.4142 [i
√

2] 1.4142
−0.6i − 0.8k 1 -k 1

Table 1. Zeros of pl(z) and pr(z) and their absolute values, where z1 and z2 are the set of zeros
of pl(z) and pr(z), respectively.

Using Lemma 5.3, we have

ρl(Cpl) ≤ |q5|+ (n− 1) + |q0|2 + |q1|2 + |q2|2 + |q3|2 + |q4|2 + |q5|2 −
1
6
|q5|2. (6.1)

Calculating the above values and then putting in (6.1), we get

β =
√

10 + 5 + 180 + 360 + 41 + 250 + 10 + 10 − 5
3
= 857.496.

We know that
q−1 =

q̄

|q|2
.
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Now,

ρl(Cql) ≥ α, (6.2)

where α = |q−1
0 q1|+ (n− 1) + |q−1

0 |2 + |q−1
0 q5|2 + |q−1

0 q4|2 + |q−1
0 q3|2 + |q−1

0 q2|2 + |q−1
0 q1|2 −

1
6
|q−1

0 q1|2.

Calculating the above values and then putting in (6.2), we get

α = 1.4139 + 5 + 0.0055 + 0.0554 + 0.0554 + 1.3875 + 0.2275 + 1.9991 − 1
6
(1.9991) =

9.8112 ⇒ 1
α

= 0.1019. Finally, we get

0.1019 ≤ |z̃| ≤ 857.496.

Similarly, we can find bounds for pr(z).
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