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Abstract In this article we are interested in the class of permutation polynomials of the form:

H(x) = xrf(x
(q−1)

d )

where d and r are positive integers and d divides q − 1. We give necessary conditions and
sufficient for this family of polynomials to be permutations in a finite field Fq of characteristics
7, based on the Lidl-Wan criterion. Then we will give an application in cryptography for this
family of polynomials on Fq.

1 Introduction

The study of permutation polynomials is a subject dating from the 19th century, it began by being
initiated by Hermite in 1863 then by Dickson in 1896. It is a vast field which has experienced
a wave of enthusiasm. In recent years there has been much interest in the study of permutation
polynomials due to their applications in cryptography and coding theory [1, 5, 2, 3]. In general
it is difficult to characterize permutation polynomials. In reality there are only a few classes of
permutation polynomials that are known.
A polynomial f ∈ F[X] is of permutation of a finite field Fq = pα, p prime, α positive integer,
if it induces a bijection f of Fq in Fq.

2 Preliminaries and results

In Mathematics, a permutation polynomial of a given ring A is a polynomial that acts as a
permutation of the elements of that ring.

Definition 2.1. Let A be a ring and f ∈ A[x] a polynomial. We say that f is a permutation
polynomial of A if and only if the map :

g : A −→ A

x 7−→ g(x) = f(x)

is bijective.

Example 2.2. In the case of a finite ring Z/nZ we can give examples of permutation polynomi-

als of Z/nZ for n =
k∏
i=0

pαi
i , pi primes and αi positive integers , k ∈ N∗.

For A = Z/4Z, consider the permutation polynomial :

f(x) = 2x2 + x

We have :
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x 0 1 2 3
f(x) 0 3 2 1

and we can then associate to f(x) the permutation σ = g defined on S4 ≃ S(A) by :

σ : A −→ A

x 7−→ σ(x) = g(x)

where :

σ =

(
0 1 2 3
0 3 2 1

)
∈ S4

Same thing for A = Z/8Z and for A = Z/12Z.
An example of a polynomial of Z[x] which is not a permutation of Z/4Z :
Let be f(x) = x2 + 1. We have :

x 0 1 2 3
f(x) 1 2 1 2

f does not induce a permutation on the set of elements of Z/4Z because σ is not injective, where

σ =

(
0 1 2 3
1 2 1 2

)
So f is not a permutation polynomial of Z/4Z.

Remark 2.3. When the ring A = Fq is a finite field, q = pα, p prime and α a positive integer
then the definition of a permutation polynomial of Fq is the same as that given in the case of a
ring A.
And any permutation of the elements of this field can be written as a polynomial function.

Proposition 2.4. ([6, 7]) The polynomial f(x) = axi + bxj + c, a ̸= 0, i > j ≥ 1 such that
gcd(i−j, q−1) = 1 is a permutation polynomial of Fq if and only if b = 0 and gcd(i, q−1) = 1.

Example 2.5. For i = 8 and j = 3, the polynomials ax8 + bx3 + c are permutation polynomials
of Fq if and only if b = 0 with q = 7α, α is a positif integer.

Definition 2.6. Let q ∈ N∗ , d be a positive integer dividing q − 1, g be a fixed generator of the
multiplicative group F∗

q of the finite field Fq and ω = g
q−1
d a primitive root deme of unity in Fq .

We define the multiplicative character ψ by :

ψ : F∗
q −→ Z/dZ
a 7−→ ψ(a) = Indg(a)(mod d)

where Indg(a) is the residual class of b (mod (q − 1)) with a = gb.

