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Abstract In this paper, we investigate a generalized Korpina metric with a special π-form.
Precisely, following the pullback approach to global Finsler geometry, we start with a Finsler
metric (M,L) that admits a concurrent π-vector field, then we consider the Korpina deformation
L̃ = L2

B of the metric L, where B is the associated 1-form with the concurrent vector field. We
find the geometric objects associated with (M, L̃). Namely, we find the metric tensor, geodesic
spray, Barthel connection, and Berwald connection of L̃ in terms of the corresponding objects
of L. Also, we calculate the curvature of Barthel connection of L̃. We provide an example of a
conic Finsler metric that admits a concurrent vector field and calculate its associated 1-form.

1 Introduction

Let B be a 1-form on a Finsler manifold (M,L), many deformations of the Finsler structure
L can be found in the literature. For example G. Randers [12] in 1941, introduced a Finsler
structure L̃ by L̃ = L+B, but when L is Riemannian. Later some authors modified the Randers
change when L is Finslerian, for example, see [7]. Another deformation of L by a 1-form B

is the Kropina change which is defined by L̃ = L2

B . In a similar manner, this change has been
modified and studied when L is Finslerian, for example, see [13].

In 1974, M. Masumoto [7] studied Randers space in a more general setting, by assuming
that L is Finslerian. Then, many authors pay more attentions to Finsler metrics of Randers
or Kropina types. Therefore, a lot of local studies of Finsler metrics of Randers and kropina
types can be found in the literature. One of goals of the deformation of L by a 1-form was to
construct a generalized field theory that would encompass both gravity and electromagnetism.
Then, many authors have established some geometric properties and consequences of a Kropina
metric. Moreover, they studied some interesting curvatures in Finsler geometry, for example the
Riemann curvature and S-curvature and other curvatures under these kind of deformations.

The above mentioned deformations of a Finsler structure and other kinds of deformations by
a 1-form provide several spcial Finsler spaces. Generally, the theory of special Finsler spaces
is a rich area of research. Moreover, it has a lot applications in different branches of science,
for example, in Physics and Biology. The π-tensor fields (torsions and curvatures) related to the
Cartan connection satisfy special forms, which is the source of the majority of the special spaces
in Finsler geometry. As a consequence, there are more special spaces in Finsler geometry than
in Riemannian geometry. Many researchers have studied special Finsler spaces locally (using
local coordinates), including M. Matsumoto ([1, 2, 8, 9, 11, 18]) and others. On the other hand,
there are very few intrinsic explorations of such spaces. A. Tamim, L. Youssef, and others who
made numerous important contributions in this area (see [14, 16, 17, 20, 24]).

In this paper, following the pullback formalism to coordinate-free Finsler geoemtry, we in-
vestigate a coordinate-free study of generalized Korpina metric with special one π-form. First,
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by the concept of generalized Korpina metric we mean the deformation of a Finsler metric L

(not necessarily Riemannian) by a 1-form B, that is, L̃ = L2

B and L is Finslerian. Now, in this
work, in one hand we consider a Finsler manifold (M,L) that provides a concurrent π-vector
field p, and on the other hand we compute the corresponding π-form B. Then, we consider the
generalized Korpina deformation

L̃(x, y) =
L2(x, y)

B(x, y)
. (1.1)

Within the generalized Korpina metric (1.1), we calculate intrinsically some of the geometric
objects attached to L̃. Precisely, the relationship between the Barthel connections Γ and Γ̃ is ob-
tained, as well as the attached canonical sprays to the Finler metrics L and L̃. The transformation
of the h- and hv-curvature tensors attached to the Berwald connection is calculated. That is, the
corresponding canonical sprays G and G̃ are related by

G̃ = G− 2B
p2 C +

L2

p2 γp,

where, C is the Liouville vector field.
As an example of a Finsler metric (M,L) that admits a concurrent vector field, let M =

{(x1, x2, x3) ∈ R3 :, x3 ̸= 0} and L be a conic Finsler metric given by

L =

√
x2

3y
3
2

y1
+ y2

3 .

Moreover, the components of the corresponding 1-form B are given by B1 = B2 = 0, B3 = x3.
Therefore, we have

L̃(x, y) =
L2(x, y)

B(x, y)
=

x2
3y

3
2

y1
+ y2

3

x3y3
=

x2
3y

3
2 + y1y

2
3

x3y1y3
,

which defines a conic generalized Korpina metric on M .

2 Notations and Preliminaries

Here, we present some of the fundamental basics of the pullback formalism in Finsler geometry
that are required for this study. For more details about this approach, we refer, for example, to
[10, 14, 25, 26].

