# **On Proper Diameter of Certain Classes of Graphs**

H R Deepika and T.A. Mangam

Communicated by Ivan Gotchev

MSC 2010 Classifications: Primary 05C12, 05C15, 05C76

Keywords and phrases: Proper connectivity, Proper diameter.

The authors thank the anonymous referee for their constructive comments that helped improve this article.

#### Corresponding Author: H R Deepika

**Abstract** An edge coloring of a graph is said to be proper edge coloring if no two adjacent edges receive the same color. A graph G is said to be properly connected if there exists a properly edge colored path between every pair of vertices. For a properly connected graph G with a kedge coloring c, the proper diameter of a graph,  $pdiam_k(G)$  is the maximum proper distance between any distinct pair of vertices in G. We investigate the proper diameter of various classes of graphs that are 2-colored and provide bounds on the values of  $pdiam_2(G)$  for these graphs.

## 1 Introduction

The connectivity between vertices in terms of colored paths was conceptualized by Chartrand et al.[1]. They introduced the parameter called Rainbow Connection Number. A path in a graph is called a rainbow path if no two edges in the path have the same color. The rainbow connection number rc(G) is the minimum number of colors required to color the edges of the graph such that each pair of vertices have a rainbow path between them. Generalising the definition of rainbow connection number, Borozan et al. [2] introduced the definition of proper connection number. The proper connection number pc(G) of a graph G is the minimum number of colors required to color the edges of G such that each pair of vertices have a properly edge colored path between them. This is a widely studied parameter with several characterizations surveyed in [3]. V.Coll et al.[4] related the concept of properly edge colored paths to distances in graphs by defining proper distance and proper diameter. They investigated the proper diameter values for several graphs.

Properly connected graphs have applications in communication networks. In a wireless communication network, interference at a signal tower between the incoming and outgoing signals is avoided by ensuring that they do not have the same frequency. Suppose two towers do not have a direct path, and the signals must pass through other towers. In order to avoid interference in this path, the incoming and outgoing signals at each tower should be different. Let each tower be a node in a graph. Then, every pair of vertices has to have a properly edge colored path between them to avoid interference. For the whole network to be connected, the graph must be properly connected.

### 2 Notation and terminology

**Definition 2.1.** A path in a graph is said to be properly edge colored if the edges of the path admit proper coloring.

**Definition 2.2.** Any edge colored graph G is said to be *properly connected* if there exists a properly edge colored path between every pair of vertices in G.

**Definition 2.3.** The proper connection number of a graph G, denoted by pc(G) is the minimum number of colors required to color the edges of G such that it is properly connected.

**Definition 2.4.** The distance between two vertices u and v denoted by d(u, v) is the length of the shortest path between u and v.

**Definition 2.5.** The *proper distance* between two vertices u and v denoted by pd(u, v) is the minimum length of a properly edge colored path between u and v.

**Definition 2.6.** For a properly connected graph G with a k-coloring c, the proper diameter of a graph denoted by  $pdiam_k(G)$  is the maximum proper distance between any pair of distinct vertices in G.

It is necessary to observe from the definition of properly connected graphs that all properly colored graphs are also properly connected. However, not all properly connected graphs need to be properly colored.

**Example 2.7.** Consider the graph G shown in Fig. 1. The maximum distance between any pair of vertices in G is 3 and is that of between vertices d and e. Hence, diam(G) = 3. However, considering the 2-coloring assigned to the edges of the graph, we see that pd(de) = 4, hence  $pdiam_2(G) = 4$ .

It can be observed from the example in Figure 1 that even though the edge chromatic number of G is 3, an edge coloring using two colors makes G properly connected.

For any graph G, if  $pdiam_2(G) = p$ , then there exists at least one pair of vertices in G whose proper distance is p. Also, the proper distance between every other pair of vertices does not exceed p. In this paper, we establish bounds on the values of the proper diameter of the wheel graph, gear graph, helm graph, Cartesian product of a cycle with a path and the join of two paths. Throughout the paper, we only consider properly connected graphs whose proper connection number is 2. Solid edges in any properly connected graph represent color 1, and dashed edges represent color 2. For terminology not defined here, we refer to [5].