Remark 2.7.
a

q−1
d = g

b(q−1)
d = ωψ(a)

With this definition, Da Qing Wan and Rudolf Lidl introduced the following criterion :

Proposition 2.8. (LIDL-WAN criterion[8]) Let d and r be two positive integers such that d di-
vides q − 1, f(x) ∈ Fq[x] and ω the primitive d-root of unity on Fq. So the polynomial

H(x) = xrf(x
q−1
d )

is a permutation polynomial of Fq if and only if the following conditions are satisfied :

(i) (r, q−1
d ) = 1;

(ii) For all 0 ≤ i < d, f(ωi) ̸= 0;

(iii) For all 0 ≤ i < j < d, ψ(f(ωi)/f(ωj)) ̸≡ r(j − i)(mod d).
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3 Main results

In this section, we will give our main results.

Proposition 3.1. Let q ∈ N∗. For all (a, b) ∈ F∗
q ×Fq the polynomial of Fq[x], f(x) = ax+ b, is

a permutation polynomial of Fq.
Proof. f(x) = ax+ b induces a bijection :

g : Fq −→ Fq
x 7−→ g(x) = f(x)

The proof is clear. Indeed, g is injective of a finite field Fq, therefore it is bijective. Then f is a
permutation polynomial of Fq.
Remark 3.2. For b = 0, the polynomial fx) = ax is a permutation polynomial of Fq.
Proposition 3.3. Let f, g ∈ Fq[x]. Then fog is a permutation polynomial of Fq if and only if f
and g are also permutation polynomials on F.

Proof. - Suppose that fog is a permutation polynomial of Fq. Then fog is bijective.
On the one hand, we have:
fog bijective implies that g is injective of the finite field Fq, so g is bijective of Fq and conse-
quently g ∈ Fq[x] is a permutation polynomial of Fq
On the other hand we have fog bijective implies f is surjective of the finite field Fq, therefore f
is bijective and consequently f ∈ Fq[x] is a permutation polynomial of Fq.

- Suppose that f, g ∈ Fq[x] are permutation polynomials on Fq. Then the applications asso-
ciated respectively with f and g are bijective on Fq and consequently the application fog is
bijective on Fq therefore fog ∈ Fq[x] is a permutation polynomial of Fq .

Recall the following proposition where an incomplete proof is in [4] and [7]. Using the indi-
cations given in [4] and [7], we give a detailed proof.

Proposition 3.4. The polynomial axk, a ̸= 0 is a permutation polynomial of Fq if and only if
gcd(k, q − 1) = 1.

Proof. - Suppose that gcd(k, q − 1) = 1. Let

g : Fq −→ Fq
x 7−→ g(x) = axk

the map associated with the polynomial axk. We have : g(0) = 0
And for (x, y) ∈ F∗

q × F∗
q , we have :

g(x) = g(y) =⇒ axk = ayk

=⇒ (x
k

yk
) = (xy )

k
= 1

then the order of the element x
y in the multiplicative cyclic group F∗

q divides k and it divides
(q − 1) since |F∗

q | = q − 1, so the order (xy ) divides gcd(q − 1, k) = 1 hence |< x
y >|= 1 and

therefore x
y = 1, therefore x = y.

g is injective on finite Fq where g is bijective.

- Suppose that gcd(k, q − 1) = d ̸= 1. Then there exists k′ ∈ N such that k = dk′ and d
divides q − 1. Let ξ ∈ F∗

q be an element of order d then :

ξd = 1 =⇒ (ξd)k
′
= 1

=⇒ ξdk
′
= 1

=⇒ ξk = 1

thus aξk = a1k = g(ξ) = a ̸= 0.
Therefore g is not surjective on finite Fq and therefore g is not bijective and consequently the
polynomial f is not a permutation polynomial of Fq.
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Remark 3.5. The polynomial f(x) = axk + b, a ̸= 0, k ∈ N∗ is a permutation polynomial of Fq
if and only if gcd(k, q − 1) = 1

Theorem 3.6. Let Fq be a finite field, q = 7α, α and u two integers positive such that
gcd(u, q−1

3 ) = 1. Then the polynomials of the form

H(x) = xu(1 + x
q−1

3 − x
2(q−1)

3 )

are permutation polynomials of Fq if and only if q ≡ 1(mod 18) and u ̸≡ 0(mod 3)

Proof. Let H(x) = xu(1 + x
q−1

3 − x
2(q−1)

3 ) be a polynomial of permutation on Fα7 where
gcd(u, 7α−1

3 ) = 1 and ω a primitive root of 3th of unit.
Taking f(x) = −x2 + x+ 1 ∈ F[x] then H(x) is of the form xuf(x

q−1
3 ), q = 7α.

