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Abstract This paper studies the structure of cyclic codes of length n over M3(F3). We define
the Gray map ϕ from M3(F3) to F3

33 and investigate the structural properties of cyclic codes
over M3(F3) by using cyclic algebra. It is shown that cyclic codes of length n over M3(F3) are
principal ideals of R[x]/⟨xn − 1⟩. Meanwhile, a linear code of length n over M3(F3) can be
regarded as a linear code of length 3n over F33 under the Gray map ϕ. Furthermore, we prove
that M3(Fp) is isomorphic to the cyclic algebra (Fq/Fp, τ, 1) and discuss the structure of linear
codes over M3(Fp) with q = p3, when p ≡ 1(mod6).

1 Introduction

In recent three decades, the theory of error-correcting codes over finite rings has gained a great
deal of attention since Hammons et al. [13] showed that some good nonlinear binary codes can
be represented as Gray images of linear codes on Z4. Numerous linear codes over commutative
rings have been built (see [1, 5–9, 21, 22, 24, 25, 31]).

Codes on non-commutative rings in theory of error-correcting codes are becoming more im-
portant. Many researchers wonder about the structure of cyclic codes over finite non-commutative
rings owing to the rich algebraic structure of cyclic codes over finite fields and commutative
rings. Linear codes over matrix rings have been a widely studied topic since Wood [30] proved
that finite Frobenius rings are suitable as linear coded alphabets. The ring M2(F2) as a linear
coded alphabet appeared first in the algebraic construction for modular lattices in [3]. Greferath
et al. considered the role of the matrix rings in coding theory in [12]. In 2012, Oggier et al. [19]
constructed space-time codes over M2(F2). In 2013, Alahmadi et al. [2] studied cyclic codes
over M2(F2) and explored self-dual F4-codes. The structure of cyclic codes over M2(Fp) was
built in 2014 by Falcunit and Sison [11]. In 2018, Luo and Parampalli [18] investigated cyclic
codes over the matrix ringM2(F2+uF2) and obtained some optimal F4-codes. In 2019, Pal et al.
[20] constructed cyclic codes over M4(F2). Bhowmick et al. [4] studied self-dual cyclic codes
over M2(Z4) and Islam et al. [15] extended the results of [11] to M2(Fp + uFp) in 2022. Patel
et al. [23] considered the structure of cyclic codes over M4(F2 + uF2). The structure of skew
cyclic codes over M2(F2) was studied by Si and Niu [28]. Dinh et al [10] derived the structure
theorem for cyclic codes of odd length n over the ring A = M2(F2[u]/⟨uk⟩) with the help of
isometry map from A to F4[u, v]/⟨uk, v2, uv − vu⟩.

This paper uses cyclic algebra introduced in [3, 27] to consider the structure of cyclic codes
over M3(F3) and defines the Gray map ϕ from M3(F3) to F3

33 . The cyclic codes over M3(F3) are
corresponding to the linear codes over the finite field F33 by using Gray map ϕ. We also study
linear codes over M3(Fp) when p ≡ 1(mod6).

The structure of the article is as follows: In Section 2, this paper will introduce some essential
basic facts. This section proves that M3(F3) is isomorphic to the finite chain ring R = F33 ⊕
uF33 ⊕ u2F33 , u3 = 0. Meanwhile, the parameters of the Gray images of the linear codes of
length n over R are given in this section. In Section 3, the structural theorems of cyclic codes
of length n over M3(F3) are obtained. The structure of linear codes over M3(Fp) is studied in
Section 4. Section 5 concludes this work.
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2 Frobenius Rings and Cyclic Algebras

Let R be a finite ring with identity 1 ̸= 0. An ideal I of R is called principal, denoted by
I = ⟨a⟩, if it is generated by an element a ∈ R. If all the ideals of R are principal, then R is
called a principal ideal ring. R is called a local ring if R has a unique right (resp. left) maximal
ideal. A ring R is called a right (resp. left) chain ring if the set of all right (resp. left) ideals of
R is linearly ordered under the set inclusion. Unless otherwise explained, all rings mentioned in
this paper have a multiplication identity.

We define the Jacobson radical as the intersection of all maximal ideals in R, denoted by
Rad(R). It is a two side ideal. The left(resp. right) socle of a ring R, denoted by Soc(RR)
(resp. Soc(RR)), is the sum of all minimal left (resp. right) ideals. A finite ring R is a Frobenius
ring if and only if R(R/Rad(R)) ≃ Soc(RR) [14]. The ring Mn(R) of n × n matrices over a
Frobenius ring R is also Frobenius [29]. Next, we give the definition of cyclic algebra. Lemma
2.2 describes the relation between the Frobenius ring M3(F3) and cyclic algebra.

Let Rn be the set of all n-tuples over R. A nonempty subset C of Rn is called a code of
length n over R. A code C of length n over R is called right (resp. left) linear if it is a right
(resp. left) R-submodule of Rn. Elements of C are said to be codewords. Each codeword c in
the code C is an n-tuple of the form c = (c0, c1, · · · , cn−1) ∈ C.

Definition 2.1. Let L/K be a cyclic extension of degree n, with Galois group Gal(L/K) = ⟨σ⟩,
where σ is the generator of the cyclic group. Let (L/K, σ, γ) be its corresponding cyclic algebra
of degree n, that is

(L/K, σ, γ) ≃ L⊕ eL+ e2L⊕ · · · ⊕ en−1L

with e ∈ (L/K, σ, γ) such that le = eσ(l) for all l ∈ L and en = γ ∈ K, γ ̸= 0.

Lemma 2.2. A split algebra Mn(K) can be considered as a cyclic algebra if there is a cyclic
extension L/K of degree n because L can be embedded in Mn(K) ≃ EndK(L) by using the
regular representation.

We consider the cyclic algebra A = (F33/F3, σ, 1), where F33 ≃ F3[α] with α3 − α + 1 = 0.
Its cyclic Galois group Gal(F33/F3) is generated by the Frobenius automorphism σ(a) = a3. If we
consider the map µ : A →M3(F3),

e 7→

1 −1 1
0 1 1
0 0 1

 , α 7→

0 0 −1
1 0 1
0 1 0

 ,

then it is easy to check that µ is a isomorphism by [19] and [26, Lemma 12.6]. Therefore, we
have

A ≃M3(F3) ≃ F33 ⊕ eF33 ⊕ e2F33 ,

where the multiplication is given by ae = eσ(a) for all a ∈ F33 . The cyclic algebra A contains
the finite field F33 and has an F33 -basis {1, e, e2}. It is a central simple algebra over F3 and
dimA = 9 by [26, Theorem 12.1]. Note that (e − 1)3 = 0, then e − 1 is a nilpotent element of
order 3. Let u = e− 1, and do a change of basis to get

A ≃ F33 ⊕ uF33 ⊕ u2F33 . (2.1)

Let R = F33 ⊕ uF33 ⊕ u2F33 . It is a finite local ring with the unique maximal ideal ⟨u⟩.
Notice that the ring R is non-commutative for multiplication. The multiplication and the ideals
mentioned in this paper are always right.

