Palestine Journal of Mathematics

Vol 14(2)(2025) , 146-157 © Palestine Polytechnic University-PPU 2025

BOUNDS FOR SPECTRAL RADII OF QUATERNIONIC
MATRICES AND THEIR APPLICATIONS

M. W. Khadim, Istkhar Ali and M. A. Ayyub Khan

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13MO0S5.

Keywords and phrases: Quaternionic matrices, Left eigenvalues, Right eigenvalues, Quaternionic companion matrices,
Quaternionic matrix norms.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that
improved the quality of our paper and the authors declare that there is no conflict of interest.

Acknowlegdement The authors would like to thank Integral University, Lucknow, India, for providing the manuscript number
IU/R & D/2023-MCN0001995 to the present research work.

Corresponding Author: Istkhar Ali

Abstract In this paper, we derive inequalities for quaternionic matrix norms. Afterward, we
provide bounds for the left and right spectral radii of quaternionic matrices. As a consequence,
we present localization theorems for the left and right eigenvalues of quaternionic matrices. We
also establish bounds for the zeros of quaternionic polynomials. Finally, we include numerical
examples to illustrate our results.

1 Introduction

Localization theorems for quaternionic matrices and bounds for zeros of quaternionic polyno-
mials have received much attention in the literature due to their applications in pure and applied
sciences [1, 4, 7, 12, 14, 15, 16, 18, 26]. The stability of system of differential equations of the
form

dx(t)

dt

with constant quaternionic matrix coefficient A is studied in [5]. Localization theorems for
right eigenvalues of quaternionic matrix play an important role for the stability of the system
(1.1). The concept of perturbation bounds for the right eigenvalues of a quaternionic matrix is
given in [6]. Due to the noncommutativity of quaternions, there are three types of quaternionic
polynomials. The coefficients of the polynomials can be taken to be on the left, on the right or
on both sides of the indeterminant. However, throughout this paper, we follow the following
quaternionic polynomials:

n(z) = @m2™ + gmo12" T+ @z + g, (1.2)
pr(2) = 2"+ 2" g1+ + 2q1 + qo, (1.3)

where ¢;, z € H, (0 < j < m). The polynomials (1.2) and (1.3) are called “simple” and
“monic” when ¢, = 1. These polynomials play an important role in quaternion linear algebra
since they are connected with linear difference and differential equations with quaternion coeffi-
cients. The corresponding companion matrices of the simple monic polynomials p;(z) and p,(z)
are given by

= Az(t), teR (1.1)

0 1 0
Cp =" and C,,, = CT

P’

—q0 —q9@ .- —qm-1
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respectively. Some recent developments on the location and computation of zeros of quater-
nionic polynomials can be found in [7, 9, 11, 13, 20, 25]. In the first part of this paper, we first
extend some existing results [24] to a quaternionic matrix. Next, we provide bounds for spectral
radii of a quaternionic matrix and their applications to find bounds for the zeros of quaternionic
polynomials. Finally, in this paper, we propose numerical examples to illustrate our results. The
paper is organized as follows: Section 2 reviews some existing results from [2, 6, 13, 15]. Section
3 discusses inequalities for quaternionic matrix norms and their applications. Section 4 explains
bounds of left and right spectral radii of a quaternionic matrix. Section 5 devotes bounds for
zeros of quaternionic polynomials. Finally, Section 6 presents numerical examples to illustrate
our results.

2 Notation and Preliminaries

Notation: Throughout the paper, R and C denote the fields of real and complex numbers, re-
spectively. The set of real quaternions is defined by

H = {q = a0+ aii+ arj + ask : ap,a1,a2,a3 € R}

with i = j> = k?> = ijk = —1. The conjugate of ¢ € His § = ag — a;i — asj — azk and

the modulus of ¢ is |q| = /a3 + a3 + a3 +a3. I(a) denotes the imaginary part of a € C.