Noticed : ∀n ∈ N, 7n − 1 is divisible by 3.
According to the conditions of the L.W criterion we have :

(i) gcd(u, 7α−1
3 ) = 1.

(ii) for all 0 ≤ i < 3, f(ωi) ̸= 0.

(iii) for all 0 ≤ i < j < 3, ψ(f(ωi)/f(ωj)) ̸≡ u(j − i)(mod 3).

Let ω primitive root 3th of unity.

• The first condition is checked by hypothesis.

• The second condition is verified because H(x) is a permutation polynomial which admits
the only root 0 and therefore f(ωi) ̸= 0,∀i, 0 ≤ i ≤ 2.

• For the third condition we have :

(i) f(ω0)
f(ωj) =

1
−2ω2j .

We notice that (−2)6 ≡ 1(mod 7) so (−2) is of order 6 of F ∗
7α .

Let g be a generator of F ∗
7α . We have :

−2 = g
(7α−1)k

6 with gcd(k, 6) = 1

and

f(ω0)

f(ωj)
= gb with b =

−(4j + k)(q − 1)
6

We want to show that 3 does not divide b− u(j − i) i.e., d = 3 does not divide

−(4j + k)(q − 1)
6

− u(j − i), q = 7α

We have two cases to study :
First case : i = 0, j = 1

• 3 does not divide b − u fork = ±1 implies that 3 does not divide u and 3 does not divide
u− q−1

6 , so 3 divides q−1
6 ,q = 7α

Then there exists k
′ ∈ F such that q−1

6 = 3k
′

therefore q ≡ 1(mod 18)

• For i = 0, j = 2
We have : j − i = 2 and 3 does not divide b− 2u implies that 3 does not divide
(4j+k)(q−1)

6 +2u, i.e., 3 does not divide (−1±1)(q−1)
6 −u and we find the same result as above

q ≡ 1(mod 18).
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Second case : i = 1, j = 2:
We have : f(ωi)

f(ωj) =
f(ωi)
f(ω0)

× f(ω0)
f(ωj) = gb

So for i = 1 and j = 2

gb =
f(ω1)

f(ω0)
× f(ω0)

f(ω2)

=
f(ω0)

f(ω2)
× 1
f(ω0)/f(ω1)

g is a generator of F∗
q , q = 7α.

On the hand, we have : f(ω
0)

f(ω1)
= 1

−2ω2 (1)

(−2) is of order 6 then ∃k ∈ N∗ tel que −2 = g
(q−1)k

6 , gcd(k, 6) = 1.

On the other hand, we have : f(ω
0)

f(ω2)
= 1

−2(ω4)
= 1

−2ω (2)

(−2) is of order 6 then ∃k′ ∈ N∗ tel que (−2) = g
(q−1)k′

6 , gcd(k′, 6) = 1.

So by replacing ω by g
q−1

3 in (1) and (2) (ω is the primitive root 3eme of the unit).
We obtain :

gb = g
(k−k

′
)(q−1)

6 − q−1
6

thus b = (k−k
′
)(q−1)
6 − q−1

6 .