Let C be a code of length n over R. The Hamming weight wHam(c) of a codeword c =
(c0, c1, · · · , cn−1) ∈ C is the number of nonzero components. The minimum weight wHam(c) of
the code C is the smallest weight among all its nonzero codewords. For x = (x0, x1, · · · , xn−1),
y = (y0, y1, · · · , yn−1) ∈ C, dHam = #{i|xi ̸= yi} is called the Hamming distance between x
and y. It is denoted by dHam(x, y) = wHam(x− y). The minimum Hamming distance between
distinct pairs of codewords of C is called the minimum distance of C and denoted by dHam(C).

For any r = r0 + ur1 + u2r2 ∈ R, the Lee weight of r is defined as

wL(r) = wHam(r2) + wHam(r1 + r2) + wHam(r0 + r1 + r2), (2.2)
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where wHam(∗) holds the usual Hamming weight on F33 . Let c = (c0, c1, · · · , cn−1) ∈ C.
Then the Lee weight of c is the rational sum of Lee weights of its components, that is, wL(c) =∑n−1

i=0 wL(ci). For x, y ∈ C, the Lee distance dL(x, y) between x and y is the Lee weight of
x − y, i.e. dL(x, y) = wL(x − y). The minimum Lee weight of C is the smallest nonzero
Lee weight among all codewords. The minimum Lee distance of C is the smallest nonzero Lee
distance between all pairs of distinct codewords. If C is linear, then the minimum Lee distance
is same as the minimum Lee weight.

Define the Gray map ϕ from R to F3
33 following the method in [6],

ϕ(r0 + ur1 + u2r2) = (r2, r1 + r2, r0 + r1 + r2).

The map ϕ is a linear distance-preserving bijection and can be extended to Rn. From [20] and
the linearity of the map ϕ, we have the following theorem.

Theorem 2.3. Let n be an integer that is not divisible by 3. If C is a linear code over R of length
n with size M and the minimum Lee distance dLee, then ϕ(C) is a linear code over F33 of length
3n with size M and the minimum Hamming distance dHam.

3 Cyclic Codes over M3(F3)

Let n be an integer that is not divisible by 3. We set R[x] is the ring of polynomials over R and
Rn = R[x]/⟨xn − 1⟩. Then a linear code of length n over R is a right R-submodule of Rn. Let
C be a linear code of length n over R. The linear code C is called cyclic if for any codeword
c = (c0, c1, · · · , cn−1) ∈ C, its cyclic shift (cn−1, c0, c1, · · · , cn−2) is also in C.

This section shows that every cyclic code of length n over R is a right principal ideal of Rn.
Theorem 3.1 describes the sufficient and necessary conditions for a linear code over R to be a
cyclic code. Theorems 3.6 and 3.8 illustrate the structure of cyclic codes over R.

Theorem 3.1. A linear code C = C0 + uC1 + u2C2 of length n over R is cyclic if and only if
C0, C1, C2 are cyclic codes of length n over F33 .

Proof. Let θ be the standard cyclic shift map on Rn, i.e., for any c ∈ C, we have that θ(c) ∈ C
and θ is linear. If c0 + uc1 + u2c2 ∈ C, where ci ∈ Ci, i = 0, 1, 2, then θ(c0 + uc1 + u2c2) =
θ(c0) + uθ(c1) + u2θ(c2) ∈ C. Thus, θ(ci) ∈ Ci, i = 0, 1, 2, i.e., C0, C1, C2 are cyclic.

Conversely, if C0, C1, C2 are cyclic codes over F33 . Then for every c0 +uc1 +u2c2 ∈ C, where
ci ∈ Ci, i = 1, 2, 3, we have θ(c0) ∈ C0, θ(c1) ∈ C1 and θ(c2) ∈ C2. Therefore, θ(c0 + uc1 +
u2c2) = θ(c0) + uθ(c1) + u2θ(c2) ∈ C, i.e., C is cyclic over R.

There exists a natural homomorphic map from R to the Galois field F33 . For any r ∈ R, let r̄
denote the element reduction modulo u. Define the polynomial reduction map δ : R[x] → F33 [x]
such that

f(x) =
n−1∑
i=0

rix
i 7→

n−1∑
i=0

r̄ix
i = f̄(x).

Definition 3.2. A monic polynomial f over R[x] is called a basic irreducible polynomial if its
image f̄ under the map δ is irreducible.

Since the characteristic of R is 3 and n is not divisible by 3, then it implies that xn − 1 has
a unique decomposition as a product of basic irreducible pairwise coprime polynomials in R[x]
from [8, Proposion 2.7].

Lemma 3.3. Let xn − 1 =
∏t

i=1 fi, where f ′is, i = 1, 2, · · · t, are basic irreducible polynomials
in R[x]. Then

Rn = R[x]/⟨xn − 1⟩ =
t⊕

i=1

R[x]/⟨fi⟩.

Proof. The proof is obtained easily from the Chinese Remainder Theorem.
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Lemma 3.4. Let g be a basic irreducible polynomial in R[x]. Then the right ideals of Rg =
R[x]/⟨g⟩ are ⟨0⟩, ⟨1⟩, ⟨u⟩, and ⟨u2⟩.

Proof. First, we assert that these four ideals are not equal to each other. They can be rewritten
as ⟨ui + ⟨g⟩⟩, i = 0, 1, 2, 3. Let ⟨ui + ⟨g⟩⟩ = ⟨uj + ⟨g⟩⟩, 0 ≤ i < j ≤ 3. Then there exist
r(x) ∈ R[x] with deg(r(x)) < deg(g(x)) such that ui + ⟨g⟩ = ujr(x) + ⟨g⟩. This shows that
ui − ujr(x) ∈ ⟨g(x)⟩. Since,

deg(ujr(x)− ui) ≤ deg(r(x)) ≤ deg(g(x)),

it follows that ujr(x)−ui = 0. Multiplying above equation by u3−j , we have u3+i−j = 0. Thus,
3 + i− j = 0, i.e. i = j. Next, we prove that R/⟨g⟩ has only four ideals.

Let N be a nonzero right R-submodule of Rg and h(x) be a nonzero element in N with
h /∈ ⟨g⟩. Then h(x) = h0(x) + uh1(x) + u2h2(x), where hi(x) ∈ F33 [x] for i = 0, 1, 2, and

gcd(g(x), hi(x)) = 1 or g(x).

If gcd(g, h0) = 1, i.e. g(x) and h0(x) are coprime in R[x], then there exist s0, t0 such that
gs0 + h0t0 = 1. That implies

(h0 + ⟨g⟩)(t0 + ⟨g⟩) = 1 + ⟨g⟩,

where ⟨h0 + ⟨g⟩⟩ is an unit in R[x]/⟨g⟩. Therefore, N = R[x]/⟨g⟩ = ⟨1⟩.
If gcd(g, h0) = g, gcd(g, h1) = 1, then h+ ⟨g⟩ = uh1 + u2h2 + ⟨g⟩. That means N = ⟨u⟩.
If gcd(g, h0) = g, gcd(g, h1) = g and gcd(g, h2) = 1 then h + ⟨g⟩ = u2h2 + ⟨g⟩, i.e.