**Figure 1.** Graph *G* with  $pdiam_2(G) = 4$ 

#### **3** Results

**Theorem 3.1.** For a wheel graph  $W_n$ ,  $3 \le pdiam_2(W_n) \le n - 2$  for  $n \ge 7$ .

*Proof.* Consider a wheel graph  $W_n = C_n \circ K_1$ . Let w be the vertex of degree n and  $v_1, v_2, v_3, ..., v_n$  be the vertices of degree 3 on the wheel graph  $W_n$ . For  $1 \le i \le n$ , let  $e_i$  be the edge  $v_i w$ . Let c be a 2-coloring of the edges of  $W_n$  such that  $pdiam_2(W_n, c) = 2$ . Starting with  $c(v_1v_2) = 1$ , assign a proper edge coloring to the cycle  $C_n$  using colors 1 and 2. The only path of length 2 connecting vertices  $v_i$  and  $v_j$ ,  $|i - j| \ge 2$  passes through w. Without loss of generality, assign  $c(v_1w) = 1$ . Since  $pdiam_2(W_n, c) = 2$ , the only properly connected path of length 2 from  $v_1$  to  $v_j$  for  $4 \le j \le n - 2$  is through the vertex w. Therefore,  $c(e_j) = 2$  for all  $4 \le j \le n - 2$ . To achieve  $pd(v_3v_j) \le 2$  for  $4 \le j \le n - 2$ , assign  $c(e_n) = 2$ . Since  $c(v_4w) = c(wv_n)$ ,  $pd(v_4v_n) \ge 3$ . Therefore,  $pdiam_2(W_n, c) \ge 3$ . This is a contradiction to our assumption that c is a 2-coloring of  $W_n$  with  $pdiam_2(W_n, c) = 2$ . Hence,  $pdiam_2(W_n) \ge 3$ .

Consider the following 2-coloring c of  $W_n$ . Starting with  $c(v_1v_2) = 1$ , assign a proper edge coloring to the cycle  $v_1v_2, \ldots, v_nv_1$ . Assign  $c(e_i) = 1$  when i is odd and  $c(e_i) = 2$  when i is even, for all  $i \le n$ . This gives a properly connected graph with  $pdiam_2(W_n, c) = 3$ . Therefore, the bound  $pdiam_2(W_n) \ge 3$  is tight.

Since the order of  $W_n$  is n + 1, the maximum length of a path between any pair of non-adjacent vertices is n, and the said path would be Hamiltonian. Let P be such a path between  $v_i$  and  $v_j$ , such that  $d(v_iv_j) \ge 2$  and let c be a 2-coloring of the edges of  $W_n$  such that  $pdiam_2(W_n) = n$  and  $pd(v_iv_j) = n$ . Without loss of generality, let  $v_i = v_1$  and  $v_j = v_k$ , 2 < k < n. Then,  $P = v_1v_n, \ldots v_{k+1}wv_2v_3, \ldots, v_{k-1}v_k$ . The path  $v_{k+1}wv_2$  is properly edge colored since the edges on this path appear on P. Since  $v_1v_n, \ldots v_{k+1}$  is properly edge colored,  $c(v_{k+1}v_k) \neq c(v_{k+1}w)$ . Else,  $v_1v_n, \ldots v_{k+1}v_k$  is a shorter properly edge colored path between  $v_1$  and  $v_k$ . Similarly  $c(v_1v_2) \neq c(v_2w)$ . Else,  $v_1v_2, \ldots v_{k-1}v_k$  is a shorter properly edge colored path between  $v_1$  and  $v_k$ . This leads to  $v_1v_2wv_{k+1}v_k$  being a properly edge colored path and hence  $pd(v_iv_j) < n$ . This contradicts our assumption that  $pd(v_iv_j) = n$ . Therefore,  $pdiam_2(W_n) \neq n$ .