For j−i = 1 , 3 does not divide b−(j−i)u is equivalent to 3 does not divide b−u therefore equiv-

alent to 3 does not divide not ( (k−k
′
)(q−1)
6 − q−1

6 )− u so 3 does not divide ( (k−k
′
−1)(q−1)

6 )− u.
By setting t = k − k

′ − 1 for k = ±1 and k
′
= ±1 so 3 does not divide u − t(q−1)

6 with
t = +1,−1,−3(mod 3).
Therefore, u ̸≡ (q−1)

6 (mod 3), where (q−1)
6 = 0, 1, 2(mod 3)

(∗) For (q−1)
6 = 3k, k ∈ N, q ≡ 1(mod 18), u ̸≡ 0(mod 3)

(∗∗) For (q−1)
6 = 3k + 1 ⇒ q ≡ 7(mod 18), u ̸≡ t(mod 3)

(∗ ∗ ∗) For (q−1)
6 = 3k + 2 ⇒ q ≡ 13(mod 18), u ̸≡ t(mod 3)

The cases (∗∗) and (∗ ∗ ∗) do not admit solutions, so the only remaining case is (∗).
Conversely, suppose that q ≡ 1(mod 18), u ̸≡ 0(mod 3), and check the conditions of the L.W.
criterion.

• The first condition is verified by the hypothesis.

• f(ω0) = f(1) = 1 therefore f(ω0) ̸= 0

• f(ω1) = 1 + ω − ω2 = −2ω2, so f(ω) ̸= 0.

• f(ω2) = −2ω, so f(ω2) ̸= 0.

• By taking the different values of i, j, 0 ≤ i < j < 3 , we obtain with the conditions
(q − 1) ≡ 0(mod 18) and u ̸≡ 0(mod 3) that ψ( f(ω

i)
f(ωj)) ̸≡ (j − i)(mod 3).

Indeed, according to the calculations carried out previously for i = 0 and j = 1 :

b− u(j − 1) =
−(4 + k)(q − 1)

6
− u(1 − 0) =

−(4 + k)(q − 1)
6

− u

hence , q − 1 ≡ 0(mod 18) =⇒ ∃k0 ∈ N∗ / q − 1 = 18k0.

So, b = −(4+k)18k′

6 ≡ 0(mod 3)
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thus b−u ̸≡ 0(mod 3 because u ̸≡ 0(mod 3) by hypothesis, consequently b ̸≡ u(1− 0)(mod 3).
- Same thing for the case i = 0 and j = 2.
- For i = 1 and j = 2:

According to the calculations carried out in the first implication we have :

b =
(q − 1)(k − k′)

6
− q − 1

6
Like q − 1 ≡ 0(mod 18) ∃k1 ∈ N∗ such that q − 1 = 18k1.
So

b =
18(k − k′)k1

6
− 18k1

6
= 3((k − k′)k1 − k1)

Consequently
b ≡ 0(mod 3)

u ̸≡ 0(mod 3) =⇒ b− u ̸≡ 0(mod 3)

Thus b ̸≡ (j − i)(mod 3) for j = 2 and i = 1

Corollary 3.7. Let q = 73n and u be two positive integers such that gcd(u, q−1
3 ) = 1 and

u ̸≡ 0(mod 3). Then the polynomials

H(x) = xu(1 + x
73n−1

3 − x
2(73n−1)

3 )

are permutation polynomials of F73n .

Proof. It suffices to verify the two conditions of Theorem 3.6.
• u ̸≡ 0(mod 3) by hypothesis;
• We easily show by induction that ( 7n − 1) ≡ 0(mod 18)

Corollary 3.8. Let Fq be a finite field, q = 7α and p prime, α and k positive integers such that
gcd(u, q−1

3 ) = 1 and gcd(k, q − 1) = 1, then the polynomials

F (x) = xu
′

(1 + x
q−1

3 − x
2(q−1)

3 )k

with u
′
= ku are permutation polynomials of Fq if and only if u ̸≡ 0(mod 3) and q ≡ 1(mod 18).

Proof. It is enough to use proposition 3.3 by taking :

g(x) = H(x) = xu(1 + x
q−1

3 − x
2(q−1)

3 ) and f(x) = xk with F (x) = (fog)(x)

Corollary 3.9. Let q = 73n, where u,n and k are positive integers such that gcd(k, 18) = 1,
gcd(u, q−1

3 ) = 1 and u ̸≡ 0(mod 3). So the polynomials

G(x) = xku(1 + x
73n−1

3 − x
2(73n−1)

3 )
k

are permutation polynomials on F73n .