Let M be a n-dimensional smooth manifold. Consider the tangent bundle π : TM −→ M
and its differential dπ : TTM −→ TM . The vertical bundle V (TM) of TM is just ker(dπ).
Let’s π−1(TM) denote the pullback bundle of the tangent bundle. T M represents the subbundle
of nonzero vectors. F(TM) is the algebra of C∞ functions on TM , and X(π(M)) is the F(TM)-
module of smooth sections of the π−1(TM). The objects of X(π(M)) are called π-vector fields,
which are elaborated by barred letters X .

Recall the short exact sequence of vector bundle morphisms [4]

0 −→ π−1(TM)
γ−→ TTM

ρ−→ π−1(TM) −→ 0,

where T M is the slit tangent bundle, γ is the natural injection and ρ := (πTM , dπ).
The tangent structure J of TM or the vertical endomorphism is the endomorphism J :

TTM −→ TTM defined by J = γ ◦ ρ. The Liouville vector field C is given by C := γ η,
where η(u) = (u, u), for all u in the slit tangent bundle T M := TM/ {0}, and called the
fundamental π-vector field .

For a linear connection D on π−1(TM), the associated connection map K is defined by
K : TTM −→ π−1(TM) : X 7−→ DXη, and the horizontal space Hu(TM) to M at u is
Hu(TM) := {X ∈ Tu(TM) : K(X) = 0}. The connection D is called regular if

Tu(TM) = Vu(TM)⊕Hu(TM) ∀u ∈ TM.

For a regular connection D on M , the vector bundle maps ρ|H(TM) and K|V (TM) are isomor-
phisms. In this case, the map β := (ρ|H(TM))

−1 is called the horizontal map of D.
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Definition 2.1. For a regular connection D on π−1(TM) with the horizontal map β and the
corresponding classical torsion (resp. curvature) tensor field T (resp. K). Then:

(i) For a π-tensor field A of type (0, p), the h-covariant derivative
h

D and the v-covariant deriva-
tive

v

D are given by:

(
h

D A)(X,X1, ..., Xp) := (DβXA)(X1, ..., Xp).

(
v

D A)(X,X1, ..., Xp) := (DγXA)(X1, ..., Xp).

(ii) The (h)h-, (h)hv- and (h)v-torsion tensors of D are defined by:

Q(X,Y ) := T(βX, βY ), T (X,Y ) := T(γX, βY ), V (X,Y ) := T(γX, γY ),

(iii) The horizontal, mixed and vertical curvature tensors of D are given as follows:

R(X,Y )Z := K(βX, βY )Z, P (X,Y )Z := K(βX, γY )Z,

S(X,Y )Z := K(γX, γY )Z,

(iv) The (v)h-, (v)hv- and (v)v-torsion tensors of D:

R̂(X,Y ) := R(X,Y )η, P̂ (X,Y ) := P (X,Y )η, Ŝ(X,Y ) := S(X,Y )η.

Definition 2.2. A Finsler structure or function on M is a map L : TM −→ [0,∞) such that:

(a) L is C∞ on T M , C0 on TM .

(b) L is positively homogeneous of degree 1 in the directional argument y, that is LCL = L,
where LX is the Lie derivative in the direction of X .

(c) The Hilbert 2-form Ω := ddJ E has a maximal rank.

where E = 1
2L

2. The Finsler metric g induced by L on π−1(TM) is defined as follows

g(ρX, ρY ) := Ω(JX, Y ), ∀X,Y ∈ X(TM). (2.1)

In this case, the pair (M,L) is called a Finsler manifold with regular Finsler metric. When the
conditions (a)-(c) are satisfied on a conic subset of TM , then the pair (M,L) is called a conic
Finsler manifold.

The following result provides the main theorem of existence and uniqueness for Cartan con-
nection on Finsler manifolds.

Theorem 2.3. [21] Suppose that (M,F ) is a Finsler manifold with the metric tensor g attached
to L. Then, there exists a unique regular connection ∇ on π−1(TM) with the properties:

(i) ∇ is metrical, that is, ∇g = 0,

(ii) The (h)h-torsion of the connection ∇ vanishes, i.e., Q = 0,

(iii) The (h)hv-torsion T of the connection ∇ has the property that g(T (X,Y ), Z) = g(T (X,Z), Y ).

The connection ∇, mentioned above, is called the Cartan connection attached to the Finsler
manifold (M,L).

We end this section with some basics and properties of the Klein-Grifone-formalism to global
Finsler geometry. We refer to [4, 5, 6], for further information.

A semi-spray on a manifold M is a vector field G on TM such that C∞ on T M , C1 on TM ,
and JG = C. A a spray on M is defined by a homogeneous semispray G of degree 2 in the
directional variable, that is, [C, G] = G.