N = ⟨u2⟩.
If gcd(g, hi) = g for i = 1, 2, 3, then it’s obvious that N = ⟨0⟩.

Lemma 3.4 shows that the right ideals of Rg = R[x]/⟨g⟩ form a chain.

Lemma 3.5. Let xn − 1 =
∏t

i=1 fi, where the f ′is are pairwise coprime monic basic irreducible
polynomials in R[x]. Let f̂i = xn−1

fi
. Then any right ideal of R[x]/⟨xn − 1⟩ is a direct sum of

the ideals ⟨f̂i⟩, ⟨uf̂i⟩ and ⟨u2f̂i⟩.

Proof. By Lemma 3.3, we have

R[x]/⟨xn − 1⟩ = R[x]/∩t
i=1⟨fi⟩ ≃

t⊕
i=1

R[x]/⟨fi⟩. (3.1)

Thus, any ideal of R[x]/⟨xn − 1⟩ is one of the form ⊕t
i=1Ii, where Ii is a nonzero ideal of

R[x]/⟨fi⟩. By Lemma 3.4, we have Ii ∈ {⟨fi⟩, ⟨1 + ⟨fi⟩⟩, ⟨u + ⟨fi⟩⟩, ⟨u2 + ⟨fi⟩⟩}, 1 ≤ i ≤
t. Hence Ii corresponds to one of the forms ⟨xn − 1⟩, ⟨f̂i + ⟨xn − 1⟩⟩, ⟨uf̂i + ⟨xn − 1⟩⟩,
⟨u2f̂i + ⟨xn − 1⟩⟩ in R[x]/⟨xn − 1⟩.

The following theorems describe the structure of cyclic codes over M3(F3).

Theorem 3.6. Let xn−1 =
∏t

i=1 fi, where the f ′is are pairwise coprime monic basic irreducible
polynomials in R[x]. If C is a cyclic code of length n over R, then there exists a range of pairwise
coprime monic polynomials pi(x) ∈ F33 [x], i = 0, 1, 2, 3, such that xn − 1 =

∏3
i=0 pi(x) and

C = ⟨p̂1⟩ ⊕ ⟨up̂2⟩ ⊕ ⟨u2p̂3⟩. Furthermore |C| = 273deg(p1)+2deg(p2)+deg(p3).

Proof. Since C is a cyclic code of length n over R, then it can be seen as a direct sum of the
form of an array of ideals ⟨uj f̂i + ⟨xn − 1⟩⟩, 0 ≤ j ≤ 3, 1 ≤ i ≤ t by Lemma 3.5.

Without loss of generality, we make the following assumption,

C = ⟨f̂s1+1⟩ ⊕ · · · ⊕ ⟨f̂s1+s2⟩

⊕ ⟨uf̂s1+s2+1⟩ ⊕ · · · ⊕ ⟨uf̂s1+s2+s3⟩

⊕ ⟨u2f̂s1+s2+s3+1⟩ ⊕ · · · ⊕ ⟨u2f̂t⟩,
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where si ≥ 0 and s1 + s2 + s3 + 1 ≤ t. For s1 + s2 + s3 + s4 = t, define

p0 = f1f2 · · · fs1 ,

p1 = fs1+1 · · · fs1+s2 ,

p2 = fs1+s2+1 · · · fs1+s2+s3 ,

p3 = fs1+s2+s3+1 · · · fs1+s2+s3+s4 .

By our construction, it is clear that p0, p1, p2, p3 are pairwise coprime and xn − 1 =
∏3

i=0 pi.
Thus, C = ⟨p̂1⟩ ⊕ ⟨up̂2⟩ ⊕ ⟨u2p̂3⟩.

By [8, Theorem 3.4], we have |C| = |⟨p̂1⟩| · |⟨up̂2⟩| · |⟨u2p̂3⟩| and

|⟨uip̂i+1⟩| =
(

|R|
|⟨u3−i⟩|

)(n−deg(p̂i+1))

=

(
|R|3

|R|i

)deg(pi+1)

=
(
|R|

)(3−i)deg(pi+1)
,

i = 0, 1, 2, where R = R/⟨u⟩. Thus, |C| = 273deg(p1)+2deg(p2)+deg(p3).

By Theorem 3.6, we obtain the following corollary.

Corollary 3.7. Let C be a cyclic code of length n over R. There exist polynomials q0(x), q1(x),
q2(x) in F33 [x] such that C = ⟨q0⟩ ⊕ ⟨uq1⟩ ⊕ ⟨u2q2⟩ and q2(x)|q1(x)|q0(x)|xn − 1.

Proof. By Theorem 3.6, there exists a family of pairwise coprime monic polynomials pi(x) ∈
F33 [x], i = 0, 1, 2, 3 and

∏3
i=0 pi(x) = xn − 1, such that C = ⟨p̂1⟩ ⊕ ⟨up̂2⟩ ⊕ ⟨u2p̂3⟩.

Define q0 = p0p2p3, q1 = p0p3, q2 = p0. On the one hand, it is obvious that q2(x)|q1(x)|q0(x)|xn−
1. It should be noticed that uip̂i+1 = uip0 · · · pipi+2 · · · p3 = uiqip1 · · · pi, i = 0, 1, 2. Thus,
C ⊆ ⟨q0⟩ ⊕ ⟨uq1⟩ ⊕ ⟨u2q2⟩.

On the other hand, note that gcd(p̂1(x), p1(x)) = 1 and gcd(p1(x), p2(x)) = 1, then there
exist φ(x), ψ(x) ∈ F33 [x] such that φ(x)p1(x) + ψ(x)p2(x) = 1. Meanwhile,

q1 = p0p3

= (φp1 + ψp2)p0p3

= φp0p1p3 + ψp0p2p3

= φp̂2 + ψq0.

Therefore, uq1(x) = uφp̂2(x) + uψq0(x) ∈ C. Similarly, it can also be proved that u2q2(x) ∈ C,
i.e. C ⊇ ⟨q0⟩ ⊕ ⟨uq1⟩ ⊕ ⟨u2q2⟩. The proof is complete.

Theorem 3.8. Let C be a cyclic code of length n over R. The generator of C is P = p̂1(x) +
up̂2(x) + u2p̂3(x).

Proof. It is obvious that ⟨P ⟩ is contained in C. By Theorem 3.6, we have that C = ⟨p̂1, up̂2, u
2p̂3⟩

and
∏3

i=0 pi = xn−1, where pi ∈ F33 [x], i = 0, 1, 2, 3, are pairwise coprime monic polynomials
and pip̂i = xn − 1.

For every i, j ∈ {0, 1, 2, 3}, i ̸= j, it is clear that p̂ip̂j ≡ 0(modxn − 1) and gcd(pi, p̂i) = 1.
Therefore, there exist αi(x) and βi(x) in F33 [x] such that for any i ∈ {0, 1, 2, 3},

αi(x)pi(x) + βi(x)p̂i(x) = 1.