Now, consider a path of length n - 1 in  $W_n$ . Let  $Q = v_1, \ldots v_k w v_{k+1}, \ldots v_{n-1}, 2 \le k \le n - 2$ and c be 2-coloring of  $W_n$  such that  $pdiam_2(W_n, c) = n - 1$  and  $pd(v_1v_{n-1}) = n - 1$ . To avoid a shorter, properly edge colored path between  $v_1$  and  $v_n$ , assign  $c(e_k) = c(e_{n-1})$  and  $c(e_1) = c(e_{k+1})$ . Now, we see that  $c(e_1) \ne c(e_{n-1})$ . Hence, we get  $v_1 w v_{n-1}$  as a shorter properly colored path, which implies  $pd(v_1v_{n-1}) < n - 1$ . This is a contradiction to our assumption that  $pd(v_1v_{n-1}) = n - 1$ . Therefore,  $pdiam_2(W_n) \ne n - 1$ .

Consider the following 2-coloring c of  $W_n$  such that  $S = v_1v_2v_3v_4, \ldots, v_{n-1}$  is a properly connected path with  $pd(v_1v_{n-1}) = n-2$ . Assign a proper edge coloring to S starting with  $c(v_1v_2) = 1$ . To prevent a shorter properly connected path between  $v_1$  and  $v_{n-1}$ , let  $c(v_1v_n) = v(v_nv_{n-1}) = c(e_n) = 2$ , and for all  $1 \le k \le n-1$ ,  $c(e_k) = 1$ . This is a properly connected 2-coloring of  $W_n$  such that S is the shortest properly edge colored path between  $v_1$  and  $v_{n-1}$  and no other proper path with length greater than n-2. Therefore, a properly connected 2-coloring of  $W_n$  exists such that  $pdiam_2(W_n, c) = n-2$ .

Hence,  $pdiam_2(W_n) \le n-2$  and the bound is tight.

 $v_1$ 

 $v_3$ 

w,'

 $v_4$ 

 $v_6$ 

 $v_5$ 

 $v_1$   $v_7$   $v_2$  w  $v_6$   $v_2$   $v_3$   $v_4$   $v_5$   $v_6$   $v_7$   $v_7$   $v_8$   $v_8$   $v_9$   $v_9$ 

**Figure 2.** Properly connected graphs of  $W_7$  and  $W_8$  with a 2-coloring *c* satisfying  $pdiam_2(W_n, c) = 3$ .





 $v_1$ 

 $v_8$ 

**Example 3.2.** For the 2-coloring of  $W_7$  and  $W_8$  shown in Fig.2, the minimum proper distance between any pair of vertices here is 3. Hence we have  $pdiam_2(W_7, c) = pdiam_2(W_8, c) = 3$ .

**Example 3.3.** For the 2-coloring of  $W_7$  and  $W_8$  shown in Fig.3, we have  $pdiam_2(W_7, c) = 5$  with  $pd(v_1v_6) = 5$ . For  $W_8$ , we have  $pdiam_2(W_8, c) = 6$  with  $pd(v_1v_7) = 6$ .

**Theorem 3.4.** For a gear graph  $G_n$ ,  $n \le pdiam_2(G_n) \le 2n - 2$  for  $n \ge 7$ .

*Proof.* Consider the gear graph  $G_n$  on 2n + 1 vertices. Let w be the vertex of degree n and  $v_1, v_2, \ldots, v_n$  be the vertices of degree 3 and  $u_1, u_2, \ldots, u_n$  be the vertices of degree 2 in  $G_n$ . Let  $e_i \in E(G_n)$  be the edge  $v_i w$ ,  $1 \leq i \leq n$ . Consider a 2-coloring c of  $G_n$  such that  $pdiam_2(G_n, c) = n - 1$ . Let P be the shortest properly edge colored path of length n - 1 between some pair of vertices in  $G_n$ . Then, we have the following cases.

Case 1: Consider n to be odd.

Sub case 1: Let  $v_i$  and  $v_j$  be the end vertices of P.