A vector 1-form Γ on TM is called a nonlinear connection on M such that Γ is C∞ on T M ,
C0 on TM , and

JΓ = J, ΓJ = −J.

In this case, the horizontal and vertical projectors corresponding to Γ are defined by h := 1
2(I+Γ)

and v := 1
2(I − Γ) respectively. Also, the torsion and curvature of Γ are defined respectively by

t := 1
2 [J,Γ] and R := − 1

2 [h, h].
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Proposition 2.4. [6, 5] For a Finsler manifold (M,L), we associate

(a) The canonical spray G: iG ddJE = −dE.

(b) The Barthel connection Γ: Γ = [J,G].
Throughout, we assume that (M,L) is a Finsler manifold of dimension n (≥ 3). We have the

following geometric objects:

g : the Finser metric defined by the Finsler structure L,

ℓ : the normalized supporting element defined by ℓ := L−1iη g,

ℏ : the angular metric tensor defined by ℏ := g − ℓ⊗ ℓ,

ϕ : the vector π-form associated with ℏ defined by iϕ(X) g := iX ℏ

D◦ : the Berwald connection of (M,L),

h

D◦ (
v

D◦) : the horizontal (vertical) covariant derivative associated with D◦,

R◦, P ◦, R̂◦ : the h-curvature, hv-curvature, (v)h-torsion tensors of Berwald connection,

H := iη R̂◦ : the deviation tensor of Berwald connection,

∇ : the Cartan connection associated with (M,L),

h

∇ (
v

∇) : the horizontal (vertical) covariant derivative associated with ∇ ,

R, P, R̂ : the h-, hv-curvatures, (v)h-torsion tensors of Cartan connection,

T : the (h)hv-torsion of Cartan connection,

T : the Cartan torsion defined by T(X,Y , Z) := g(T (X,Y ), Z),

C : the contracted torsion form given by contracting Y with Z for T(X,Y , Z),

C : the torsion vector given by C(X) =: g(C,X),

P̂ : the (v)hv-torsion tensor of Cartan connection.

3 Generalized Korpina metric with special π-form

This section is devoted to introduce a coordinate-free investigation of a special β-change, called
the special generalized Korpina metric (L̃(x, y) = L2(x,y)

B(x,y) , with B := g(p, η); p being a concur-

rent π-vector field). We establish the formula that relates the Barthel connections Γ and Γ̃, as
well as the associated canonical sprays.

In [23], Nabil et al. investigated the concept of concurrent π-vector fields in Finsler geom-
etry. Additionally, the geometric features of concurrent π-vector fields are established. In the
following, ∇ (D◦, respectively) denotes the Cartan (Berwald) connection attached to a Finsler
manifold (M,L).

We begin with the following definitions and recalling some results of ([23]) which are related
the concurrent π-vector field.

Definition 3.1. Consider a Finsler manifold (M,L), then a π-vector field p ∈ X(π(M)) is said
to be concurrent if p satisfies the properties

∇βX p = −X = D◦
βX

p, ∇γX p = 0 = D◦
γX

p. (3.1)

Moreover, if B is the π-form corresponding to p, that is, B = ip g, then we have

(∇βXB)(Y ) = −g(X,Y ) = (D◦
βX

B)(Y ), (∇γXB)(Y ) = 0 = (D◦
γX

B)(Y ).

Definition 3.2. Consider a Finsler manifold (M,L) with the Berwald connection D◦ on π−1(TM).
Then, an element Y ∈ X(π(M)) does not depend on the directional variable y if and only if
D◦

γX
Y = 0 ∀X ∈ X(π(M)). Also, a scalar (vector) π-form ω does not depend on the directional

variable y if and only if D◦
γX

ω = 0 ∀X ∈ X(π(M)).
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Theorem 3.3. Concurrent π-vector fields together with the associated π-form B have no depen-
dence on the directional variable y.

In [23], Nabil et al. introduced, in coordinate-free fashion, the so-called energy β-change
(L̃2(x, y) = L2(x, y) + B2(x, y), with B := g(p, η); p being a concurrent π-vector field).
Soleiman [15] investigated the energy β conformal change in Finsler geometry. Here, we pro-
vide an intrinsic investigation into a special β-metric, known as the special generalized Korpina
metric. So let us begin with the following definition.

Definition 3.4. Assume the Finsler manifold (M,L) that provides a concurrent π-vector field
p(x) with the associated π-form B. Consider the following Finsler metric

L̃(x, y) =
L2(x, y)

B(x, y)
, (3.2)

with B(x, y) := g(p, η) =: B(η), and g is the Finsler metric attached to L. Assume that L̃
provides a new Finsler metric on M , and will be referred to as a special generalized Korpina
metric.