Proof. This corollary is only a consequence of Corollary 3.8.
For gcd(u, q−1

3 ) = 1 with q = 73n and setting

g(x) = H(x) = xu(1 + x
q−1

3 − x
2(q−1)

3 )

f(x) = xk

then the polynomials G(x) = (fog)(x) = xku(1+ x
73n−1

3 − x2( 73n−1
3 ))k are permutation polyno-

mials of F3n
7 if and only if u ̸≡ 0(mod 3) and we have :

73n ≡ 1(mod 18) if and only if gcd(k, 18) = 1 because gcd((73n − 1, k) = 1.



200 F. Aggoun Laid, A. Ait Mokhtar and O. Özer

Example 3.10. By taking in corollary 3.7,

Pu(x) = xu(1 + x
73n−1

3 − x2( 73n−1
3 ))

with u ̸≡ 0(mod 3).
The following polynomials are permutation polynomials of F73n .
For n = 1, 73−1

3 = 114, q − 1 = 241 = 18 × 19
Pu(x) = xu(1 + x114 − x228)are permutation polynomials of F73 = F343.

• P1(x) = x(1 + x114 − x228) gcd(114, 1) = 1

• P5(x) = x5(1 + x114 − x228) gcd(114, 5) = 1

• P7(x) = x7(1 + x114 − x228) gcd(114, 7) = 1

• P11(x) = x11(1 + x114 − x228) gcd(114, 11) = 1

• P13(x) = x13(1 + x114 − x228) gcd(114, 13) = 1

• P17(x) = x17(1 + x114 − x228) gcd(114, 17) = 1

• P23(x) = x23(1 + x114 − x228) gcd(114, 23) = 1

P1, P5, P7, P11, P13, P17, P23 are permutation polynomials of F343.

For n = 2, 76−1
3 = 39216, q − 1 = 18 × 6536, gcd(u, 39216) = 1 ∀n ∈ N∗.

The polynomials Qu(x) = xu(1 + x39216 − x78423) are permutation polynomials of
F76 = F1177649.

• Q1(x) = x(1 + x39216 − x78423) gcd(1, 39216) = 1

• Q5(x) = x5(1 + x39216 − x78423) gcd(5, 39216) = 1

• Q7(x) = x7(1 + x39216 − x78423) gcd(7, 39216) = 1

• Q11(x) = x11(1 + x39216 − x78423) gcd(11, 39216) = 1

• Q13(x) = x13(1 + x39216 − x78423) gcd(13, 39216) = 1

• Q17(x) = x17(1 + x39216 − x78423) gcd(17, 39216) = 1

• Q25(x) = x23(1 + x39216 − x78423) gcd(25, 39216) = 1

Q1, Q5, Q7, Q11, Q13, Q17, Q25 are permutation polynomials of F76 = F117649.

4 Application in cryptography

4.1 Recalls and preliminaries

We recall that the readable and understandable text that we send is called the plain text and the
method allowing it to be concealed by masking its content is called encryption. The latter con-
sists of transforming the plain text into an unintelligible text called the ciphertext. The reverse
process is called decryption.
Public key cryptography is a process associated with a public key which corresponds to encryp-
tion and a secret key which corresponds to decryption.
Permutation polynomials play a crucial role in the field of cryptography, particularly in the design
and analysis of cryptographic algorithms that operate in finite fields. Finite fields, also known as
Galois fields, are mathematical structures used in various cryptographic applications, including
encryption, digital signatures, and error-correcting codes. Permutation polynomials are a special
class of polynomials that have desirable properties when used in finite field arithmetic.

Definition 4.1. Cryptography is defined as the art or the process of writing or reading secret
messages or codes. So, it is the study of methods of sending messages in disguised form so that
only the intended recipients can remove the disguise and read the message.



