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Abstract An edge coloring of a graph is said to be proper edge coloring if no two adjacent
edges receive the same color. A graph G is said to be properly connected if there exists a properly
edge colored path between every pair of vertices. For a properly connected graph G with a k-
edge coloring c, the proper diameter of a graph, pdiamk(G) is the maximum proper distance
between any distinct pair of vertices in G. We investigate the proper diameter of various classes
of graphs that are 2-colored and provide bounds on the values of pdiam2(G) for these graphs.

1 Introduction

The connectivity between vertices in terms of colored paths was conceptualized by Chartrand et
al.[1]. They introduced the parameter called Rainbow Connection Number. A path in a graph is
called a rainbow path if no two edges in the path have the same color. The rainbow connection
number rc(G) is the minimum number of colors required to color the edges of the graph such
that each pair of vertices have a rainbow path between them. Generalising the definition of
rainbow connection number, Borozan et al. [2] introduced the definition of proper connection
number. The proper connection number pc(G) of a graph G is the minimum number of colors
required to color the edges of G such that each pair of vertices have a properly edge colored
path between them. This is a widely studied parameter with several characterizations surveyed
in [3]. V.Coll et al.[4] related the concept of properly edge colored paths to distances in graphs
by defining proper distance and proper diameter. They investigated the proper diameter values
for several graphs.

Properly connected graphs have applications in communication networks. In a wireless commu-
nication network, interference at a signal tower between the incoming and outgoing signals is
avoided by ensuring that they do not have the same frequency. Suppose two towers do not have a
direct path, and the signals must pass through other towers. In order to avoid interference in this
path, the incoming and outgoing signals at each tower should be different. Let each tower be a
node in a graph. Then, every pair of vertices has to have a properly edge colored path between
them to avoid interference. For the whole network to be connected, the graph must be properly
connected.

2 Notation and terminology

Definition 2.1. A path in a graph is said to be properly edge colored if the edges of the path
admit proper coloring.

Definition 2.2. Any edge colored graph G is said to be properly connected if there exists a
properly edge colored path between every pair of vertices in G.

Definition 2.3. The proper connection number of a graph G, denoted by pc(G) is the minimum
number of colors required to color the edges of G such that it is properly connected.
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Definition 2.4. The distance between two vertices u and v denoted by d(u, v) is the length of the
shortest path between u and v.

Definition 2.5. The proper distance between two vertices u and v denoted by pd(u, v) is the
minimum length of a properly edge colored path between u and v.

Definition 2.6. For a properly connected graph G with a k-coloring c, the proper diameter of
a graph denoted by pdiamk(G) is the maximum proper distance between any pair of distinct
vertices in G.

It is necessary to observe from the definition of properly connected graphs that all properly
colored graphs are also properly connected. However, not all properly connected graphs need
to be properly colored.

Example 2.7. Consider the graph G shown in Fig. 1. The maximum distance between any pair
of vertices in G is 3 and is that of between vertices d and e. Hence, diam(G) = 3. However,
considering the 2-coloring assigned to the edges of the graph, we see that pd(de) = 4, hence
pdiam2(G) = 4.

It can be observed from the example in Figure 1 that even though the edge chromatic number of
G is 3, an edge coloring using two colors makes G properly connected.
For any graph G, if pdiam2(G) = p, then there exists at least one pair of vertices in G whose
proper distance is p. Also, the proper distance between every other pair of vertices does not
exceed p. In this paper, we establish bounds on the values of the proper diameter of the wheel
graph, gear graph, helm graph, Cartesian product of a cycle with a path and the join of two
paths. Throughout the paper, we only consider properly connected graphs whose proper con-
nection number is 2. Solid edges in any properly connected graph represent color 1, and dashed
edges represent color 2. For terminology not defined here, we refer to [5].
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Figure 1. Graph G with pdiam2(G) = 4

3 Results

Theorem 3.1. For a wheel graph Wn, 3 ≤ pdiam2(Wn) ≤ n− 2 for n ≥ 7.