We have the following lemma that is beneficial for future use.

Lemma 3.5. [21] Suppose that (M,L) is a Finsler manifold and β is the horizontal map of the
Cartan connection ∇. Then, the metricity of the Cartan and Berwald connections are, respec-
tively given by:

(i) (D◦
γX

g)(Y , Z) = 2T(X,Y , Z), ∇γX g = 0.

(ii) (D◦
βX

g)(Y ,Z) = −2P̂(X,Y , Z), ∇βX g = 0.

Lemma 3.6. Under every change L 7→ L̃, the vertical counterpart for Berwald connection
D◦

γX
Y is invariant. i.e. D̃◦

γX
Y = D◦

γX
Y .

Proof. Under every change L 7→ L̃, the difference between the horizontal maps β and β is a
vertical vector field, means that β̃ = β + γµ, for some π-vector field µ. Using the facts that
D◦

γX
Y = ρ[γX, βY ] (see [21]) together with the property that ρ ◦ γ vanishes identically and that

the vertical distribution is integrable, we have

D̃◦
γX

Y = ρ[γX, β̃Y ] = ρ[γX, βY ] + ρ[γX, γµ] = ρ[γX, βY ] = D◦
γX

Y .

Hence, the result follows.

Lemma 3.7. Assume the Finsler manifold (M,L) that provides a concurrent π-vector field p(x)
with the associated π-form B. Then, we have

(a) dJB(γX) = 0, D◦
γX

B = dB(γX) = dJB(βX) = B(X).

(b) dJ L(γX) = 0, D◦
γX

L = dL(γX) = dJ L(βX) = ℓ(X).

(c) dhB(βX) = D◦
βX

B = dB(βX) = −L ℓ(X), dB(G) = −L2

(d) dh L(βX) = D◦
βX

L = dL(βX) = 0.

(e) (D◦
γX

ℓ)(Y ) = (∇γX ℓ)(Y ) = L−1ℏ(X,Y ).

(f) ddJE(γX, βY ) = g(X,Y ).

Proof. The proofs of the items (b), (d) and (e) follow from the facts that L2 = g(η, η), ℓ =
L−1iηg, and ℏ = g−ℓ⊗ℓ together with the properties of the Cartan and Berwald connections. The
proof of the item (f) follows directly form (2.1) and using the property that ddJE(γX, γY ) = 0.
Now, we prove only the items (a) and (c) as follows: According to the facts that ρ ◦ γ and K ◦ β
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vanish identically, ρ ◦ β = idX(π(M)), iηT = 0 = iηP̂, taking Definition 3.1 into account, to-
gether with the fact that (D◦

γX
g)(Y , Z) = −2P̂(X,Y , Z) ([21]), we obtain

(a)

dJB(γX) = (J ◦ γX) ·B = γ (ρ ◦ γ)X ·B = 0.

dJB(βX) = J (βX ·B) = γ (ρ ◦ β)X ·B = γX ·B
= γX · g(p, η) = (D◦

γX
g)(p, η) + g(D◦

γX
p, η) + g(p,D◦

γX
η)

= 2T(X, p, η) + 0 + g(P ,X)

= B(X).

(c)

dhB(βX) = (β ◦ ρ ◦ βX) ·B = βX ·B = dB(βX)

= βX · g(p, η) = (D◦
βX

g)(p, η) + g(D◦
βX

p, η) + g(p,D◦
βX

η)

= −2P̂(X, p, η)− g(X, η) + 0

= −L ℓ(X).

dB(G) = −L ℓ(η) = −L2.

This completes the proof.

Calculating the geometric objects ℓ̃ and ℏ̃ of the metric L̃, we have the following proposition.

Proposition 3.8. Under the special generalized Korpina metric (3.2), we have

(i) The supporting form ℓ̃ and ℓ are related by

ℓ̃(X) =
2L
B

ℓ(X)− L2

B2 B(X). (3.3)

(ii) The angular metric tensors ℏ̃ and ℏ are related by

ℏ̃(X,Y ) =
2L2

B2 ℏ(X,Y ) +
2L4

B4 B(X)B(Y ) +
2L2

B2 ℓ(X) ℓ(Y )

−2L3

B3

{
B(X) ℓ(Y ) +B(Y ) ℓ(X)

}
. (3.4)

Proof. Under the special generalized Korpina metric (3.2), taking Lemma 3.7 into account , we
have
1). Due to the facts that ρ ◦ γ = 0 and that ρ ◦ β = ρ ◦ β̃ = idX(π(M)), it follows that

ℓ̃(X) = dJ L̃(β̃X) = dJ L̃(βX)

=
∂L̃

∂L
dJL(βX) +

∂L̃

∂B
dJB(βX)

=
2L
B

ℓ(X)− L2

B2 B(X).