The real part of a quaternion ¢ = ag + a1i + a2j + ask is defined as ®(¢) = ag. The col-
lection of all n-column vectors with elements in H is denoted by H". For x € K", where K €
{R, C, H}, the transpose of x is #7. If x = [x1,...,2,]T, the conjugate of z is defined as T =
[Z1,...,7,)7 and the conjugate transpose of x is definedas =% = [z7,...,7,]. For 2,y €
H" the inner product is defined as (x,y) = y 2 and the norm of x is defined as ||z||>» = /(z, 7).
The sets of m xn real, complex, and quaternionic matrices are denoted by M, (R), My, 5 (C),
and M,,x,(H), respectively. When m = n, these sets are denoted by M, (K), K € {R,C, H}.
For A € M,,x»(K), the conjugate, transpose, and conjugate transpose of A are defined as
A = (@), AT = (aj;) € Muxm(K), and AT = (A)T € M, (K), respectively. For
z € H", the vector p-norm on H" is defined by ||z||, = (31, |2:[?)"/?, where 1 < p < oo
and ||z||eo 1= max;<;<n{|z|}. The set

[q]:{reH:r:p’lqpforaIIO#pGH}

is called an equivalence class of ¢ € H. We define the 2-norm and Frobenius-norm on
A € M, (H) by

||A]|2 = sup { |||1|4$”||2 ‘T € H”} = ||A"||; and ||A||p = [trace(A" 4)] 1/2, respectively.
a0 U ]2

A matrix A € M, (H) is said to be Hermitian if A” = A, normal if A¥A = AAH, and
invertible (nonsingular) if AB = BA =1 for some B € M,,(H), where 1 is the identity matrix.

Definition 2.1. The set of all nxn non-negative matrices, often denoted by R’*™ consists of all
square matrices of size n x n whose entries are non-negative real numbers. Formally, we define
this setas : R7*™ = {A e R"*": 4;; > 0forall 1 <i,j < n}.

Definition 2.2. Let A € M,,(H). Then the left, right and the standard right eigenvalues, respec-
tively, are given by

A(A) ={X e H: Ay = \y for some non-zero y € H"},
A(A) ={\ € H: Ay = yX for some non-zero y € H"}, and
As(A) = {) e C: Ay = y for some non-zero y € H", I(\) > 0}.

Then the left and right spectral radii of a matrix A are defined by

pi(A) = maz{|A] : A € Aj(A)} and p,.(A) = maz{|A| : X € A (A)}, respectively.



148 M. W. Khadim, Istkhar Ali and M. A. Ayyub Khan

Definition 2.3. Let A € M,,(H). Then A can be uniquely expressed as A = A; + A,j, where
Ay, Ay € M, (C). Define the function ¥ : M, (H) — M,, (C) by

A A

w, = |22
ATIA, A

The matrix W 4 is called the complex adjoint matrix of the quaternionic matrix A.
Lemma 2.4. ([21], Theorem 4.1). Let A € M,,(H). Then ¥4 € M, (C) and

|[Az|[ 'Y ayll2
max = max
llzlb#0 [|z|l2  Ilyllz0  [|y]]2

Next, we give a relation between the spectral norm and the Frobenius norm of a quaternionic
matrix.

Theorem 2.5. ([2], Lemma 3.5). Let A = (a;;) € M,,(H). Then ||A||» < ||A]|F.

3 Inequalities for quaternionic matrix norms

Let 4L, be the set of all nx n quaternionic unitary matrices. For any A € M, (H), its diagonal
part, strictly lower triangular part, and strictly upper triangular part are denoted by D, L, and U,
respectively. The trace of A is denoted by trace(A). The set 4, is defined as

Un(A) ={U e i, : U*AU is upper triangular}.
For A = (ai;) € M,,(H), we define ;,(A) and £y (A) as follows:
EL(A) =max{i—j:ay #0,i> j},

Eu(A) =max{j —i:a;; #0,i < j}.
Another quantity 7(A) is defined as

N =

o) = (A1 - L lrrace(a)P)

1
which is well-defined because ||A||% > —[trace(A)|* for all A € M, (H). Now in this sec-
n

tion, we develope several useful properties for normal matrices. The following lemma gives an
identity on the entries of a normal matrix.

Lemma 3.1. Let A = (a;;) € M, (H) be a normal matrix. Then

Z J—i |al]‘ _Z Z Z*] ‘alj|2 3.1

n—1

i=1 j=i+1 j=1i=j5+1
.. Ak Bk H
Proof. Let A be partitioned as A = o D ,where Ay € My (H). Then from A? A =
k k

AAM it follows that
ArAT + BB = Al A +CH Oy, k=1,2,...,n— 1.
By taking the trace on both sides, we get
I1Bell% = |ICkl|%, k=1,2,....,n— 1.