Proof. Consider a wheel graph Wn = Cn◦K1. Let w be the vertex of degree n and v1, v2, v3, ..., vn
be the vertices of degree 3 on the wheel graph Wn. For 1 ≤ i ≤ n, let ei be the edge viw. Let
c be a 2-coloring of the edges of Wn such that pdiam2(Wn, c) = 2. Starting with c(v1v2) = 1,
assign a proper edge coloring to the cycle Cn using colors 1 and 2. The only path of length 2
connecting vertices vi and vj , |i − j| ≥ 2 passes through w. Without loss of generality, assign
c(v1w) = 1. Since pdiam2(Wn, c) = 2, the only properly connected path of length 2 from v1 to
vj for 4 ≤ j ≤ n − 2 is through the vertex w. Therefore, c(ej) = 2 for all 4 ≤ j ≤ n − 2. To
achieve pd(v3vj) ≤ 2 for 4 ≤ j ≤ n− 2, assign c(e3) = 1. For v3 to be connected to the vertex
vn through a proper path of length 2, assign c(en) = 2. Since c(v4w) = c(wvn), pd(v4vn) ≥ 3.
Therefore, pdiam2(Wn, c) ≥ 3. This is a contradiction to our assumption that c is a 2-coloring
of Wn with pdiam2(Wn, c) = 2. Hence, pdiam2(Wn) ≥ 3.

Consider the following 2-coloring c of Wn. Starting with c(v1v2) = 1, assign a proper edge
coloring to the cycle v1v2, . . . , vnv1 . Assign c(ei) = 1 when i is odd and c(ei) = 2 when i is
even, for all i ≤ n. This gives a properly connected graph with pdiam2(Wn, c) = 3. Therefore,
the bound pdiam2(Wn) ≥ 3 is tight.
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Since the order of Wn is n+ 1, the maximum length of a path between any pair of non-adjacent
vertices is n, and the said path would be Hamiltonian. Let P be such a path between vi and vj ,
such that d(vivj) ≥ 2 and let c be a 2-coloring of the edges of Wn such that pdiam2(Wn) = n
and pd(vivj) = n. Without loss of generality, let vi = v1 and vj = vk, 2 < k < n. Then,
P = v1vn, . . . vk+1wv2v3, . . . , vk−1vk. The path vk+1wv2 is properly edge colored since the edges
on this path appear on P . Since v1vn, . . . vk+1 is properly edge colored, c(vk+1vk) ̸= c(vk+1w).
Else, v1vn, . . . vk+1vk is a shorter properly edge colored path between v1 and vk. Similarly
c(v1v2) ̸= c(v2w). Else, v1v2, . . . vk−1vk is a shorter properly edge colored path between v1 and
vk. This leads to v1v2wvk+1vk being a properly edge colored path and hence pd(vivj) < n. This
contradicts our assumption that pd(vivj) = n. Therefore, pdiam2(Wn) ̸= n.

Now, consider a path of length n − 1 in Wn. Let Q = v1, . . . vkwvk+1, . . . vn−1, 2 ≤ k ≤ n − 2
and c be 2-coloring of Wn such that pdiam2(Wn, c) = n − 1 and pd(v1vn−1) = n − 1. To
avoid a shorter, properly edge colored path between v1 and vn, assign c(ek) = c(en−1) and
c(e1) = c(ek+1). Now, we see that c(e1) ̸= c(en−1). Hence, we get v1wvn−1 as a shorter prop-
erly colored path, which implies pd(v1vn−1) < n− 1. This is a contradiction to our assumption
that pd(v1vn−1) = n− 1. Therefore, pdiam2(Wn) ̸= n− 1.

Consider the following 2-coloring c of Wn such that S = v1v2v3v4, . . . , vn−1 is a properly
connected path with pd(v1vn−1) = n − 2. Assign a proper edge coloring to S starting with
c(v1v2) = 1. To prevent a shorter properly connected path between v1 and vn−1, let c(v1vn) =
v(vnvn−1) = c(en) = 2, and for all 1 ≤ k ≤ n − 1, c(ek) = 1. This is a properly connected
2-coloring of Wn such that S is the shortest properly edge colored path between v1 and vn−1 and
no other proper path with length greater than n− 2. Therefore, a properly connected 2-coloring
of Wn exists such that pdiam2(Wn, c) = n− 2.
Hence, pdiam2(Wn) ≤ n− 2 and the bound is tight.
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Figure 2. Properly connected graphs of W7 and W8 with a 2-coloring c satisfying
pdiam2(Wn, c) = 3.
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Figure 3. Properly connected graphs of W7 and W8 with a 2-coloring c satisfying
pdiam2(Wn, c) = n− 2.
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Example 3.2. For the 2-coloring of W7 and W8 shown in Fig.2, the minimum proper distance
between any pair of vertices here is 3. Hence we have pdiam2(W7, c) = pdiam2(W8, c) = 3.

Example 3.3. For the 2-coloring of W7 and W8 shown in Fig.3, we have pdiam2(W7, c) = 5
with pd(v1v6) = 5. For W8, we have pdiam2(W8, c) = 6 with pd(v1v7) = 6.

Theorem 3.4. For a gear graph Gn, n ≤ pdiam2(Gn) ≤ 2n− 2 for n ≥ 7.