Multiplying them separately, we have

k∏
i=1

αi(x)pi(x) + βi(x)p̂i(x) = 1 (3.2)

where k ∈ {1, 2, 3}. Let k = 2. By Eq.(3.2), we get

(α1p1 + β1p̂1)(α2p2 + β2p̂2) ≡ α1α2p1p2 + β1α2p̂1p2 + α1β2p1p̂2

≡ 1(modxn − 1).
(3.3)



Algebraic Coding Theory 185

Multiplying both sides of Eq.(3.3) by u2p̂3, we have

u2p̂3(α1α2p1p2 + β1α2p̂1p2 + α1β2p1p̂2) ≡ u2α1α2p1p2p̂3 ≡ u2p̂3(modxn − 1),

and
α1α2p1p2 ≡ 1(modxn − 1). (3.4)

By Eq.(3.4) and P = p̂1 + up̂2 + u2p̂3, we have

α1α2p1p2P ≡ u2α1α2p1p2p̂3 ≡ u2p̂3(modxn − 1),

thus, u2p̂3 ∈ ⟨P ⟩.
We can prove that p̂1, up̂2 ∈ ⟨P ⟩ similarly. Therefore, C = ⟨P ⟩.

From Theorem 3.8, we get the following corollary immediately.

Corollary 3.9. The quotient ring Rn = R[x]/⟨xn − 1⟩ is a principal ideal ring.

Let C be a cyclic code of length n over R. Then C has the form C = ⟨p̂1⟩ ⊕ ⟨up̂2⟩ ⊕ ⟨u2p̂3⟩ by
Theorem 3.6. We give the examples below.

Example 3.10. Suppose n = 2. The factorization of x2 − 1 over F33 is given by (x+ 1)(x− 1).
Let f1 = x+ 1, f2 = x − 1. This paper considers the cyclic code C1 = ⟨f1, uf2⟩ over R. From
Lemma 3.5 and Theorem 3.6, we know that C1 = ⟨f1⟩ ⊕ ⟨uf2⟩.

Next, we determine the parameters of the Gray image code ϕ(C1) of C1 by MAGMA. The
code ϕ(C1) is a linear [6, 4, 2] code over F33 . A generator matrix of ϕ(C1) is

1 0 0 0 0 −1
0 1 0 0 −1 1
0 0 1 0 1 −1
0 0 0 1 1 −1

 .

Example 3.11. Let n = 4. It is easy to check that x4 − 1 = (x + 1)(x − 1)(x2 + 1). We set
f1 = x+ 1, f2 = x− 1, f3 = x2 + 1 and consider the cyclic code C2 = ⟨f1f2, uf3⟩ over R. Let

p0 = 1, p1 = f3, p2 = f1f2, p3 = 1.

Then we have that C2 = ⟨p̂1⟩⊕⟨up̂2⟩ by Lemma 3.5 and Theorem 3.6. The code ϕ(C2) is a linear
[12, 8, 2] code over F33 . A generator matrix of ϕ(C2) is

1 0 0 0 0 0 0 0 0 0 −1 −1
0 1 0 0 0 0 0 0 1 1 1 1
0 0 1 0 0 0 0 0 −1 −1 −1 −1
0 0 0 1 0 0 0 0 0 −1 −1 −1
0 0 0 0 1 0 0 0 0 −1 1 −1
0 0 0 0 0 1 0 0 0 1 0 −1
0 0 0 0 0 0 1 0 0 0 −1 −1
0 0 0 0 0 0 0 1 1 0 0 0


.

4 Linear codes over M3(Fp), p ≡ 1(mod6)

In this section, we discuss the structure of linear codes of length n overM3(Fp), where p is prime
and p ≡ 1(mod6). The relationship between cyclic algebra and the Froebnius ring M3(Fp)
should be determined. Eq.(4.2) shows that the cyclic algebra A = (Fq/Fp, τ, 1) is isomorphic
to M3(Fp), where τ is the Frobenius map of the finite field Fp. Meanwhile, Theorems 4.6-4.8
depict the structural properties of linear codes of length n over M3(Fp).
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Lemma 4.1. [17, Theorem 6.1, König-Rados Theorem ] Let f(x) = a0 + a1x + a2x
2 + · · · +

aq−2x
q−2 ∈ Fq[x]. We associate f with the (q − 1)× (q − 1) matrix A given by

A =


a0 a1 · · · aq−3 aq−2

a1 a2 · · · aq−2 a0
...

...
...

...
aq−2 a0 · · · aq−4 aq−3

 ,

then the number of nonzero solutions of f(x) = 0 in Fq is equal to q − 1−rank(A) .

The matrix A is a left-circulant matrix, in which each row is obtained from the preceding row
by a left cyclic shift of entries.

Definition 4.2. A polynomial f ∈ R[x1, x2, · · · , xn] is called symmetric if f(xi1 , xi2 , · · · , xin) =
f(x1, x2, · · · , xn) for any permutation i1, i2, · · · , in of the integers 1, 2, · · · , n.

Let
σ1 = x1 + x2 + · · ·+ xn,

σ2 =
∑

1≤i1<i2≤n

xi1xi2 ,

· · · · · · · · ·

σn−1 =
∑

1≤i1<···<in−1≤n

n−1∏
r=1

xir ,

σn = x1x2 · · ·xn.

The polynomial σk(k = 1, 2, · · · , n) is called the k-th elementary symmetric polynomial in the
indeterminates x1, x2, · · · , xn over R.

Lemma 4.3. [17, Theorem 1.76, Waring’s Formula ] Let s0 = n ∈ Z and sk = sk(x1, x2, · · · , xn) =
xk1 + xk2 + · · ·+ xkn ∈ R[x1, x2, · · · , xn] for k ≥ 1. Then

sk =
∑

(−1)i2+i4+··· (i1 + i2 + · · ·+ in − 1)!k
i1!i2! · · · in!

σi1
1 σ

i2
2 · · ·σin

n ,

where the summation is extended over all n-tuples (i1, i2, · · · , in) of nonnegative integers with
i1 + 2i2 + · · ·+ nin = k. The coefficient of σi1

1 σ
i2
2 · · ·σin

n is always an integer.

Theorem 4.4 gives the necessary and sufficient condition that the polynomial f(x) = x3 +
x − 1 is irreducible in Fp[x]. The best choice of f(x) is the Conway polynomial, which is used
in computational algebra systems such as MAGMA and GAP to represent finite fields. However,
since the choice of p is different, then the Conway polynomial is also different. Therefore, this
paper chooses a simple polynomial x3 + x− 1.

Theorem 4.4. Let p ≡ 1(mod6). Then f(x) = x3 + x− 1 is irreducible on Fp if and only if

p−1
6∑

s=0

(−1)3s+1
C3s

p−1
3 +s

p−1
3 + s

+

p−1
3∑

t=0

C3t
p−1

3 +2t
p−1

3 + 2t
̸= 0 (4.1)

in the finite field Fp.