Taking summation on both sides from k = 1 to n-1, we have

n—1 n—1
ZHBkHZF:ZHCkHZF- (3.2)
k=1 k=1

The identity (3.2) is clearly equivalent to (3.1). O
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Using Lemma 3.1, we obtain the following relations between ||U||r and ||L||f.

Lemma 3.2. Let A = (a;;) € M,,(H) be a normal matrix. Then

U[r

IN

EL(A)|IL||F, (3.3)

1Ll 7

Proof. By definition of U(.), we obtain

IN

Eu(AU]|p- (3.4)

n—1 n

n—1 n
WU =YD lailP <> > (6= d)lai >

i=1 j=i+1 i=1 j=i+1

By Lemma 3.1, we have

IN

z_: > (i = 5)lail?

i=1 j=i+1

U115

< G Y P = (AL

j=1i=j+1
Similarly, we can prove the second inequality. O
Lemma 3.3. Let A = (a;;) € M,,(H). Then
ILI[F + [[U][% < n(A). 3.5)

Proof. According to the fact that A =D + L + U, then we have

1AI% = 1DII% + LI + U]
Using the Cauchy-Schwarz’s inequality, we get

V4101 = AT = Sl < s~ (Sl
i=1 i=1

Since

= |trace(A)|.

n
Z |aii| =
i=1

n
§ A
i=1

Hence, we obtain
LI + U117 < n(A4)*
O
For a quaternionic matrix A € M,, (H), we may obtain other upper bounds for || L||% +||U||%.

The Hadamard product of A = (a;;) € M, (H) and B = (b;;) € M,,(H) is defined as Ao B =
(aijbij) € M, (H). According to the proof of Lemma 3.3, we obtain

n

2
§ Qy;

i=1

LI + U5 = [[Al[F = D ladi] < [|AllF —

i=1

b

which gives
ILIE +1UI% < ||AlfE — [trace(A o A)].
For a quaternionic matrix A € M,, (H), the entry-wise absolute value of A is defined as |4| =

(laij|) € R*"™, where RT*™ denotes the set of all n x n non-negative matrices from definition
2.1. We can also prove that

! (trace(A))>.

n

ILI[F + U115 = |Al[F — trace(|A| o |Al) and [|L||% + [[U][% < [|All% —

Next, we derive the following result to find bounds of spectral radii of a quaternionic matrix.
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Theorem 3.4. Let A € M, (H) be a quaternionic normal matrix. Then

£n(A)
and
§u(A)

Proof. From Lemma 3.2, we have
(1+ &L (A UF < (A)ILIE + IUIF)-
Now, using Lemma 3.3, we have
(1+ (U1 < €L(A)n(A),

which gives

£n(A)
I1U||r < mn(A)~

Similarly, using Lemma 3.2 and Lemma 3.3, we obtain

{u(4)
I|[L]|F < mn(/l)-

4 Bounds of left and right spectral radii of a quaternionic matrix

First in this section, we derive bounds for left and right spectral radii of a quaternionic matrix
which are as follows:

Lemma 4.1. Let A = (a;;) € M,,(H). Then

1
pi(A), pr(4) < \/ma${|a11\27 laza?, lass ], -y [ann 2} + || A[F — 5\trace(z4)|2-(4~1)

Proof. Let A = (a;;) € M,,(H). Then

pi(A), pr(A) < |[Ala =D+ L+Ul:
< |ID|l2 + [|Ll|]2 + |U]]2
< \/mal‘{lan 2, laz?, s3], .| annl?} + [|LI|E + U7
< \/77w1?{|a11\2 |ax|?, as3[?], ... |ann|2}—|—||A||%;—1(2|an|)2
— b b 9 9 n
2 2 2 2 2 1 2
< /maz{|an|? [anl?* |azl?], ., lana]*} + [[Al|F - 5\”’006(14” .