Proof. Consider the gear graph Gn on 2n + 1 vertices. Let w be the vertex of degree n and
v1, v2, . . . , vn be the vertices of degree 3 and u1, u2, . . . , un be the vertices of degree 2 in Gn.
Let ei ∈ E(Gn) be the edge viw , 1 ≤ i ≤ n. Consider a 2-coloring c of Gn such that
pdiam2(Gn, c) = n − 1. Let P be the shortest properly edge colored path of length n − 1
between some pair of vertices in Gn. Then, we have the following cases.

Case 1: Consider n to be odd.

Sub case 1: Let vi and vj be the end vertices of P .
Suppose vi = v1 and vj = v⌈n

2 ⌉. Then, P = v1u1v2, . . . , v⌈n
2 ⌉. Starting with c(v1u1) = 1,

properly edge color the cycle v1u1v2, . . . , vnunv1. Now, each vertex vi has to be connected
to a vertex ui+⌈n

2 ⌉−1, such that pd(viui+⌈n
2 ⌉+1) ≤ n − 1 for all i ≤ ⌈n

2 ⌉. Therefore, either
viwvi+⌈n

2 ⌉ui+⌈n
2 ⌉−1 or viwvi+⌈n

2 ⌉−1ui+⌈n
2 ⌉−1 is a properly edge colored path. To achieve this,

assign c(ei) = 1 for i < ⌈n
2 ⌉ and c(ei) = 2 otherwise. Then, there exists at least one ui for which

c(viui) = c(ei) and c(uivi+1) = c(ei+1) for all i ≤ ⌈n
2 ⌉. This results in either pd(uiw) > n− 1

or pd(vi+⌈n
2 ⌉ui) > n. This is a contradiction to our assumption that pdiam2(Gn, c) = n − 1

since there exists a pair of vertices for which the proper distance is greater than n− 1.

Similarly, if ui and uj are the end vertices of P , it results in the same contradiction as above with
either pd(uiw) > n− 1 or pd(vi+⌈n

2 ⌉ui) > n using the 2-edge coloring mentioned in Sub case 1.

Sub case 2: Let ui and w be the end vertices of P .
Suppose ui = u1 and P = u1v2u2, . . . , v⌈n

2 ⌉w. Starting with c(v1u1) = 1, assign a proper edge
coloring to the cycle v1u1, . . . , vnunv1 and assign c(v⌈n

2 ⌉w) = c(e1) = 1. In order to prevent a
shorter properly edge colored path between u1 and w, assign c(ei) = 2 for i < ⌈n

2 ⌉ and c(ei) = 1
for i > ⌈n

2 ⌉ + 1. Any assignment of colors to the remaining edge e⌈n
2 ⌉ gives pd(v1u⌈n

2 ⌉) = n,
which is a contradiction to our assumption that pdiamn(Gn, c) = n− 1.
Hence, pdiam2(Gn) ̸= n− 1 when n is odd.

Case 2: Consider n to be even.
A path of odd length in Gn exists only between vi and uj , i ̸= j. Let vi = v1 and uj = un

2
. Then

P = v1u1, . . . , v2vn
2
un

2
is a path of length n−1. Starting with c(v1u1) = 1, assign a proper edge

coloring to the cycle v1u1v2, . . . , vnunv1. Now, each vertex vi has to be connected to a vertex
vi+n

2
, so that pd(vivi+n

2
) ≤ n − 1 for all i ≤ n

2 . Therefore, viwvi+n
2

has to be a properly edge
colored path for each i ≤ n

2 . To achieve this, assign c(e1) = 1 when i ≤ n
2 and c(e1) = 2

otherwise. Then, c(un
2
vn

2 +1) = c(en
2 +1) and c(vn

2
un

2
) = c(en

2
). This implies pd(un

2
un) = n,

which is a contradiction to our assumption that pdiam2(Gn, c) = n− 1.
Therefore, there exists no 2-coloring c of Gn, for which pdiamn(Gn) = n− 1.

Consider the following 2-coloring c of Gn. Starting with c(v1u1) = 1, assign a proper edge color-
ing to the cycle v1u1v2u2, . . . , vnunv1 . Any assignment of colors 1 and 2 to each ei, i ≤ n gives
a properly connected graph with pdiam2(Gn, c) = n. Hence, the bound pdiam2(Gn, c) ≥ n is
tight.

To prove the upper bound, consider the path of maximum length in Gn. The order of the Hamil-
tonian path in Gn is 2n+ 1. Let Q be such a path. Assume that c is a 2-coloring of Gn such that
pdiamn(Gn, c) = 2n. Then, we have the following cases.