Since the proof of Theorem 4.4 is too long, we place it at the end of the paper so as not to
affect the coherence of the contents of this section.

Considering the Frobenius map τ(x) = xp of Fq and the cyclic algebra A = (Fq/Fp, τ, 1), we
have that

M3(Fp) ≃ A ≃ Fq + vFq + v2Fq, (4.2)
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with q = p3, v3 = 1, where Fq = Fp[ω] and ω3 + ω − 1 = 0. The multiplication is given by
av = vτ(a) for any a ∈ Fq. From linear algebra, we know that

xp = g(x)f(x) + ax2 + bx+ c (4.3)

with g(x) ∈ Fq[x], a, b, c ∈ Fq, i.e., ωp = aω2 + bω + c. The isomorphism ρ : A → M3(Fp) is
given as follows:

v 7→

1 c c2 + 2ab
0 b a2 − 2ab+ 2bc
0 a b2 − a2 + 2ac

 , ω 7→

0 0 1
1 0 −1
0 1 0

 .

Substituting the three roots α1, α2, α3 of f(x) into Eq.(4.3), we get system of linear equationsα2
1 α1 1
α2

2 α2 1
α2

3 α3 1


ab
c

 =

α
p
1

αp
2

αp
3

 .

By Cramer’s Rule, we have

a ≡
αp

1
(α1 − α3)(α1 − α2)

+
αp

2
(α2 − α3)(α2 − α1)

+
αp

3
(α3 − α2)(α3 − α1)

(modp),

b ≡ −
αp

1(α2 + α3)

(α1 − α2)(α1 − α3)
−

αp
2(α1 + α3)

(α2 − α1)(α2 − α3)
−

αp
3(α1 + α2)

(α3 − α1)(α3 − α1)
(modp),

c ≡
αp−1

1
(α1 − α2)(α1 − α3)

+
αp−1

2
(α2 − α1)(α2 − α3)

+
αp−1

3
(α3 − α1)(α3 − α2)

(modp).

(4.4)

Eq.(4.4) gives explicit expressions of a, b, c as rational symmetric polynomials of α1, α2, α3.
Table 4.1 shows the values of a, b, c, when p = 7, 13, 19, 31. All operations on symmetric
polynomials can be done in MAGMA.

Let Rq = Fq + vFq + v2Fq. Then Rq such that v3 − 1 = 0 is a non-chain principal ideal ring
with two maximal ideals ⟨v − 1⟩ and ⟨v2 + v + 1⟩. The ideal lattice of Rq is given in the Figure
4.1.

⟨v − 1⟩

Rq = Fq + vFq + v2Fq, v3 = 1

⟨v2 + v + 1⟩

⟨0⟩

Figure 4.1. The ideal lattice of the ring Rq = Fq[v]/⟨v3 − 1⟩

For a code C over Rq, we define

C1 =
{
c ∈ Fn

q | a+ vb+ v2c ∈ C, for some a, b ∈ Fn
q

}
,

C2 =
{
b− c ∈ Fn

q | a+ vb+ v2c ∈ C
}
,

C3 =
{
a− c ∈ Fn

q | a+ vb+ v2c ∈ C
}
.

(4.5)

If C is a linear code of length n over Rq, then C1, C2 and C3 are all linear codes over length n
over Fq. Moreover, the linear code C of length n over Rq can be uniquely expressed as

C = (v2 + v + 1)C1 ⊕ vC2 ⊕ C3.
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A generator matrix ofC is a matrix whose rows generateC. LetC = (v2+v+1)C1⊕vC2⊕C3
be a linear code of length n over Rq with a generator matrix G. Then G can be written as(v2 + v + 1)G1

vG2

G3

 ,

where G1, G2, G3 are the generator matrices of C1, C2 and C3, respectively.
The definitions of Hamming and Lee metric of Rq are similar to those of Section 2. Hence,

we do not repeat them in this section. The Gray map φ from Rq to F3
q is defined by φ(a+ vb+

v2c) = (c, b − c, a − c). It can be easily checked that φ is a linear map. The Gray map φ can
be extended to Rn

q in a natural way, that is, φ : Rn
q → F3n

q such that φ : (r0, r1, · · · , rn−1) 7→
(a0, b0 − c0, a0 − c0, · · · , an−1, bn−1 − cn−1, an−1 − cn−1), where ri = ai + vbi + v2ci for
i = 0, 1, · · · , n− 1.

There are some structural results on linear codes overM3(Fp). Similarly to Lemma 1 of [16],
we have Theorem 4.5. The proofs of Theorems 4.5-4.7 are similar to those of [16, 21]. Thus, we
omit the proofs of the results.

Theorem 4.5. The Gray map φ is a distance-preserving map or isometry from Rn
q (Lee distance)

to F3n
q (Hamming distance) and it is Fq-linear.

Theorem 4.6. If C = (v2 + v + 1)C1 ⊕ vC2 ⊕ C3 is a linear code over Rq, then φ(C) =
C1 ⊗ C2 ⊗ C3 and |C| = |C1||C2||C3|.

Corollary 4.7. If C = (v2 + v + 1)C1 ⊕ vC2 ⊕ C3 is a linear code of length n over Rq, where
Ci is a linear code over Fq with dimension ki and minimum Hamming distance dHam(Ci) for
i = 1, 2, 3, then φ(C) is a linear [3n, k1+k2+k3,min{dHam(C1), dHam(C2), dHam(C3)}] code.

In particular, we have the following result when C is cyclic over Rq.

Theorem 4.8. Let C = (v2 + v + 1)C1 ⊕ vC2 ⊕ C3 be a linear code of length n over Rq. Then
C is cyclic over Rq if and only if C1, C2, C3 are cyclic over Fq.

Proof. Let (c(1)0 , c
(1)
1 , · · · , c(1)n−1) ∈ C1, (c(2)0 , c

(2)
1 , · · · , c(2)n−1) ∈ C2, (c(3)0 , c

(3)
1 , · · · , c(3)n−1) ∈ C3 and

ci = (v2 +v+1)c(1)i +vc
(2)
i +c

(3)
i for i = 0, 1, 2, · · · , n−1. Then the vector (c0, c1, · · · , cn−1) ∈

C. Since C is a cyclic code over Rq, it implies that (cn−1, c0, · · · , cn−2) ∈ C. Notice that
(cn−1, c0, · · · , cn−2) = (v2 +v+1)(c(1)n−1, c

(1)
0 , · · · , c(1)n−2)+v(c

(2)
n−1, c

(2)
0 , · · · , c(2)n−2)+(c

(3)
n−1, c

(3)
0 ,

· · · , c(3)n−2), then (c
(1)
n−1, c

(1)
0 , · · · , c(1)n−2) ∈ C1, (c(2)n−1, c

(2)
0 , · · · , c(2)n−2) ∈ C2 and (c

(3)
n−1, c

(3)
0 , · · · ,

c
(3)
n−2) ∈ C3. It follows that C1, C2 and C3 are cyclic codes over Fq.