2). Using item 1.) above, Lemma 3.7(e), together with Lemma 3.6, and Definition 3.1, one can
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show that

ℏ̃(X,Y ) = L̃(D̃◦
γX

ℓ̃)(Y ) = L̃(D◦
γX

ℓ̃)(Y )

= L̃D◦
γX

{
2L
B

ℓ(X)− L2

B2 B(X)

}
= L̃

{
(D◦

γX

2L
B

) ℓ(Y )− (D◦
γX

L2

B2 )B(Y )

}
+L̃

{
2L
B

(D◦
γX

ℓ)(Y )− L2

B2 (D
◦
γX

B)(Y )

}
=

L2

B

{
(

2
B

ℓ(X)− 2L
B2 B(X)) ℓ(Y )− (

2L
B2 ℓ(X)− 2L2

B3 B(X))B(Y )

}
+
L2

B

{
2L
B

(L−1 ℏ(X,Y ) + 0
}
.

Hence, the result follows.

The relationship between g and g̃ is shown by the following proposition.

Proposition 3.9. The Finsler metric g̃ associated with the special generalized Korpina metric
(3.2) is given by the following relation:

g̃(X,Y ) =
2L2

B2 g(X,Y ) +
3L4

B4 B(X)B(Y ) +
4L2

B2 ℓ(X) ℓ(Y )

−4L3

B3

{
B(X) ℓ(Y ) +B(Y ) ℓ(X)

}
.

Consequently, the Cartan torsion T̃ of the special generalized Korpina metric has the form

2T̃(X,Y , Z) =
4L2

B2 T(X,Y , Z) +
3L4

B4 B(X)B(Y ) +
4L
B2

{
ℏ(X,Z) ℓ(Y ) + ℏ(Y ,Z) ℓ(X

}
−4L2

B3

{
ℏ(X,Z)B(Y ) + ℏ(Y ,Z)B(X)

}
+ (D◦

γZ

2L2

B2 )g(X,Y )

+(D◦
γZ

3L4

B4 )B(X)B(Y ) + (D◦
γZ

4L2

B2 ) ℓ(X) ℓ(Y )

−(D◦
γZ

4L3

B3 )
{
B(X) ℓ(Y ) +B(Y ) ℓ(X)

}
,

where D◦
γX

f = dJf(βX) = ∂f
∂L ℓ(X) + ∂f

∂B B(X).

Proof. In view of the special generalized Korpina metric (3.2), using Proposition 3.8, we obtain

ℓ̃(X) =
2L
B

ℓ(X)− L2

B2 B(X).

ℏ̃(X,Y ) =
2L2

B2 ℏ(X,Y ) +
2L4

B4 B(X)B(Y ) +
2L2

B2 ℓ(X) ℓ(Y )

−2L3

B3

{
B(X) ℓ(Y ) +B(Y ) ℓ(X)

}
.

Hence, by using the formula of the that do not vanish metric tensor ℏ̃ = g̃− ℓ̃⊗ ℓ̃, the formula of
g̃ can be obtained.
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In more details,

g̃(X,Y ) =
2L2

B2 ℏ(X,Y ) +
2L4

B4 B(X)B(Y ) +
2L2

B2 ℓ(X) ℓ(Y )

−2L3

B3

{
B(X) ℓ(Y ) +B(Y ) ℓ(X)

}
+

{
2L
B

ℓ(X)− L2

B2 B(X)

}{
2L
B

ℓ(Y )− L2

B2 B(Y )

}
=

2L2

B2 g(X,Y ) +
3L4

B4 B(X)B(Y ) +
4L2

B2 ℓ(X) ℓ(Y )

−4L3

B3

{
B(X) ℓ(Y ) +B(Y ) ℓ(X)

}
.

Consequently, using the formulae of the metric g̃, taking the fact that (D◦
γZ

g)(X,Y ) = 2T(X,Y , Z)

(Lemma 3.5) into account, we get the expression of the Cartan torsion T̃ of the special general-
ized Korpina metric.

Theorem 3.10. The canonical spray G̃ associated with the special generalized Korpina metric
(3.2) is given by

G̃ = G− 2B
p2 C +

L2

p2 γp,

where, C is the Liouville vector field defined by C := γ η and p2 := B(p) = g(p, p).