Case 1: Let ui and uj , i ̸= j be the end vertices of Q.
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Suppose ui = u1 and uj = un. Then, Q = u1v2, . . . , vn, w, v1, un such that all vertices of Gn

are on Q. Let Q be a properly edge colored path such that pd(u1un) = 2 with c(u1v2) = 1.
If c(v1u1) = 1, then u1v1un is a shorter properly edge colored path between u1 and un. If
c(vnun) = 2, then u1v2, . . . , vnun is a shorter properly edge colored path between u1 and un. If
c(v1u1) = 2 and c(vnun) = 1, u1v1wvnun is a shorter properly edge colored path.
Similarly, if vi and vj , i ̸= j are the end vertices of Q, then only one of ui ∈ N(vi) can be
included on Q, else it results in a shorter properly colored path. Therefore, there exists no prop-
erly edge colored Hamiltonian path between ui and uj or vi and vj such that pdiam(Gn, c) = 2n.

Case 2: Let vi and uj be the end vertices of Q.
If w is not a vertex on Q, then Q is not Hamiltonian. Hence, consider a path Q with w on it.
Suppose Q = v1u1, v2, wvnun−1, . . . , v3u2. Then, un is not a vertex on Q. Therefore, there exists
no Hamiltonian path between vi and uj .

Case 3: Let ui and w be the end vertices of Q.
Suppose ui = u1. Then, Q = u1v2, . . . , vnunv1, w is a Hamiltonian path between two non-
adjacent vertices. Consider the following 2-coloring of Gn such that pd(u1w) = 2n. Starting
with c(u1v2) = 1, assign a proper edge coloring to the path Q. Since Q has an even number
of edges, we get c(v1w) = 2. To prevent a shorter properly edge colored path between u1 and
w, assign c(ek) = 1, for all k ̸= 1. If c(v1u1) = 1, then u1v1w is a shorter properly edge
colored path between u1 and w. If c(v1u1) = 2, then u1v1unvnw is properly edge colored
path of length 4. Since there exists a shorter properly edge colored path between the terminal
vertices of a properly edge colored Hamiltonian path, we get a contradiction to our assumption
that pdiam2(Gn, c) = 2n.
Therefore, there exists no proper coloring c of Gn such that pdiam2(Gn) = 2n.

From Case 2, a path of length 2n−1 can be achieved between vertices vi and uj when d(viuj) ≥
3.
Suppose uj = u1 and vi = v3. Let S = u1v2wv1unvnun−1vn−1, . . . , u4v3 be the shortest prop-
erly edge colored path of length 2n − 1 between u1 and v3 with c(u1v2) = 1 with a 2-coloring
c such that pdiam2(Gn, c) = 2n − 1. To prevent a shorter properly edge colored path between
u1 and v3, assign c(ek) = 2 for 4 ≤ k ≤ n. Else, u1v2wvk, . . . , u4v3 will be a shorter properly
connected path between u1 and v3. If c(e3) = 1, then u1v2wv3 is a properly connected path of
length 3. Therefore, assign c(e3) = 2. If c(u1v1) = 1, then u1v1unvnun−1vn−1, . . . , u4v3 is a
properly connected path of length 2n − 3. Therefore, assign c(u1v1) = 2. Then, u1v1wv3 is
a properly connected path of length 4. Since any assignment of colors to the edge u1v1 give a
shorter properly edge colored path, pd(u1v3) < 2n− 1, which is a contradiction to our assump-
tion that pd(u1v3) = 2n− 1. Hence, pdiam2(Gn) ̸= 2n− 1.

Now, consider the following 2-coloring of Gn. Starting with c(v1u1) = 1, assign a proper
edge coloring to the path Q = v1u1v2u2 . . . un−1vn and let c(vnun) = c(unv1) = 2. Also, for
all 1 ≤ i ≤ n, assign c(ei) = 1. The path Q is of length 2n − 2 with no shorter properly
connected path between v1 and vn. w is connected to ui by the path wviui. Each vertex on Q
is properly connected to all other vertices on Q by paths of length no greater than 2n− 2. un is
properly connected to all vertices through the proper path unv1u1, . . . , vn−1un−1, whose length
is 2n− 2. Hence, pdiam2(Gn, c) = 2n− 2. Therefore, for any properly connected 2-coloring c,
pdiam2(Gn) ≤ 2n− 2.

Example 3.5. Fig.4 shows a 2-coloring of G8 for which pdiam2(G8, c) = 8 such that the max-
imum proper distance between any pair of vertices is 8. Fig.5 shows a 2-coloring of G8 with
pdiam2(G8, c) = 14 such that pd(v1v8) = 14.