Conversely, let C1, C2 and C3 are cyclic over Fq. If (c0, c1, · · · , cn−1) ∈ C, where ci =

(v2 + v + 1)c(1)i + vc
(2)
i + c

(3)
i for i = 0, 1, 2, · · · , n − 1, then (c

(1)
0 , c

(1)
1 , · · · , c(1)n−1) ∈ C1,

(c
(2)
0 , c

(2)
1 , · · · , c(2)n−1) ∈ C2 and (c

(3)
0 , c

(3)
1 , · · · , c(3)n−1) ∈ C3. Note that (cn−1, c0, · · · , cn−2) =

(v2 + v+1)(c(1)n−1, c
(1)
0 , · · · , c(1)n−2)+ v(c

(2)
n−1, c

(2)
0 , · · · , c(2)n−2)+(c

(3)
n−1, c

(3)
0 , · · · , c(3)n−2) ∈ (v2 + v+

1)C1 ⊕ vC2 ⊕ C3 = C. Therefore, C is cyclic over Rq.

Table 4.1: The values of a, b, c, when p = 7, 13, 19, 31

Finite Field a, b, c Elementary Symmetric Polynomials of a, b, c Values

F7

a τ 5
1 + 3τ 3

1 τ2 + 3τ 2
1 τ3 + 3τ1τ

2
2 + 5τ2τ3 -2

b 6τ 4
1 τ2 + τ 3

1 τ3 + 3τ 2
1 τ

2
2 + 3τ1τ2τ3 + 6τ 3

2 + τ 2
3 0

c τ 4
1 τ3 + 4τ 2

1 τ2τ3 + 2τ1τ
2
3 + τ 2

2 τ3 1

F13

a τ 11
1 + 3τ 9

1 τ2 + 9τ 8
1 τ3 + 10τ 7

1 τ
2
2 + 9τ 6

1 τ2τ3 + 9τ 5
1 τ

3
2 + 8τ 5

1 τ
2
3 + τ 4

1 τ
2
2 τ3 + 9τ 3

1 τ
4
2 +

5τ 3
1 τ2τ

2
3 + 5τ 2

1 τ
3
2 τ3 + 10τ 2

1 τ
3
3 + 7τ1τ

5
2 + 4τ1τ

2
2 τ

2
3 + 5τ 4

2 τ3 + 9τ2τ
3
3

1

b 12τ 10
1 τ2+τ 9

1 τ3+9τ 8
1 τ

2
2 +10τ 7

1 τ2τ3+11τ 6
1 τ

3
2 +7τ 6

1 τ
2
3 +11τ 5

1 τ
2
2 τ3+9τ 4

1 τ
4
2 +7τ 4

1 τ2τ
2
3 +

11τ 3
1 τ

3
2 τ3 + 10τ 3

1 τ
3
3 + 11τ 2

1 τ
5
2 + 8τ 2

1 τ
2
2 τ

2
3 + 12τ1τ

4
2 τ3 + 10τ1τ2τ

3
3 + τ 6

2 + 3τ 3
2 τ

2
3 + τ 4

3

5

Continued on next page
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Table 4.1 – continued from previous page