Suppose  $v_i = v_1$  and  $v_j = v_{\lceil \frac{n}{2} \rceil}$ . Then,  $P = v_1 u_1 v_2, \ldots, v_{\lceil \frac{n}{2} \rceil}$ . Starting with  $c(v_1 u_1) = 1$ , properly edge color the cycle  $v_1 u_1 v_2, \ldots, v_n u_n v_1$ . Now, each vertex  $v_i$  has to be connected to a vertex  $u_{i+\lceil \frac{n}{2} \rceil-1}$ , such that  $pd(v_i u_{i+\lceil \frac{n}{2} \rceil+1}) \leq n-1$  for all  $i \leq \lceil \frac{n}{2} \rceil$ . Therefore, either  $v_i w v_{i+\lceil \frac{n}{2} \rceil} u_{i+\lceil \frac{n}{2} \rceil-1}$  or  $v_i w v_{i+\lceil \frac{n}{2} \rceil-1} u_{i+\lceil \frac{n}{2} \rceil-1}$  is a properly edge colored path. To achieve this, assign  $c(e_i) = 1$  for  $i < \lceil \frac{n}{2} \rceil$  and  $c(e_i) = 2$  otherwise. Then, there exists at least one  $u_i$  for which  $c(v_i u_i) = c(e_i)$  and  $c(u_i v_{i+1}) = c(e_{i+1})$  for all  $i \leq \lceil \frac{n}{2} \rceil$ . This results in either  $pd(u_i w) > n-1$ or  $pd(v_{i+\lceil \frac{n}{2} \rceil} u_i) > n$ . This is a contradiction to our assumption that  $pdiam_2(G_n, c) = n-1$ since there exists a pair of vertices for which the proper distance is greater than n-1.

Similarly, if  $u_i$  and  $u_j$  are the end vertices of P, it results in the same contradiction as above with either  $pd(u_iw) > n-1$  or  $pd(v_{i+\lceil \frac{n}{2} \rceil}u_i) > n$  using the 2-edge coloring mentioned in Sub case 1.

Sub case 2: Let  $u_i$  and w be the end vertices of P.

Suppose  $u_i = u_1$  and  $P = u_1 v_2 u_2, \ldots, v_{\lceil \frac{n}{2} \rceil} w$ . Starting with  $c(v_1 u_1) = 1$ , assign a proper edge coloring to the cycle  $v_1 u_1, \ldots, v_n u_n v_1$  and assign  $c(v_{\lceil \frac{n}{2} \rceil} w) = c(e_1) = 1$ . In order to prevent a shorter properly edge colored path between  $u_1$  and w, assign  $c(e_i) = 2$  for  $i < \lceil \frac{n}{2} \rceil$  and  $c(e_i) = 1$  for  $i > \lceil \frac{n}{2} \rceil + 1$ . Any assignment of colors to the remaining edge  $e_{\lceil \frac{n}{2} \rceil}$  gives  $pd(v_1 u_{\lceil \frac{n}{2} \rceil}) = n$ , which is a contradiction to our assumption that  $pdiam_n(G_n, c) = n - 1$ . Hence,  $pdiam_2(G_n) \neq n - 1$  when n is odd.

Case 2: Consider n to be even.

A path of odd length in  $G_n$  exists only between  $v_i$  and  $u_j$ ,  $i \neq j$ . Let  $v_i = v_1$  and  $u_j = u_{\frac{n}{2}}$ . Then  $P = v_1 u_1, \ldots, v_2 v_{\frac{n}{2}} u_{\frac{n}{2}}$  is a path of length n-1. Starting with  $c(v_1 u_1) = 1$ , assign a proper edge coloring to the cycle  $v_1 u_1 v_2, \ldots, v_n u_n v_1$ . Now, each vertex  $v_i$  has to be connected to a vertex  $v_{i+\frac{n}{2}}$ , so that  $pd(v_i v_{i+\frac{n}{2}}) \leq n-1$  for all  $i \leq \frac{n}{2}$ . Therefore,  $v_i w v_{i+\frac{n}{2}}$  has to be a properly edge colored path for each  $i \leq \frac{n}{2}$ . To achieve this, assign  $c(e_1) = 1$  when  $i \leq \frac{n}{2}$  and  $c(e_1) = 2$  otherwise. Then,  $c(u_{\frac{n}{2}} v_{\frac{n}{2}+1}) = c(e_{\frac{n}{2}+1})$  and  $c(v_{\frac{n}{2}} u_{\frac{n}{2}}) = c(e_{\frac{n}{2}})$ . This implies  $pd(u_{\frac{n}{2}} u_n) = n$ , which is a contradiction to our assumption that  $pdiam_2(G_n, c) = n - 1$ .