Theorem 3.6. For a helm graph Hn, n ≤ pdiam2(Hn, c) ≤ n+ 2 for n ≥ 4.

Proof. Consider a helm graph Hn on 2n + 1 vertices. Let w be the vertex of degree n and
v1, v2, . . . , vn be the vertices of degree 4 in Hn. Let ui be the pendant vertex attached to each vi,
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Figure 4. pdiam2(G8, c) = 8
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Figure 5. pdiam2(G8, c) = 10

1 ≤ i ≤ n. Let ei ∈ E(Hn) be the edge viw and pi ∈ E(Hn) be the edge viui for all 1 ≤ i ≤ n.
To prove the lower bound, consider a 2-coloring c of Hn, such that pdiam2(Hn, c) = n− 1. Let
S be the shortest properly edge colored path of length n − 1 between some pair of vertices in
Hn. We have the following cases.

Case 1: Consider n to be even.

Sub case 1: Let ui and vj be the end vertices of S.
Suppose ui = u1, then S = u1v1v2, . . . , vn−1 and S is the shortest properly colored path be-
tween u1 and vn−1 such that pd(u1vn−1) = n − 1. This implies there are no shorter properly
connected paths between u1 and vn−1. Since un−1 can only be reached through vj , we now get
pd(u1un−1) = n. This is a contradiction to our assumption that pdiam2(Hn, c) = n− 1 .

Sub case 2: Let ui and w be the end vertices of S.
Suppose ui = u1. Then, S = u1v1v2, . . . , vn−2w. Let S be a properly edge colored path
starting with c(u1v1) = 1. Then, c(wvn−2) = 1. To avoid a shorter properly edge colored
path between u1 and w, assign c(ei) = 1 when i is odd and c(ei) = 2 when i is even for
i < n − 2. If u1 and un−1 are to be properly connected by a proper path of length not greater
than n − 1, u1v1vnvn−1un−1 has to be properly edge colored. Since this is a path of even
length and c(u1v1) = 1, we get c(un−1vn−1) = 2. This forces c(vnw) = 2, c(vn−1w) = 1
and c(vn−1vn−2) = 1. In order to achieve pd(u1ui) ≤ n − 1 for all 2 ≤ i ≤ n − 2, the path
u1v1v2, . . . , viui has to be properly colored. Hence, assign c(pi) = c(vivi+1), 2 ≤ i ≤ n − 2.
Such a coloring of Hn would not have a properly connected path between un−3 and un−2. This
is a contradiction to our assumption that c is a 2-coloring of Hn such that Hn is properly con-
nected. Therefore, pdiam2(Hn) ̸= n− 1 when n is even.

Case 2: Consider n to be odd.

Sub case 1: Let vi and vj be the end vertices of S.
If vi and vj are the end vertices of S, vj /∈ N(vi). Therefore, S must contain the vertex w for
it to be a path on n vertices. Each vertex ui has a path to every other vertex in Hn through vi.
Since pdiam2(Hn, c) = n − 1, ui is connected to the vertex uj through the path uivi, . . . , vjuj .
If pd(vivj) = n − 1, then pd(vivj) > n − 1, which is a contradiction to our assumption that
pdiam2(Hn, c) = n− 1..

Sub case 2: Let ui and vj be the end vertices of S.
If pd(uivj) = n − 1, then pd(uiuj) > n − 1, since uj can only be reached through vj . If
pd(uiuj) ≤ n− 1, then there is shorter properly connected path between ui and vj .
Therefore, there exists no 2-coloring of Hn such that pdiam2(Hn, c) = n−1. Hence, pdiam2(Hn) ≥
n.

Consider the following 2-coloring c of Hn. Starting with c(v1u1) = 1, assign a proper edge
coloring to the path u1v1v2, . . . , vn−1un−1 . When n is odd, assign c(v1vn) = c(vnvn−1) =
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c(en) = 2, c(pn) = 1 and c(en−1) = c(pn−1). When n is even, assign c(v1vn) = c(vnvn−1) =
c(en) = 1, c(pn) = 2 and c(en−1) = c(pn−1). For all 1 ≤ i ≤ n − 2, assign c(ei) = c(vivi+1)
and c(pi) = c(vivi−1) for 2 ≤ i ≤ n − 2. This gives a properly connected graph with
pdiam2(Hn, c) = n. Hence, the bound pdiam2(Hn) ≥ n is tight.

Let P be the path of maximum length between different pairs of non-adjacent vertices in Hn.
Consider the following possibilities for a path P .