Proof. Consider the special generalized Korpina metric (3.2), then taking the expression of the
exterior π-form Ω̃ := 1

2ddJ L̃2 into account, keeping in mind the fact that the difference between
two sprays is vertical (i.e. G̃ = G + γµ, for some π-vector field µ) and using Proposition 2.4,
one can show that

−dẼ(X) = iG̃ Ω̃(X) = iG+γµ (
1
2 ddJ L̃

2)(X)

= 1
2 iG ddJ L̃

2(X) + 1
2 iγµ ddJ L̃

2(X).
(3.5)

Therefore, after some computation together the fact thats βη = G and X = hX + vX =
βρX + γKX , together with Lemma 3.7, we have

dẼ(X) =
1
2
dL̃2(X) = L̃ dL̃(X)

=
L2

B

{
2L
B

dL(X)− L2

B2 dB(X)

}
=

2L3

B2 dL(X)− L4

B3 dB(X).

1
2
iG ddJ L̃

2(X) =
1
2
{ddJ L̃2(βη,X)}

=
1
2

{
G · dJ L̃2(X)−X · dJ L̃2(G)− dJ L̃

2[G,X]
}

=
1
2

{
G · (2L̃ℓ̃(ρX))−X · (2L̃ℓ̃(η))− 2L̃ℓ(ρ[G,X])

}
= ((G · L̃) ℓ̃(ρX) + L̃G · ℓ̃(ρX))− (X · L̃2)− L̃ ℓ(ρ[G,X]).
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From which taking Lemmas 3.7 into account, and the following facts

G · L̃ = dL̃(G) =
2L
B

dL(G)− L2

B2 dB(G) =
L4

B2

X · L̃ = dL̃(X) =
2L
B

dL(X)− L2

B2 dB(X)

G · (2L
B

) =
2L3

B2

G · (− L2

B2 ) = −2L4

B3 .

ℓ̃(X) =
2L
B

ℓ(X)− L2

B2 B(X),

ρ[G,X] = ρ[G, hX + vX] = D◦
GρX −KX,

(D◦
G B)(X) = −g(X, η) = −L ℓ(X),

(D◦
G ℓ)(X) = (∇G ℓ)(X) = 0,

dB(X) = B(KX)− Lℓ(ρX),

dL(X) = dL(γKX) = ℓ(KX),

the above relation reduces to

1
2
iG ddJ L̃

2(X) =
L4

B2 (
2L
B

ℓ(ρX)− L2

B2 B(ρX)) +
L2

B
G · (2L

B
ℓ(ρX)− L2

B2 B(ρX))

−2
L2

B
(

2L
B

dL(X)− L2

B2 dB(X))− L2

B
(

2L
B

ℓ(ρ[G,X])− L2

B2 B(ρ[G,X]))

= −L2 ((
2L
B

)(− L2

B2 ) +
L2

B
(− 2L

B2 ))ℓ(ρX)− L2 ((− L2

B2 )
2 +

L2

B
(

2L2

B3 ))B(ρX)

−L2

B
(

2L
B

dL(X)− L2

B2 dB(X))

=
4L5

B3 ℓ(ρX)− 3L6

B4 B(ρX)− 2L3

B2 dL(X) +
L4

B3 dB(X).

On the other hand, using Proposition 3.9, we have

1
2
iγµ ddJ L̃

2(X) = g̃(µ, ρX)

=
2L2

B2 g(µ, ρX) +
3L4

B4 B(µ)B(ρX) +
4L2

B2 ℓ(µ) ℓ(ρX)

−4L3

B3 {B(µ) ℓ(ρX) +B(ρX) ℓ(µ)} .

Plugging the last two relations into Equation (3.5), after some computation, we obtain

−2L3

B2 dL(X) +
L4

B3 dB(X) =
4L5

B3 ℓ(ρX)− 3L6

B4 B(ρX)− 2L3

B2 dL(X) +
L4

B3 dB(X)

+
2L2

B2 g(µ, ρX) +
3L4

B4 B(µ)B(ρX) +
4L2

B2 ℓ(µ) ℓ(ρX)

−4L3

B3 {B(µ) ℓ(ρX) +B(ρX) ℓ(µ)} .

Applying the non-degenerate property of Finsler metric g on the above Equation, we get

2L2

B2 µ =

{
−4L4

B3 +
4L2

B3 B(µ)− 4L
B2 ℓ(µ)

}
η +

{
3L6

B4 − 3L4

B4 B(µ) +
4L3

B3 ℓ(µ)

}
p. (3.6)
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where the Finsler quantities ℓ(µ) and B(µ) determined by the following system:

2Bℓ(µ)− LB(µ) = −L3.

(
4L
B

− 4L3 p2

B3 )ℓ(µ)− (
2L2

B2 − 3L4 p2

B4 )B(µ) = −4L4

B2 +
3L6 p2

B4 ,

where p2 := B(p). Then, we get

ℓ(µ) = −LB

p2 , B(µ) =
L2 p2 − 2B2

p2 .