Consider the following 2-coloring c of  $G_n$ . Starting with  $c(v_1u_1) = 1$ , assign a proper edge coloring to the cycle  $v_1u_1v_2u_2, \ldots, v_nu_nv_1$ . Any assignment of colors 1 and 2 to each  $e_i$ ,  $i \le n$  gives a properly connected graph with  $pdiam_2(G_n, c) = n$ . Hence, the bound  $pdiam_2(G_n, c) \ge n$  is tight.

To prove the upper bound, consider the path of maximum length in  $G_n$ . The order of the Hamiltonian path in  $G_n$  is 2n + 1. Let Q be such a path. Assume that c is a 2-coloring of  $G_n$  such that  $pdiam_n(G_n, c) = 2n$ . Then, we have the following cases.

*Case 1:* Let  $u_i$  and  $u_j$ ,  $i \neq j$  be the end vertices of Q.

Suppose  $u_i = u_1$  and  $u_j = u_n$ . Then,  $Q = u_1v_2, \ldots, v_n, w, v_1, u_n$  such that all vertices of  $G_n$  are on Q. Let Q be a properly edge colored path such that  $pd(u_1u_n) = 2$  with  $c(u_1v_2) = 1$ . If  $c(v_1u_1) = 1$ , then  $u_1v_1u_n$  is a shorter properly edge colored path between  $u_1$  and  $u_n$ . If  $c(v_nu_n) = 2$ , then  $u_1v_2, \ldots, v_nu_n$  is a shorter properly edge colored path between  $u_1$  and  $u_n$ . If  $c(v_1u_1) = 1$  and  $c(v_nu_n) = 1$ ,  $u_1v_1w_v_nu_n$  is a shorter properly edge colored path.

Similarly, if  $v_i$  and  $v_j$ ,  $i \neq j$  are the end vertices of Q, then only one of  $u_i \in N(v_i)$  can be included on Q, else it results in a shorter properly colored path. Therefore, there exists no properly edge colored Hamiltonian path between  $u_i$  and  $u_j$  or  $v_i$  and  $v_j$  such that  $pdiam(G_n, c) = 2n$ .

#### *Case 2:* Let $v_i$ and $u_j$ be the end vertices of Q.

If w is not a vertex on Q, then Q is not Hamiltonian. Hence, consider a path Q with w on it. Suppose  $Q = v_1 u_1, v_2, w v_n u_{n-1}, \dots, v_3 u_2$ . Then,  $u_n$  is not a vertex on Q. Therefore, there exists no Hamiltonian path between  $v_i$  and  $u_j$ .

#### *Case 3:* Let $u_i$ and w be the end vertices of Q.

Suppose  $u_i = u_1$ . Then,  $Q = u_1v_2, \ldots, v_nu_nv_1, w$  is a Hamiltonian path between two nonadjacent vertices. Consider the following 2-coloring of  $G_n$  such that  $pd(u_1w) = 2n$ . Starting with  $c(u_1v_2) = 1$ , assign a proper edge coloring to the path Q. Since Q has an even number of edges, we get  $c(v_1w) = 2$ . To prevent a shorter properly edge colored path between  $u_1$  and w, assign  $c(e_k) = 1$ , for all  $k \neq 1$ . If  $c(v_1u_1) = 1$ , then  $u_1v_1w$  is a shorter properly edge colored path between  $u_1$  and w. If  $c(v_1u_1) = 2$ , then  $u_1v_1u_nv_nw$  is properly edge colored path of length 4. Since there exists a shorter properly edge colored path between the terminal vertices of a properly edge colored Hamiltonian path, we get a contradiction to our assumption that  $pdiam_2(G_n, c) = 2n$ .

Therefore, there exists no proper coloring c of  $G_n$  such that  $pdiam_2(G_n) = 2n$ .