O

Remark 4.2. From Lemma 4.1, it is clear that all the left and right eigenvalues of A = (a;;) €
M, (H) are located in the ball

1
QA) ={z eH: [z < \/maw{lanlz, |22, lass 2], o lann P} + [[AlF = —[trace(A)[}.
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Remark 4.3. In particular, if A is Hermitian matrix. Then we have the following results
* [ILllF = 11Ul
* LIl = U]l
* [Llh = 1lU]],
* [[L]leo = U]
Lemma 4.4. Let A = (a;;) € M,,(H) be a normal matrix. Then

£n(A) " §u(A)
1+&(4) 1+ (4)

(A) () < fmas{lan ezl oo lann ) + )@

Proof. Let A = (a;;) € M,,(H). Then

p(d), pr(4) < Ak =D+ L+ Ul
< 1DIl + 112l + |01
< \fmaa{lan . lanf? oss Pl o P} + 121G + 10
§u(A §u(A
), () < fmastlan ol ol o P + (A0 + S gy

O

Remark 4.5. From Lemma 4.4, it is clear that all the left and right eigenvalues of normal matrix
A = (a;;) € M, (H) are located in the ball,

¢r(A) n §u(A)

T(A) = = € Bl < yfman{anf ol sl P + (550505 + 280 Y ncary,

Lemma 4.6. Let A = (a;;) € M,,(H) be a normal matrix. Then

n—1

n(A)>. 4.3)

pi(A), pr(4) < y/maz{lan . |axP, lass P, lan 2} +2

Proof. Let A = (a;j) € M,,(H). Then, we have

pi(A), pr(A) < Al =D+ L +Ul:
< Dl + [ILll2 + [[U[l2
< \/mafﬂ{laulz, a2, Jass 2], -, [ann 2} + || + [|U][%
-1 n—1
< 2 2 2|, Lann|? \/“ \/ A)?
= \/ma:r{|a“| slazl?, lass |, ... lann| }+< T " n(A)
n—1
< yfmax{janP. anl, Pl .l P} +2 n(A).

O

Remark 4.7. From Lemma 4.6, it is clear that all the left and right eigenvalues of normal matrix
A = (a;j) € M, (H) are located in the ball,

n—1

F(A) = {z € H: |2] < \/maz{lan . [anl. a3, ... [ana ) +2 n(4)}.

Lemma 4.8. Let A = (a;;) € M, (H) be a Hermitian matrix. Then

), i) < \fmanflanf ool oo} +2 (FEEELS ) a2
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Proof. Let A = (a;j) € M, (H). Then, we have
pi(A), pr(A) < Al =D+ L+Ul}

< D[ +[IL]l2 + [|U]]2
< \/maﬂf{\an|27 |a2a|?, [az3]?l, ---lana?} + | LI + U]
§L(A) 2
A T‘A < 2a 2, 27"'3 nn2 2 T ¢ /A A .
(), pr(4) < s (fon el e o o P} +2 (5550 ) nia

m}

Remark 4.9. From Lemma 4.8, it is clear that all the left and right eigenvalues of Hermitian
matrix A = (a;;) € M, (H) are located in the ball

B(A)={zeH:|z| < \/maw{\alﬂz, lan|?, |ass|?], - lann]?} + 2 <1«£FL§(;4(>A)> 77(A)2.

5 Bounds for zeros of quaternionic polynomials

In this section, we derive bounds for the zeros of quaternionic polynomials by applying the
localization theorems for the left eigenvalues of quaternionic matrix. Due to noncommutivity of
quaternions, we first define some facts on multiplication of quaternions. For p, q € H, define p
x q=pq. For 0 # p € H and q € H, define

l _ 1 _ 1 1_ -1 _ -1
Xq=p Xq=p ¢qxX—-=qxXp  =qp
p P

Recall the quaternionic polynomials p;(z) and p,.(z) from (1.2) and (1.3). Then the correspond-
ing companion matrices of the simple monic polynomials p;(z) and p,(z) are given by

0 1 0
_ | _ AT
Cp, = 0 0 X and, Cp, = C,,
—q —q1 --- —Qqm-1

respectively. Let gy # 0, and define simple monic reversal polynomials p;(2) and p.(z) as
follows:

1 1 _ B _ _
a(z) = e pz(;) x 2™ =24 g 2™ gy ez g

m 1 1 m m—1 —1 —1 —1
gr(2) = 2" xp () x I (L s LT (T

respectively. The corresponding companion matrices of the simple monic polynomials ¢;(z) and
qr(z) are denoted by Cy; and Cy,, respectively. We observe that the zeros of ¢;(z) and ¢, (z) are
the reciprocal of zeros of p;(z) and p,(2), respectively. Now, we need the following result for
bounds of zeros of quaternionic polynomials.