Finite Field a, b, c Elementary Symmetric Polynomials of a, b, c Values

c τ 10
1 τ3 + 4τ 8

1 τ2τ3 + 8τ 7
1 τ

2
3 + 2τ 6

1 τ
2
2 τ3 + 10τ 5

1 τ2τ
2
3 + 4τ 4

1 τ
3
2 τ3 + 2τ 4

1 τ
3
3 + 8τ 3

1 τ
2
2 τ

2
3 +

2τ 2
1 τ

4
2 τ3 + 9τ 2

1 τ2τ
3
3 + 6τ1τ

3
2 τ

2
3 + 4τ1τ

4
3 + 12τ 5

2 τ3 + 6τ 2
2 τ

3
3

5

F19

a τ 17
1 +3τ 15

1 τ2+15τ 14
1 τ3+10τ 13

1 τ 2
2 +8τ 12

1 τ2τ3+16τ 11
1 τ 3

2 +2τ 11
1 τ 2

3 +3τ 10
1 τ 2

2 τ3+12τ 9
1 τ

4
2 +

5τ 9
1 τ2τ

2
3 + 15τ 8

1 τ
3
2 τ3 + 13τ 8

1 τ
3
3 + 6τ 7

1 τ
5
2 + 4τ 7

1 τ
2
2 τ

2
3 + 11τ 6

1 τ
4
2 τ3 + 15τ 6

1 τ2τ
3
3 + 6τ 5

1 τ
6
2 +

7τ 5
1 τ

3
2 τ

2
3 +12τ 5

1 τ
4
3 +13τ 4

1 τ
5
2 τ3 +6τ 4

1 τ
2
2 τ

3
3 +13τ 3

1 τ
7
2 +6τ 3

1 τ
4
2 τ

2
3 +5τ 3

1 τ2τ
4
3 +5τ 2

1 τ
6
2 τ3 +

10τ 2
1 τ

3
2 τ

3
3 + 2τ 2

1 τ
5
3 + 9τ1τ

8
2 + 3τ1τ

5
2 τ

2
3 + 10τ1τ

2
2 τ

4
3 + 11τ 7

2 τ3 + 16τ 4
2 τ

3
3 + 13τ2τ

5
3

2

b 18τ 16
1 τ2 + τ 15

1 τ3 + 15τ 14
1 τ 2

2 + 10τ 13
1 τ2τ3 + 4τ 12

1 τ 3
2 + 13τ 12

1 τ 2
3 + 6τ 11

1 τ 2
2 τ3 + τ 10

1 τ 4
2 +

11τ 10
1 τ2τ

2
3 +13τ 9

1 τ
3
2 τ3+17τ 9

1 τ
3
3 +18τ 8

1 τ
5
2 +2τ 8

1 τ
2
2 τ

2
3 +16τ 7

1 τ
4
2 τ3+14τ 7

1 τ2τ
3
3 +6τ 6

1 τ
6
2 +

9τ 6
1 τ

3
2 τ

2
3 +8τ 6

1 τ
4
3 +8τ 5

1 τ
5
2 τ3 +6τ 5

1 τ
2
2 τ

3
3 +18τ 4

1 τ
7
2 +9τ 4

1 τ
4
2 τ

2
3 +11τ 4

1 τ2τ
4
3 +18τ 3

1 τ
6
2 τ3 +

τ 3
1 τ

3
2 τ

3
3 +16τ 3

1 τ
5
3 +17τ 2

1 τ
8
2 +τ 2

1 τ
5
2 τ

2
3 +11τ 2

1 τ
2
2 τ

4
3 +12τ1τ

7
2 τ3 +17τ1τ

4
2 τ

3
3 +2τ1τ2τ

5
3 +

18τ 9
2 + 9τ 6

2 τ
2
3 + 3τ 3

2 τ
4
3 + τ 6

3

-7

c τ 16
1 τ3 + 4τ 14

1 τ2τ3 + 14τ 13
1 τ 2

3 + 15τ 12
1 τ 2

2 τ3 + 15τ 11
1 τ2τ

2
3 + 18τ 10

1 τ 3
2 τ3 + 9τ 10

1 τ 3
3 +

14τ 9
1 τ

2
2 τ

2
3 +τ 8

1 τ
4
2 τ3+18τ 8

1 τ2τ
3
3 +10τ 7

1 τ
3
2 τ

2
3 +6τ 7

1 τ
4
3 +13τ 6

1 τ
5
2 τ3+6τ 6

1 τ
2
2 τ

3
3 +6τ 5

1 τ
4
2 τ

2
3 +

9τ 5
1 τ2τ

4
3 +τ 4

1 τ
6
2 τ3+13τ 4

1 τ
3
2 τ

3
3 +13τ 4

1 τ
5
3 +9τ 3

1 τ
5
2 τ

2
3 +9τ 3

1 τ
2
2 τ

4
3 +2τ 2

1 τ
7
2 τ3+2τ 2

1 τ
4
2 τ

3
3 +

9τ 2
1 τ2τ

5
3 + 18τ1τ

6
2 τ

2
3 + 12τ1τ

3
2 τ

4
3 + 6τ1τ

6
3 + τ 8

2 τ3 + 17τ 5
2 τ

3
3 + 15τ 2

2 τ
5
3

-5

F31

a τ 29
1 +3τ 27

1 τ2+27τ 26
1 τ3+10τ 25

1 τ 2
2 +τ 24

1 τ2τ3+4τ 23
1 τ 3

2 +21τ 23
1 τ 2

3 +18τ 22
1 τ 2

2 τ3+2τ 21
1 τ 4

2 +

4τ 21
1 τ2τ

2
3 + 28τ 20

1 τ 3
2 τ3 + 4τ 20

1 τ 3
3 + 28τ 19

1 τ 5
2 + 27τ 19

1 τ 2
2 τ

2
3 + 8τ 18

1 τ 4
2 τ3 + 4τ 18

1 τ2τ
3
3 +

11τ 17
1 τ 6

2 + 5τ 17
1 τ 3

2 τ
2
3 + 2τ 17

1 τ 4
3 + 24τ 16

1 τ 5
2 τ3 + 6τ 16

1 τ 2
2 τ

3
3 + 18τ 15

1 τ 7
2 + 24τ 15

1 τ 4
2 τ

2
3 +

11τ 15
1 τ2τ

4
3 + 24τ 14

1 τ 6
2 τ3 + 17τ 14

1 τ 3
2 τ

3
3 + 3τ 14

1 τ 5
3 + 6τ 13

1 τ 8
2 + 14τ 13

1 τ 5
2 τ

2
3 + 12τ 13

1 τ 2
2 τ

4
3 +

19τ 12
1 τ 7

2 τ3 +21τ 12
1 τ 4

2 τ
3
3 +30τ 12

1 τ2τ
5
3 +29τ 11

1 τ 9
2 +19τ 11

1 τ 6
2 τ

2
3 +21τ 11

1 τ 3
2 τ

4
3 +7τ 11

1 τ 6
3 +

13τ 10
1 τ 8

2 τ3 + 9τ 10
1 τ 5

2 τ
3
3 + 14τ 10

1 τ 2
2 τ

5
3 + 29τ 9

1 τ
10
2 + 2τ 9

1 τ
7
2 τ

2
3 + 17τ 9

1 τ
4
2 τ

4
3 + 24τ 9

1 τ2τ
6
3 +

16τ 8
1 τ

9
2 τ3 + 8τ 8

1 τ
6
2 τ

3
3 + 30τ 8

1 τ
3
2 τ

5
3 + 18τ 8

1 τ
7
3 + 13τ 7

1 τ
11
2 + 30τ 7

1 τ
8
2 τ

2
3 + 29τ 7

1 τ
5
2 τ

4
3 +

8τ 7
1 τ

2
2 τ

6
3 + 15τ 6

1 τ
10
2 τ3 + 9τ 6

1 τ
7
2 τ

3
3 + 28τ 6

1 τ
4
2 τ

5
3 + τ 6

1 τ2τ
7
3 + 19τ 5

1 τ
12
2 + 10τ 5

1 τ
9
2 τ

2
3 +

28τ 5
1 τ

6
2 τ

4
3 + 7τ 5

1 τ
3
2 τ

6
3 + 16τ 5

1 τ
8
3 + 15τ 4

1 τ
11
2 τ3 + 10τ 4

1 τ
8
2 τ

3
3 + 26τ 4

1 τ
5
2 τ

5
3 + 10τ 4

1 τ
2
2 τ

7
3 +

29τ 3
1 τ

13
2 + 22τ 3

1 τ
10
2 τ 2

3 + 5τ 3
1 τ

7
2 τ

4
3 + 13τ 3

1 τ
4
2 τ

6
3 + 4τ 3

1 τ2τ
8
3 + τ 2

1 τ
12
2 τ3 + 6τ 2

1 τ
9
2 τ

3
3 +

14τ 2
1 τ

6
2 τ

5
3 + 16τ 2

1 τ
3
2 τ

7
3 + 24τ 2

1 τ
9
3 + 15τ1τ

14
2 + 24τ1τ

11
2 τ 2

3 + 18τ1τ
8
2 τ

4
3 + 5τ1τ

5
2 τ

6
3 +

30τ1τ
2
2 τ

8
3 + 17τ 13

2 τ3 + 7τ 10
2 τ 3

3 + 14τ 7
2 τ

5
3 + 20τ 4

2 τ
7
3 + 21τ2τ

9
3

17

b 30τ 28
1 τ2 + τ 27

1 τ3 + 27τ 26
1 τ 2

2 + 10τ 25
1 τ2τ3 + 16τ 24

1 τ 3
2 + 25τ 24

1 τ 2
3 + τ 23

1 τ 2
2 τ3 + 6τ 22

1 τ 4
2 +

9τ 22
1 τ2τ

2
3 + 26τ 21

1 τ 3
2 τ3 + 5τ 21

1 τ 3
3 + 7τ 20

1 τ 5
2 + 24τ 20

1 τ 2
2 τ

2
3 + 7τ 19

1 τ 4
2 τ3 + 9τ 19

1 τ2τ
3
3 +

14τ 18
1 τ 6

2 + 10τ 18
1 τ 3

2 τ
2
3 + 28τ 18

1 τ 4
3 + 3τ 17

1 τ 5
2 τ3 + 20τ 17

1 τ 2
2 τ

3
3 + 4τ 16

1 τ 7
2 + 9τ 16

1 τ 4