Consequently, in view of Equation (3.6) taking the assumption G̃ = G + γµ into account, it
follows that the relation between canonical sprays G and G̃ is shown by

G̃ = G− 2B
p2 C +

L2

p2 γp.

Hence, the proof is completed.

Theorem 3.11. The Barthel connection Γ̃ associated with the special generalized Korpina metric
(3.2) is given by

Γ̃ = Γ − λ1 J − dJλ1 ⊗ γη + dJλ2 ⊗ γp,

where λ1 := 2 B
p2 , λ2 := L2

p2 , dJλ1 and dJλ2 are given by (3.7) and (3.8), respectively.

Consequently, the horizontal map β̃ associated with the special generalized Korpina metric has
the form

β̃X = βX − 1
2
{
λ1 γX + dJλ1(βX) γη − dJλ2(βX) γp

}
.

Proof. From Theorem 3.10 and the formula [3]:

[fX, J ] = f [X, J ] + df ∧ iXJ − dJf ⊗X,

and using the given assumption λ1 := 2 B
p2 and λ2 := L2

p2 , one can show that

Γ̃ = [J, G̃] = [J,G− λ1 γη + λ2γp] = [J,G] + [λ1 γη − λ2γp, J ]

= [J,G] + λ1[γη, J ] + dλ1 ∧ iγη J − dJλ1 ⊗ γη

−λ2[γp, J ]− dλ2 ∧ iγp J + dJλ2 ⊗ γp.

On the other hand, we obtain

dJλ1(X) = dJ(
2B
p2 ) =

dJ(2B)(X)

(p2)

=
2B(ρX)

p2 , (as dJp2 = 0), (3.7)

dJλ2(X) = dJ(
L2

p2 ) =
dJL

2(X)

(p2)
=

2Lℓ(ρX)

p2 . (3.8)

iγη J = 0 = iγp J, (as J ◦ γ = 0),

whereas

[γp, J ]X = [γp, JX]− J [γp,X]

= γ{∇γp ρX −∇JX p} − γ{∇γp ρX − T (p, ρX)} = 0.

[γη, J ]X = −JX.

Therefore,

Γ̃ = Γ − λ1 J − dJλ1 ⊗ γη + dJλ2 ⊗ γp.
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Consequently, using the fact that Γ = 2β ◦ρ−I , the horizontal map β̃ associated with the special
generalized Korpina metric has the form

β̃X = βX − 1
2
{
λ1 γX + dJλ1(βX) γη − dJλ2(βX) γp

}
.

That is, the proof is completed.

Remark 3.12. According to the above Theorem, we conclude that the horizontal projection h̃
and vertical projection ṽ associated with the special generalized Korpina metric has the form

h̃ = h+ L, ṽ = v − L,

where L is a vertical vector 1-form given by

L := −1
2
{λ1 J + dJλ1 ⊗ γη − dJλ2 ⊗ γp} . (3.9)

We know that the Frölicher-Nijenhuis [3] bracket [K,L] of vector 1-forms K and L is given
by

[K,L](X,Y ) = [KX,LY ] + [LX,KY ] +KL[X,Y ] + LK[X,Y ]

−K[LX,Y ]−K[X,LY ]− L[KX,Y ]− L[X,KY ].

Particularly, the vector 2-form NL defined by

NL :=
1
2
[L,L](X,Y ) = [LX,LY ] + L2[X,Y ]− L[LX,Y ]− L[X,LY ],

is the Nijenhuis torsion of a vector 1-form L.

Theorem 3.13. The Barthel curvature tensor ℜ̃ associated with the special generalized Korpina
metric (3.2) is determined by

ℜ̃ = ℜ− [h,L]−NL,

where NL := 1
2 [L,L] is the Nijenhuis torsion of a vector 1-form L which is defined by (3.9).

Proof. The proof follows from Remark 3.12, together with the fact that the Barthel curvature
tensor ℜ̃ := − 1

2 [h̃, h̃], and taking the properties of the Frölicher-Nijenhuis bracket [3] into ac-
count.

Theorem 3.14. For the special generalized Korpina metric (3.2), we have

(i) The Berwald vertical counterpart:

D̃◦
γX Y = D◦

γX Y .

(ii) The The Berwald horizontal counterpart:

D̃◦
β̃X Y = D◦

βXY − 1
2
{λ1 D

◦
γX

Y + dJλ1(βX)D◦
γη Y

−dJλ1(βX)Y − dJλ1(βY )X − dJλ2(βX)D◦
γp Y }

+
1
2
{
ddJλ1(γY , βX) η − ddJλ2(γY , βX)) p

}
.