Permutation Polynomials Over Fields of Characteristic 7 201

Definition 4.2. In the language of cryptography, the codes are called by ciphers. The information
to be disguised is called as plaintext. After transformation to a secret form, the message is called
by ciphertext.

Definition 4.3. The process of converting from plaintext to ciphertext is defined as encrypting
or enciphering. The inverse process from ciphertext back to plaintext is called by decrypting or
deciphering.

Definition 4.4. A cryptosystem is a system for encrypting and decrypting secret messages.

Recall that the cryptography with a public key is a process associated to a public key which
corresponds to the encrypting and the secret key corresponds to the decrypting.

Let E = {A,B,C, · · · , Y, Z} and F = {00, 01, 02, 03, · · · , 24, 25}. Consider the bijection
from E into F given by :

A B C D E F G H I J K L M

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕
00 01 02 03 04 05 06 07 08 09 10 11 12

N O P Q R S T U V W X Y Z

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕
13 14 15 16 17 18 19 20 21 22 23 24 25

Let M = M1M2 · · ·Md be the plain text, that is to say, the message to be encrypted, where
d ∈ N, (d ≥ 2) and Mi ∈ E, (1 ≤ i ≤ d). The integer d represents the number of letters in the
plaintext.
In this example, taking u = 1 ̸≡ 0(mod 3), we consider the following permutation polynomial :

P (x) = x
(

1 + x

q − 1
3 − x

2(q − 1)
3

)
such that q = 7n, where the polynomial P is the public key and the positive integer n is the

secret key. ( it is clear that 1 ̸≡ 0(mod 3) and gcd
(

1,
q − 1

3

)
= 1).

Therefore, we know there exists a permutation σ ∈ Sq such that :

σ :
Z
qZ −→ Z

qZ
x 7−→ σ(x) = P (x)

Consider the restriction of σ to E = {0, 1, . . . , 25}, i.e.,

σ/E =

(
0 1 · · · 25

σ(0) σ(1) · · · σ(25)

)
=

(
0 1 · · · 25

P (0) P (1) · · · P (25)

)

This permutation σ/E is the second secret key.
note that σ(0) = σ(00), σ(1) = σ(01), . . . , σ(09) = σ(9).

4.2 Procedure for encryption and decryption

Encryption. To encrypt the plaintext message M =M1M2. . . . .Md into the ciphertext message
C = C1C2. . . . .Cd, we proceed by the following way :

(i) We translate each letter Mi into its digital equivalent, using the bijection mentioned above
to a positive integer αi ∈ F , 1 ≤ i ≤ d.

(ii) We calculate P (0), P (1), . . . , P (25) modulo 26, to obtain the numbers β1, . . . , βd , i.e, we
have : P (αi) ≡ βi (mod 26), then we pose, σ/E(αi) = βi, 1 ≤ i ≤ d, where σ/E is the
second secret key.
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(iii) The number β1β2 . . . βd is transformed into letters by the bijection mentioned above into
C = C1C2 . . . Cd. So the plaintext M is encrypted by the ciphertext C.

Decryption. To decrypt the ciphertext message C, the recipient first begins to translate it into
letters. Then, knowing the keys P (x), n and σ/E , he determines the permutation (σ/E)

−1 which
gives C in numbers. Then these numbers are transformed into letters which give the plaintext
message M .

Remark 4.5. We can crypt the message by proceeding word by word. If we want to code an
entire sentence, we add to the set E the letter ∆ which will correspond to the number 00. Then
will take E = {∆, A,B,C, . . . , Y, Z}, F = {00, 01, 02, 03, . . . , 25, 26} and the bijection will be:

∆ ↔ 00, A↔ 01, B ↔ 02, C ↔ 03, . . . Y ↔ 25, Z ↔ 26

Then work (mod 27).