From Case 2, a path of length 2n-1 can be achieved between vertices  $v_i$  and  $u_j$  when  $d(v_iu_j) \ge 3$ .

Suppose  $u_j = u_1$  and  $v_i = v_3$ . Let  $S = u_1v_2wv_1u_nv_nu_{n-1}v_{n-1}, \ldots, u_4v_3$  be the shortest properly edge colored path of length 2n - 1 between  $u_1$  and  $v_3$  with  $c(u_1v_2) = 1$  with a 2-coloring c such that  $pdiam_2(G_n, c) = 2n - 1$ . To prevent a shorter properly edge colored path between  $u_1$  and  $v_3$ , assign  $c(e_k) = 2$  for  $4 \le k \le n$ . Else,  $u_1v_2wv_k, \ldots, u_4v_3$  will be a shorter properly connected path between  $u_1$  and  $v_3$ . If  $c(e_3) = 1$ , then  $u_1v_2wv_3$  is a properly connected path of length 2n - 3. Therefore, assign  $c(e_3) = 2$ . If  $c(u_1v_1) = 1$ , then  $u_1v_1u_nv_nu_{n-1}v_{n-1}, \ldots, u_4v_3$  is a properly connected path of length 2n - 3. Therefore, assign  $c(u_1v_1) = 2$ . Then,  $u_1v_1wv_3$  is a properly connected path of length 4. Since any assignment of colors to the edge  $u_1v_1$  give a shorter properly edge colored path,  $pd(u_1v_3) < 2n - 1$ , which is a contradiction to our assumption that  $pd(u_1v_3) = 2n - 1$ . Hence,  $pdiam_2(G_n) \neq 2n - 1$ .

Now, consider the following 2-coloring of  $G_n$ . Starting with  $c(v_1u_1) = 1$ , assign a proper edge coloring to the path  $Q = v_1u_1v_2u_2\ldots u_{n-1}v_n$  and let  $c(v_nu_n) = c(u_nv_1) = 2$ . Also, for all  $1 \le i \le n$ , assign  $c(e_i) = 1$ . The path Q is of length 2n - 2 with no shorter properly connected path between  $v_1$  and  $v_n$ . w is connected to  $u_i$  by the path  $wv_iu_i$ . Each vertex on Qis properly connected to all other vertices on Q by paths of length no greater than 2n - 2.  $u_n$  is properly connected to all vertices through the proper path  $u_nv_1u_1,\ldots,v_{n-1}u_{n-1}$ , whose length is 2n - 2. Hence,  $pdiam_2(G_n, c) = 2n - 2$ . Therefore, for any properly connected 2-coloring c,  $pdiam_2(G_n) \le 2n - 2$ .

**Example 3.5.** Fig.4 shows a 2-coloring of  $G_8$  for which  $pdiam_2(G_8, c) = 8$  such that the maximum proper distance between any pair of vertices is 8. Fig.5 shows a 2-coloring of  $G_8$  with  $pdiam_2(G_8, c) = 14$  such that  $pd(v_1v_8) = 14$ .

**Theorem 3.6.** For a helm graph  $H_n$ ,  $n \le pdiam_2(H_n, c) \le n + 2$  for  $n \ge 4$ .

*Proof.* Consider a helm graph  $H_n$  on 2n + 1 vertices. Let w be the vertex of degree n and  $v_1, v_2, \ldots, v_n$  be the vertices of degree 4 in  $H_n$ . Let  $u_i$  be the pendant vertex attached to each  $v_i$ ,



 $1 \le i \le n$ . Let  $e_i \in E(H_n)$  be the edge  $v_i w$  and  $p_i \in E(H_n)$  be the edge  $v_i u_i$  for all  $1 \le i \le n$ . To prove the lower bound, consider a 2-coloring c of  $H_n$ , such that  $pdiam_2(H_n, c) = n - 1$ . Let S be the shortest properly edge colored path of length n - 1 between some pair of vertices in

Case 1: Consider n to be even.

 $H_n$ . We have the following cases.

Sub case 1: Let  $u_i$  and  $v_j$  be the end vertices of S.