Case 1: Let vi and vj be the end vertices of P .
Since ui has degree 1, any path between vi and vj , when d(vivi) ≥ 1, will not have any ui on it.
Then, the maximum length of a P is n− 1, provided that the path has the vertex w on it.

Case 2: Let ui and uj be the end vertices of P .
Any path P between vertices ui and uj can include each vi, 1 ≤ i ≤ n on it along with the vertex
w. Then, the number of vertices on such a path would be 2 + n + 1 = n + 3. Therefore, the
length of P is n+ 2.

Case 3: Let ui and w be the end vertices of P .
Start with ui and traverse through each vi for all 1 ≤ i ≤ n, and terminate the path at w. The
number of vertices on such a path would be 1+n+1=n+2. Therefore, the length of P is n+ 1.

Hence, the maximum length of a path between any pair of vertices in Hn is n+ 2 when ui and
uj are the end vertices for some 1 ≤ i, j ≤ n.
Suppose ui = u1. Consider the following 2-coloring c of Hn.
Let P = u1v1wv2, v3, . . . , vnun be a path of length n + 2 between u1 and un. Let proper edge
coloring of P begin with c(p1) = 1. In order to prevent a shorter properly edge colored path
between u1 and un, assign c(v1vn) = 1, c(en) = c(v1v2) = 2, c(p2) = 2. For any 3 ≤ i ≤ n− 1,
let c(ei) = c(vivi+1) and c(pi) = (vivi−1). This is a properly connected 2-coloring of Hn with
at least one proper path of length n+ 2.

Therefore, there exists a 2-coloring of Hn such that Hn is properly connected with the maximum
proper distance between any pair of vertices being n+ 2. Hence, pdiamn(Hn) ≤ n+ 2.

Example 3.7. Fig.6 shows a 2-coloring of H7 that satisfies pdiam2(H7) = 7 with pd(u1u6) = 7.
For H8, we have pdiam2(H8) = 7 with pd(u1u7) = 8 .

Example 3.8. Fig.7 shows a 2-coloring of H7 that satisfies pdiam2(H7, c) = 9 with pd(u1u7) =
9. For H8, we have pdiam2(H8, c) = 10 with pd(u1u8) = 10 .
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Figure 6. Properly connected graphs of H7 and H8 with a 2-coloring c satisfying
pdiam2(Hn, c) = n.

Theorem 3.9. For any Cm and Pn, pdiam2(Cm□Pn) ≤ nm−4, when m is even and pdiam2(Cm□Pn) ≤
nm− 3, when m is odd.
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Figure 7. Properly connected graphs of H7 and H8 with a 2-coloring c satisfying
pdiam2(Hn, c) = n+ 2.

Proof. Let P be a Hamiltonian path between some pair of non-adjacent vertices. Consider a
2-coloring c of Cm□Pn such that P is the shortest properly edge colored path between corre-
sponding vertices.
Let P = v1e1v2e2, . . . , vnm−1, enm−1, vnm be the representation of the path with the correspond-
ing edges. Assign a proper edge coloring to P starting with c(e1) = 1, c(e2) = 2. To rule out a
shorter properly connected path between v1 and vnm, the following assignment of colors to the
remaining edges can be made.

• For every edge x = vivj /∈ E(P ), 1 ≤ i < j < nm, assign c(x) = c(ej).

• If y /∈ E(P ) is an edge incident on vnm and some vj , 1 ≤ j ≤ nm− 3, we can have either
c(y) = c(ej) or c(y) = c(ej−1).

If c(y) = c(ej), then there exists a properly colored path of length 2 from vj−1 to vnm through
vj . Since pd(v1vj) ≤ nm − 4, we now have pd(v1vnm) ≤ nm − 2. Then, there exists a shorter
properly edge colored path v1v2, . . . vj−1vjvnm.
If c(y) = c(ej−1), then c(y) ̸= c(ej) and hence vj+1vjvnm is properly connected. Since
pd(v1vj) ≤ nm − 4, we now have pd(v1vnm) ≤ nm − 2. Then, there exists a shorter prop-
erly edge colored path v1, . . . vj+1vjvnm. This is a contradiction to our assumption that c is a
2-coloring of Cm□Pn such that P is the shortest properly edge colored path between v1 and
vnm. Therefore, there exists no 2-coloring of Cm□Pn such that pdiam2(Cm□Pn) = nm− 1.