Example 4.6. Let us encrypt the plaintext message TRAV EL.
First, we replace the letters of this message by the corresponding digits. This produces the
number :

α1α2α3α4α5α6 = 191700210411

The polynomial considered is :

P (x) = x
(

1 + x114 − x228
)

where q = 343 = 73 and gcd(1, 114) = 1. We obtain, after calculations :

σ/E(19) = P (19) ≡ 07(mod 26)

σ/E(17) = P (17) ≡ 17(mod 26)

σ/E(00) = P (00) ≡ 00(mod 26)

σ/E(21) = P (21) ≡ 05(mod 26)

σ/E(04) = P (04) ≡ 04(mod 26)

σ/E(11) = P (11) ≡ 15(mod 26)

After calculations of P (i), 0 ≤ α(i) ≤ 25, modulo 26, we obtain that σ/E is given by :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 24 3 4 21 20 19 18 9 10 15 12 13 14 11 16 17 8 7

20 21 22 23 24 25
6 5 22 23 2 25

Then, we obtain the following number :

β1β2β3β4β5β6 = 071700050415

wich is translated into letters by :
C = HRAFEP

wich is the ciphertext.

To decrypt the ciphertext message HRAFEP, which replaces the letters by the corresponding
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digits, we find the number : 071700050415. knowing the polynomial and the value of n and the
permutation σ/E , then we apply (σ/E)

−1 and we obtain :

(σ/E)
−1(07) = (σ/E)

−1(7) = 19

(σ/E)
−1(17) = 17

(σ/E)
−1(00) = 00

(σ/E)
−1(05) = (σ/E)

−1(5) = 21

(σ/E)
−1(04) = (σ/E)

−1(4) = 4 = 04

(σ/E)
−1(15) = 11

which is translated into letters and this gives the plaintext message TRAV EL.

References
[1] S. Badidja, A. Ait Mokhtar, O. Özer, Representation of integers by k-generalized Fibonacci sequences

and applications in cryptography, Asian-Eur. J. Math. 14(9), Article ID 2150157, (2021), 11 p..

[2] J. N. Doliskani, E. Malekian, A. Zakerolhosseini, A Cryptosystem Based on the Symmetric Group Sn,
International Journal of Computer Science and Network Security, 8(2), 226–234, (2008).

[3] N. Koblitz, A Course in Number Theory and Cryptography, Graduate Texts in Mathematics, 114. New
York etc.: Springer-Verlag. viii, 208 p.; DM 74.00 (1987)

[4] Y. Laigle-Chapuy, Permutation polynomials and applications to coding theory, Finit fields Appl., 13(1),
58–70, (2007).

[5] K. H. Rosen, Discret Mathematics and its Applications, 5th edition, Boston, MA: McGraw-Hill. xxi, 928
p. (2003).

[6] C. Small, Arithmetic of finite fields, Pure and Applied Mathematics (Marcel Dekker). 148. New York etc.:
Marcel Dekker, Inc.. xii, 216 p. (1991).

[7] C. Small, Permutation binomials, Int. J. Math. Math. Sci., 13(2), 337–342, (1990).

[8] D. Wan and R. Lidl, Permutation polynomials of the form h(x) = xrf(x
q−1
d ) and their group structure,

Monatsh. Math. 112(2), 149–163, (1991).

Author information
F. Aggoun Laid, Labotory of Fixed Point and Applications
Height Normal School Kouba, Algiers, BP 92, Algeria.
E-mail: fadhila.laid@g.ens-kouba.dz

A. Ait Mokhtar, Labotory of Fixed Point and Applications
Height Normal School Kouba, Algiers, BP 92, Algeria.
E-mail: ahmed.aitmokhtar@yahoo.fr, ahmed.aitmokhtar@g.ens-kouba.dz

O. Özer, Department of Mathematics
Faculty of Science and Arts Kirklareli University Kirklareli-39100, Turkey.
E-mail: ozenozer39@gmail.com

Received: 2024-05-10

Accepted: 20255-04-21


	1 Introduction
	2 Preliminaries and results
	3 Main results
	4 Application in cryptography
	4.1  Recalls and preliminaries
	4.2 Procedure for encryption and decryption