Proposition 5.1. ([24, Proposition 1]). Let A € H. Then X is a zero of the simple monic
polynomial p;(z) if and only if ) is a left eigenvalue of its corresponding companion matrix Cpy;.

In general, a right eigenvalue of C,,; is not necessarily a zero of monic polynomial p;(z).
For example, let a simple monic polynomial p;(z) = 22 + jz + 2. Then its companion matrix is

given by
0 1
-2 j ’

Here i is a right eigenvalue of C),;. However, i is not a zero of p;(z). Similar to Proposition 5.1
the following result is presented for p,.(z).

Opz =
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Proposition 5.2. Let A € H. Then ) is a zero of the simple monic polynomial p,(z) if and only
if A is a left eigenvalue of its corresponding companion matrix Ci,..

We now present bound for the zeros of p;(z) which is as follows.

Lemma 5.3. Let p;(z) be a simple monic polynomial over H of degree n. Then every zero of Z
of py(2) satisfies the following inequality:
1
a
where,
2

_ _ _ _ 1, _
Oé:|q01q1|+(n—1)—|—|q01|2—|—|q0lqm71|2+...—|—\q01q1|2—g|q01q1 and

1
B=lgmr]|+ (n—=1)+|g*+ |a* + ... + [gma1]* - ﬁlqquz.

Proof. The companion matrix for p;(z) is given by

0o 1 0
C p—
" 0 0 1
—qo —q1 —qm—1

Therefore,
\/ma${|an 2, Jax |, lasz|?], ..., lana|*} = \/ma‘x{oaoa sees [@m—117} = |@m—1]

ICu I = ool + 1+ @[> + oo + 1+ gm1 P = (n = 1) + g + |a1]* + o + |gm—1
and trace(Cp,) = —¢m—1. Hence from Lemma 4.1, we obtain

1
B=lgm-1]+ (n—1)+ g +|qa1|* + oo + |gm—1]* — E|Qm71‘2~

Similarly, the companion matrix for ¢;(z) is given by

0 1 0
Co=1 :
“ 0 0 1
- —a'dma o —q'@

Now,

\/max{|a11|2, |a22|2, |aa3|2|» e |ann|2} = \/ma${0707 yeees |Q6IQ1|2} = \qalml,

NC % = lag P14 g5 "gm 1P+ 14 gg a1 P = (n=1D)+lgg ' P+lag " gm1 |* - tlag a1 [?

and trace(Cy,) = —q, '¢1. From facts and Lemma 4.1, we obtain
_ _ _ _ L
a=lg al+ =1 +lg P +lg g+ o+ lag o = lag o
Finally we get,

< |2 <8,

Q|

where,

_ _ _ _ 1 _
a=|g a|+m—1)+]g" P+ gy ' gmar?+ -+ g ' — ~1gp '¢1)? and
1
B=\gm-1|+ M —1)+|qP+|al*+ ...+ lgm-1]* — E|mel|2- O

Remark 5.4. Similar result can be obtained for the quaternionic polynomial p,.(z) as well.
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6 Numerical examples

In this section, we give some numerical examples to illustrate our results.

Example 6.1. Let us consider a quaternionic matrix

2 —2j j+k

A=|-k 2 -1
G 1-i 1,
21 0 0 0 0 0 0 —2j j+k
thenD=|0 2 0|,L=|-k 0 O0|landU=1[0 0 —1|.Now,
0 0 1 4 1-i 0 0 0 o

||A])3 = trace(A™ A) = 20, trace(A) = 3+ 2iand ||L||% = trace(L¥ L) = 4.