Let Q = v1e1v2e2, . . . , ek−1vk be the shortest properly edge colored path of length k − 1 be-
tween some pair of vertices v1 and vk. Then, for every edge x = vivj /∈ E(Q), 1 ≤ i < j < k,
assign c(x) = c(ej). However, if vk is adjacent to a vertex vr ̸= vk−1 ∈ Q, then there is
always a shorter properly edge colored path due to vr as observed in the case of a Hamilto-
nian path. Therefore, only one vertex vj ∈ N(vk) can be on the shortest properly connected
path for which vk is a terminal vertex. Hence, pdiam2(Cm□Pn, c) = nm − 2 is not achiev-
able since at least two vertices vr ∈ N(vnm−1) are on the shortest properly connected path
between v1 and vnm−1. Since δ(Cm□Pn) = 3, if vk is a vertex of degree 3 and if two vertices
a, b ∈ N(vnm−2) are not on the shortest properly connected path between v1 and vnm−2, then
we may have pdiam2(Cm□Pn, c) = nm− 3.

Case 1: Let m be odd and c be a 2-coloring of Cm□Pn such that Q is the shortest properly edge
colored path of length nm− 3 between some pair of vertices and pdiam2(Cm□Pn) = nm− 3.
Let a, b ∈ N(vnm−2) be two vertices that are not on this path.
Let Q = v1e1v2e2, . . . , vnm−3, enm−3, vnm−2 be the representation of the path with the corre-
sponding edges. Assign a proper edge coloring to Q starting with c(e1) = 1, c(e2) = 2. To rule
out a shorter properly connected path between v1 and vnm−2, the following assignment of colors
to the remaining edges can be made.

• For every edge x = vivj /∈ E(Q), 1 ≤ i < j < nm− 2, assign c(x) = c(ej), provided that
x does not share an endpoint with either a or b.
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• For very edge y incident on a and b, assign c(y) = 1 if c(enm−3) = 2 and c(y) = 2
otherwise.

For the coloring c defined above, we get pdiam2(Cm□Pn, c) = nm − 3. Therefore, when m is
odd pdiam2(Cm□Pn) ≤ nm− 3.

Case 2: Let m be even. Each vertex in Cm□Pn belongs to two C4’s and a Cm. Let v be the
terminal vertex of a path Q such that deg(v) = 3. Suppose two vertices a, b ∈ N(v) are excluded
from the path Q. If a and b are the two vertices that belong to the same C4 as v, then the fourth
vertex of this C4 cannot be on the path Q. If a and b are not vertices in the same cycle C4, then
a vertex from Cm cannot be on the path Q. Therefore, the length of the path Q with a degree 3
terminal vertex cannot exceed nm− 4 in Cm□Pn .

Let c be a 2-coloring of Cm□Pn such that Cm□Pn is properly connected and S is the shortest
properly edge colored path of length nm − 4 between two vertices of degree 3. Let a, b ∈
N(vnm−3) and c be the vertices not on this path such that c is a vertex adjacent to a or b.

a
v6 v7 b

v23

v4
v5 v8 v21

v22

v3
v10 v9 v20

v19

v2
v11 v14 v15

v18

v1
v12 v13 v16

v17

Figure 8. A 2-coloring c of C5□P5 satisfying pdiam2(Cm□Pn, c) = nm− 3

a
c v22 v23 b

v19
v20 v21 v24 v25

v18
v17 v16 v15 v14

v7
v8 v9 v10 v11

v6
v5 v4 v3 v2

v27

v26

v13

v12

v1

Figure 9. A 2-coloring c of C6□P5 satisfying pdiam2(Cm□Pn, c) = nm− 4

Let S = v1e1v2e2, . . . , vnm−4enm−4vnm−3 be the representation of the path with the correspond-
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ing edges. Assign a proper edge coloring to S starting with c(e1) = 1, c(e2) = 2. To rule out
a shorter properly connected path between v1 and vnm−3, the following assignment of colors to
the remaining edges can be made.

• For every edge x = vivj /∈ E(S), 1 ≤ i < j < nm− 3, assign c(x) = c(ej), provided that
x does not share an end point with either a, b or c.

• For very edge y incident on a, b and c, assign c(y) = 1 if c(enm−4) = 2 and c(y) = 2
otherwise.

This is a 2-coloring of Cm□Pn, such that pdiam2(Cm□Pn, c) = nm− 4.
Therefore, pdiam2(Cm□Pn) ≤ nm− 4, when m is even.

Example 3.10. The 2-coloring c of C5□P5 in Fig.8 has pdiam2(C5□P5, c) = 22 with pd(v1v23) =
22.

Example 3.11. Fig.9 shows a 2-coloring c of C6□P5 which has pdiam2(C6□P5, c) = 26 with
pd(v1v27) = 26.

To prove the next theorem, we use the bound pdiam2(G) ≤ n−κ(G)+1 for a properly connected
2-colored graph of order n ≥ 2, proved in [4].