Proof. The first item follows from Lemma 3.6. The proof of the second item follows from the
fact that v := γ ◦ K, h := β ◦ ρ, γD◦

hX Y := v[hX, JY ] and D◦
γX ρY := ρ[γX, βY ] ([21,

Proposition 4.4]), taking into account Remark 3.12, and the facts that the map γ : π−1(TM) →
V TM is an isomorphism, the Berwlad (v)v-curvature S̃◦ = 0 , [JX, JY ] = J [X, JY ] +
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J [JX, Y ], vJ = J and Jv = 0.
In more details.

γD̃◦
hX ρY = ṽ[hX, JY ] = (v − L)[hX + LX, JY ]

= v[hX, JY ] + v[LX, JY ]− L[hX, JY ]− L[LX, JY ]

= γD◦
hXY − γ

2
{λ1 K[JX, JY ] + dJλ1(X)K[ γη, JY ]− dJλ2(X)K[ γp, JY ]}

+
γ

2
{(JY · λ1) ρX + (JY · dJλ1(X)) η − (JY · dJλ2(X)) p}

+
γ

2
{λ1 ρ([hX, JY ]) + dJλ1([hX, JY ]) η − dJλ2([hX, JY ]) p}

= γD◦
hXρY − γ

2
{λ1 D

◦
JX ρY + dJλ1(X)D◦

γη ρY

−dJλ1(X) ρY − dJλ1(Y ) ρX − dJλ2(X)D◦
γp ρY }

+
γ

2
{ddJλ1(JY,X) η − ddJλ2(JY,X)) p} .

Consequently,

D̃◦
β̃X Y = D◦

βXY − 1
2
{λ1 D

◦
γX

Y + dJλ1(βX)D◦
γη Y

−dJλ1(βX)Y − dJλ1(βY )X − dJλ2(βX)D◦
γp Y }

+
1
2
{
ddJλ1(γY , βX) η − ddJλ2(γY , βX)) p

}
.

This completes the proof.

Remark 3.15. It should be noted that Tachibana [19] has been investigated and characterized
the presence of a concurrent vector field on Finsler manifolds. Recently, a generalization of a
concurrent vector field, called a semi-concurrent vector field, has been investigated and studied
in [28].

We end this work by an example of a Finsler metric that admits concurrent pi-vector field,
and computing the attached π-form.

Example 3.16. Let M = {(x1, x2, x3) ∈ R3 : x3 ̸= 0} and L be a conic Finsler metric given by

L =

√
x2

3y
3
2

y1
+ y2

3 ,

The components gij of the metric tensor that do not vanish are given by

g11 =
x2

3 y
3
2

y3
1

, g12 = −
3x2

3 y
2
2

2y2
1

, g22 =
3x2

3 y2

y1
, g33 = 1.

The components gij of the inverse metric tensor that do not vanish are calculated as follows:

g11 =
4 y3

1

x2
3 y

3
2
, g12 =

2 y2
1

x2
3 y

2
2
, g22 =

4 y1

3x2
3 y2

, g33 = 1.

The components Cijk of the Cartan tensor that do not vanish are given by

C111 = −
3x2

3 y
3
2

2y4
1

, C112 =
3x2

3 y
2
2

2y3
1

, C122 = −
3x2

3 y2

2y2
1

, C222 =
3x2

3
2y1

.
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The spray coefficients are given by

G1 =
y1y3

x3
, G2 =

y2y3

x3
, G3 = −

x3y
3
2

2y1
.

Straightforward calculations or using the Finsler package [27], we have the coefficients of
Cartan connection. For example,

Γ
1
13 =

1
x3

, Γ
2
23 =

1
x3

, Γ
3
33 = 0.

One can see that this metric provides a concurrent π-vector field defined by p = pi∂i, where
∂i are the basis for the fibers of π−1(TM), p1(x) = p2(x) = 0, p3(x) = x3. That is, we have
piCijk = 0 and

p1
|1 = δ1p

1 + p1
Γ

1
11 + p2

Γ
1
12 + p3

Γ
1
13 = 1,

Similarly, p2
|2 = 1, p3

|3 = 1 and all other components of pi|j vanish.
Moreover, the components of the corresponding π-form B are given by B1 = B2 = 0, B3 = x3.
Therefore,

L̃(x, y) =
L2(x, y)

B(x, y)
=

x2
3y

3
2

y1
+ y2

3

x3y3
=

x2
3y

3
2 + y1y

2
3

x3y1y3
,

which defines a special generalized Korpina metric over M .

Future work

It should be mentioned that the Korpina metric has numerous uses in physics as well as Finsler
geometry. We will look into some geometric applications of this class of metrics intrinsically in
the near future as a continuation of this work.
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