1
HUH% = trace(UHU) =7 and r](A)2 = HA||% — ﬁ|trace(A)|2.

Therefore, n(A)? = 43—7
. 2 2 2 . 47
Putting the values of ||L||%, ||U||% and n(A)* in (3.5), we have 11 < ER
Example 6.2. Consider the quaternionic matrix
2i -2 j+k
A= |-k 2 -1
G 1—-i 1
Then, the complex adjoint matrix of A is given by
2i 0 0 0 -2 1+i]
0 2 -1 i 0 0
W, = 0 1-i 1 . —1. 0 0
0 2 —-1+1 -2 O 0
0 0 0 2 -1
| 1 0 0 0 1+i 1 |

The right spectrum of the matrix A is
Ar(A) = [2.3707 + 0.9591i] U [1 +1i] U [-0.3707 4 1.9591i].
13

1
Also, ||A||3 =20 and —|trace(A)|* = 5
n

and \/max{|a11\2, laxn|?, |ass|*} = Vmaz{4,4,1} = 2.
Therefore, p,.(A) = 2.5573. Now, substituting the values required in (4.1), we have
2.5573 < 17.67.
0

2i

—J

and U = 0 J

Example 6.3. Let A = 0

. Now, we have

—J

i]}.ThenL=

LI} = 1and [[U]f3 = 1.
By the definition of £1,(A) and & (A), we get
€L(A)=1land {y(4) = 1.
Putting all the values required in (3.3), we have
1=1.

Similarly, we find (3.4) is also true for above values.
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2% j

—J
2 1 2 5 2 2
1Al =7, ~[trace(A)]" = 3, lILllF = 1|Ullr = 1,

Example 6.4. Let A = . Then, we have the following values:

EL(A) =1,y (A) =1and n(4A) = \/g

Using the above values in (3.6), we have 1 < 1.5. Similarly we can also verify (3.7).

Example 6.5. Let A = 2]. i] 1 Then the complex adjoint matrix of A is given by
_J .
2i 0 0 1
W, = 0 1 —1. 0
0 -1 -2i 0
1 0 0 1

The right spectrum of the matrix A is

A (A) = [~0.3002 + 1.6248i] U [1.3002 + 0.3742i.

9
Also, €4(4) = 1, & (4) = 1, () /2
pr(A) = 1.6522 and \/maz{|an|, |axn|} = 2.
Putting all the above values in (4.4), we get 1.6522 < 6.5.
Example 6.6. Consider the following polynomials p;(z) and p,(z) over H:
pi(2) =28+ (i+3K)2> + (3+j)2* + (5i+ 15K) 2% + (—4 + 5§) 2> + (6i + 18K)z + (6j — 12),
pr(z) = 284+ 2 (14 3Kk) + 2*(3 +j) + 23 (51 + 15k) + 2%(—4 + 5§) + 2(6i + 18k) + (6§ — 12).

The zeros of p;(z) are given in [13]. Moreover, we find the zeros of p,(z) by Niven’s algorithm
[19]. Thus, the zeros and bounds for the zeros of p;(z) and p,.(z) are given in the following table.

21 |z1] 2 |22
-i— 2k 22361 -0.4i—2.2k 22361
[iv/3] 1.7321 iv/3] 1.7321
iv2] 1.4142 iv2] 1.4142
—0.6i— 08k 1 -k 1

Table 1. Zeros of p;(z) and p,(z) and their absolute values, where z; and z, are the set of zeros
of p;(2) and p,.(2), respectively.

Using Lemma 5.3, we have
|
p(Cp) < las|+ (n = 1) + ool + |ar* + @l + s + laal* + las* = glasl®. 6.1)
Calculating the above values and then putting in (6.1), we get
5
B=v10+54+ 180+ 360+ 41+ 250+ 10+ 10 — 3= 857.496.

We know that _
PR
gl



156 M. W. Khadim, Istkhar Ali and M. A. Ayyub Khan

Now,

p1(Cql) > «a, (6.2)

where o = |y "1 + (n = 1) + [qg ">+ lag "as> + gy " aal® + g i+ lap ' + g ' P -

-1
gla 'l

Calculating the above values and then putting in (6.2), we get

1
o = 1.4139 + 5 + 0.0055 + 0.0554 4 0.0554 + 1.3875 + 0.2275 + 1.9991 — 6(1 9991) =

1
9.8112 = o= 0.1019. Finally, we get

0.1019 < |3| < 857.496.

Similarly, we can find bounds for p,.(z).
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