Theorem 3.12. For any Pn and Pm, 2 ≤ pdiam2(Pm + Pn) ≤ n − 1, when n ≥ 3,m ≥ 2,
n > m.

Proof. Let u1, u2, . . . , um and v1, v2, . . . , vn be the vertices on the paths Pm and Pn respectively.
Then, Pm + Pn is a graph of order m+ n. Since diam(Pm + Pn) = 2, pdiam2(Pm + Pn) ≥ 2
for any 2-coloring c.

Since κ(Pm + Pn) = m+ 1, we have pdiam2(Pm + Pn, c) ≤ m+ n − (m+ 1) + 1 = n. Let
c be a 2-coloring of Pm + Pn, such that pdiam2(Pm + Pn, c) = n. Then, there exists a shortest
properly connected path of length n between at least one pair of vertices in Pm + Pn. Let Q be
such a path. The path of length greater than 1 can occur either between some vi and vj or ui and
uj , |i− j| ≠ 1. Suppose the initial and terminal vertices of Q are v1 and vn. Any path of length n
between two vertices of Pn will have at least one vertex from Pm. Suppose Q = v1uiv2, . . . , vn,
1 ≤ i ≤ m is a properly edge colored path starting with c(v1ui) = 1. To avoid a shorter properly
edge colored path assign c(v1v2) = 1. Further, if c(uivn) = 1, then v1v2u1vn is a shorter prop-
erly edge colored path between v1 and vn. If c(uivn) = 2, then v1u1vn is a shorter properly edge
colored path between v1 and vn. Since pd(v1vn) ≤ 3 in each case, we get a contradiction to our
assumption that pdiam2(Pm + Pn, c) = n .

Consider a 2-coloring of Pm+Pn such that the path Pn is properly edge colored with c(v1u1) = 1
and every other edge in the graph is assigned the color 1. Two vertices ui and uj in the path Pm

are connected by proper paths uiekuj of length 3, where ek is any edge on path Pn such that
c(ek) = 2. This is a properly connected 2-coloring of Pm+Pn in which v1 and vn are connected
by the proper path of length n−1, which is also the shortest properly edge colored path between
v1 and vn.
Hence, pdiam2(Pm + Pn) ≤ n− 1 and the bound is tight.

Example 3.13. Fig.10 shows a properly connected 2-coloring c of P5+P6 for which pdiam2(P5+
P6, c) = 2 such that the proper distance between any two non-adjacent vertices is 2.

Example 3.14. Fig.11 shows a properly connected 2-coloring c of P5+P6 for which pdiam2(P5+
P6, c) = 5 with pd(v1v6) = 5.
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v1 v2 v3 v4 v5 v6

u1 u2 u3 u4 u5

Figure 10. Properly connected graph P5 + P6 with a 2-coloring c satisfying pdiam2(Pm +
Pn, c) = 2

v1 v2 v3 v4 v5 v6

u1 u2 u3 u4 u5

Figure 11. Properly connected graph P5 + P6 with a 2-coloring c satisfying pdiam2(Pm +
Pn, c) = n− 1

4 Conclusion

The bounds on the proper diameter of the wheel graph, gear graph, helm graph, cartesian prod-
uct of a cycle with a path and the join of two paths are established. These bounds hold true for
the above class of graphs for any 2-edge coloring assigned to the graph, provided the graph is
also properly connected.

References
[1] G. Chartrand, G.L. Johns, K.A. McKeon, and P. Zhang, Rainbow connection in graphs, Mathematica

Bohemica, 133(1) , 85–98, (2008).

[2] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero and Z. Tuza, Proper Connection
of Graphs, Discrete Mathematics., 312(17), 2550––2560,(2012).

[3] X. Li and C. Magnant, Properly colored notions of connectivity- a dynamic survey, Theory and Applica-
tions of Graphs, 1 , (2015).

[4] V. Coll, J. Hook, C. Magnant, K. McCready, and K. Ryan, The proper diameter of a graph, Discussiones
Mathematicae: Graph Theory, 40(1) , (2020).

[5] F. Buckley and F. Harary, Distance in graphs, Addison-Wesley Redwood city, 2 , (1990).

Author information
H R Deepika, Department of Mathematics, CHRIST (Deemed to be University), India.
E-mail: deepika.hr@res.christuniversity.in

T.A. Mangam, Department of Mathematics, CHRIST (Deemed to be University), India.
E-mail: tabitha.rajashekar@christuniversity.in

Received: 2024-04-11

Accepted: 2025-04-15


	1 Introduction
	2 Notation and terminology
	3 Results
	4 Conclusion