2 τ

2
3 +

17τ 16
1 τ2τ

4
3 + 5τ 15

1 τ 6
2 τ3 + 13τ 15

1 τ 3
2 τ

3
3 + τ 15

1 τ 5
3 + 30τ 14

1 τ 8
2 + 7τ 14

1 τ 5
2 τ

2
3 + 14τ 14

1 τ 2
2 τ

4
3 +

26τ 13
1 τ 7

2 τ3+28τ 13
1 τ 4

2 τ
3
3 +21τ 13

1 τ2τ
5
3 +14τ 12

1 τ 9
2 +23τ 12

1 τ 6
2 τ

2
3 +20τ 12

1 τ 3
2 τ

4
3 +19τ 12

1 τ 6
3 +

5τ 11
1 τ 8

2 τ3+15τ 11
1 τ 5

2 τ
3
3 +23τ 11

1 τ 2
2 τ

5
3 +29τ 10

1 τ 10
2 +8τ 10

1 τ 7
2 τ

2
3 +26τ 10

1 τ 4
2 τ

4
3 +23τ 10

1 τ2τ
6
3 +

4τ 9
1 τ

9
2 τ3+8τ 9

1 τ
6
2 τ

3
3 +6τ 9

1 τ
3
2 τ

5
3 +14τ 9

1 τ
7
3 +14τ 8

1 τ
11
2 +22τ 8

1 τ
8
2 τ
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The proof of Theorem 4.4

Proof. According to Lemma 4.1, f(x) is irreducible on Fp if and only if rank(A) = p − 1, i.e.
det(A) ̸≡ 0(modp), where A is the (p− 1)× (p− 1) matrix,

A =



−1 1 0 1 0 · · · 0 0 0
1 0 1 0 0 · · · 0 0 −1
0 1 0 0 0 · · · 0 −1 1
1 0 0 0 0 · · · −1 1 0
...

...
...

...
...

...
...

...
0 0 0 −1 1 · · · 0 0 0
0 0 −1 1 0 · · · 0 0 0
0 −1 1 0 1 · · · 0 0 0


.

Notice that the matrix A is a permutation of the circulant matrix B,

A = BP, (4.6)

where P is a permutation matrix with ones on the anti-diagonal, and zeros in all other entries,

B =



0 0 0 · · · 0 1 0 1 −1
−1 0 0 · · · 0 0 1 0 1
1 −1 0 · · · 0 0 0 1 0
0 1 −1 · · · 0 0 0 0 1
...

...
...

...
...

...
...

...
0 0 0 · · · 1 −1 0 0 0
0 0 0 · · · 0 1 −1 0 0
0 0 0 · · · 1 0 1 −1 0


is a right circulant matrix.

Then

det(A)=det(BP )=det(B)det(P ).

The determinant of the permutation matrix P is (−1)
p−1

2 . Define the associated polynomial
g(x) = x4 + x2 − x. By linear algebra, we have

det(B) =
p−1∏
j=1

(−ωj + ω2
j + ω4

j)

=
p−1∏
j=1

ωj

p−1∏
j=1

(−1 + ωj + ω3
j)

= −
p−1∏
j=1

(−1 + ωj + ω3
j),

where ωj = e
2πij
p−1 and i =

√
−1. Thus,

det(A) = (−1)
p−1

2 det(B) = (−1)
p+1

2

p−1∏
j=1

(−1 + ωj + ω3
j). (4.7)

The determinant of A is not equal to 0 if and only if Eq.(4.7) is not zero. Let α1, α2 and α3
be the three roots of x3 + x− 1 = 0 in the algebraic closure Fp, then

p−1∏
j=1

(−1 + ωj + ω3
j) ≡

p−1∏
j=1

3∏
i=1

(xj − αi)(modp). (4.8)
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By Vieta’s Theorem, for xp−1 − 1 = 0, we have

σ1 =
p−1∑
i=1

ωi = 0,

σ2 =
∑

1≤i1<i2≤p−1

ωi1ωi2 = 0,

· · · · · · · · ·

σp−2 =
∑

1≤i1<···<ip−2≤p−1

p−2∏
r=1

ωir = 0,

σp−1 = ω1ω2 · · ·ωp−1 = −1.

Consequently,

p−1∏
j=1

3∏
i=1

(xj − αi) =
3∏

i=1

p−1∏
j=1

(xj − αi)

=
3∏

i=1

(σp−1 − αiσp−2 − α2
iσp−3 · · ·+ (−1)p−1αp−1

i )

=
3∏

i=1

(αp−1
i − 1)

= (αp−1
1 + αp−1

2 + αp−1
3 )− (αp−1

1 αp−1
2 + αp−1

1 αp−1
3 + αp−1

2 αp−1
3 )

(4.9)

By Vieta’s Theorem, for x3 + x− 1 = 0, we have

τ1 = α1 + α2 + α3 = 0,

τ2 = α1α2 + α1α3 + α2α3 = 1,

τ3 = α1α2α3 = 1.

Let β1 = α1α2, β2 = α1α3, β3 = α2α3, then

θ1 = β1 + β2 + β3 = 1,

θ2 = β1β2 + β1β3 + β2β3 = 0,

θ3 = β1β2β3 = 1.

According to Lemma 4.3,

s
(1)
p−1 = αp−1

1 + αp−1
2 + αp−1

3

=
∑

j1+2j2+3j3=p−1

(−1)j2+1 (j1 + j2 + j3 − 1)!
j1!j2!j3!

τ j1
1 τ

j2
2 τ

j3
3

=
∑

2j2+3j3=p−1

(−1)j2+1 (j2 + j3 − 1)!
j2!j3!

=

p−1
6∑

s=0

(−1)3s+1 (p−1
3 + s− 1)!

(3s)!(p−1
3 − 2s)!

=

p−1
6∑

s=0

(−1)3s+1
C3s

p−1
3 +s

p−1
3 + s

.

(4.10)



192 REFERENCES

s
(2)
p−1 = βp−1

1 + βp−1
2 + βp−1

3

=
∑

i1+2i2+3i3=p−1

(−1)i2+1 (i1 + i2 + i3 − 1)!
i1!i2!i3!

θi1
1 θ

i2
2 θ

i3
3

=
∑

i1+3i3=p−1

(−1)
(i1 + i3 − 1)!

i1!i3!

= −

p−1
3∑

t=0

(p−1
3 + 2t− 1)!

(3t)!(p−1
3 − t)!

= −

p−1
3∑

t=0

C3t
p−1

3 +2t
p−1

3 + 2t
.

(4.11)

Thus, f(x) = x3 + x − 1 is irreducible over Fp[x] if and only if s(1)p−1 is not equal to s(2)p−1. The
proof of Theorem 4.4 is done.

5 Conclusion

In this paper, we prove thatM3(F3) is isomorphic to the finite chain ring R = F33 ⊕uF33 ⊕u2F33 ,
u3 = 0 and investigate the structure of cyclic codes of length n over M3(F3) by using cyclic
algebra. It is shown that every cyclic code of length n over R is a right principal ideal of
Rn = R[x]/⟨xn − 1⟩. We also define the Gray map from M3(F3) to F3

3. The Gray images of
linear codes of length n over R are linear codes of length 3n over F3 under the map ϕ. Moreover,
this paper also studies the structural properties of linear codes over M3(Fp), where p is prime
and p ≡ 1(mod6).
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