Suppose  $u_i = u_1$ , then  $S = u_1v_1v_2, \ldots, v_{n-1}$  and S is the shortest properly colored path between  $u_1$  and  $v_{n-1}$  such that  $pd(u_1v_{n-1}) = n - 1$ . This implies there are no shorter properly connected paths between  $u_1$  and  $v_{n-1}$ . Since  $u_{n-1}$  can only be reached through  $v_j$ , we now get  $pd(u_1u_{n-1}) = n$ . This is a contradiction to our assumption that  $pdiam_2(H_n, c) = n - 1$ .

Sub case 2: Let  $u_i$  and w be the end vertices of S.

Suppose  $u_i = u_1$ . Then,  $S = u_1v_1v_2, \ldots, v_{n-2}w$ . Let S be a properly edge colored path starting with  $c(u_1v_1) = 1$ . Then,  $c(wv_{n-2}) = 1$ . To avoid a shorter properly edge colored path between  $u_1$  and w, assign  $c(e_i) = 1$  when i is odd and  $c(e_i) = 2$  when i is even for i < n-2. If  $u_1$  and  $u_{n-1}$  are to be properly connected by a proper path of length not greater than n-1,  $u_1v_1v_nv_{n-1}u_{n-1}$  has to be properly edge colored. Since this is a path of even length and  $c(u_1v_1) = 1$ , we get  $c(u_{n-1}v_{n-1}) = 2$ . This forces  $c(v_nw) = 2$ ,  $c(v_{n-1}w) = 1$  and  $c(v_{n-1}v_{n-2}) = 1$ . In order to achieve  $pd(u_1u_i) \le n-1$  for all  $2 \le i \le n-2$ , the path  $u_1v_1v_2, \ldots, v_iu_i$  has to be properly colored. Hence, assign  $c(p_i) = c(v_iv_{i+1}), 2 \le i \le n-2$ . Such a coloring of  $H_n$  would not have a properly connected path between  $u_{n-3}$  and  $u_{n-2}$ . This is a contradiction to our assumption that c is a 2-coloring of  $H_n$  such that  $H_n$  is properly connected. Therefore,  $pdiam_2(H_n) \ne n-1$  when n is even.

Case 2: Consider n to be odd.

Sub case 1: Let  $v_i$  and  $v_j$  be the end vertices of S.

If  $v_i$  and  $v_j$  are the end vertices of S,  $v_j \notin N(v_i)$ . Therefore, S must contain the vertex w for it to be a path on n vertices. Each vertex  $u_i$  has a path to every other vertex in  $H_n$  through  $v_i$ . Since  $pdiam_2(H_n, c) = n - 1$ ,  $u_i$  is connected to the vertex  $u_j$  through the path  $u_iv_i, \ldots, v_ju_j$ . If  $pd(v_iv_j) = n - 1$ , then  $pd(v_iv_j) > n - 1$ , which is a contradiction to our assumption that  $pdiam_2(H_n, c) = n - 1$ .

Sub case 2: Let  $u_i$  and  $v_j$  be the end vertices of S.

If  $pd(u_iv_j) = n - 1$ , then  $pd(u_iu_j) > n - 1$ , since  $u_j$  can only be reached through  $v_j$ . If  $pd(u_iu_j) \le n - 1$ , then there is shorter properly connected path between  $u_i$  and  $v_j$ . Therefore, there exists no 2-coloring of  $H_n$  such that  $pdiam_2(H_n, c) = n - 1$ . Hence,  $pdiam_2(H_n) \ge n$ .

Consider the following 2-coloring c of  $H_n$ . Starting with  $c(v_1u_1) = 1$ , assign a proper edge coloring to the path  $u_1v_1v_2, \ldots, v_{n-1}u_{n-1}$ . When n is odd, assign  $c(v_1v_n) = c(v_nv_{n-1}) = c(v_nv_{n-1})$ 

 $c(e_n) = 2, c(p_n) = 1$  and  $c(e_{n-1}) = c(p_{n-1})$ . When n is even, assign  $c(v_1v_n) = c(v_nv_{n-1}) = c(e_n) = 1, c(p_n) = 2$  and  $c(e_{n-1}) = c(p_{n-1})$ . For all  $1 \le i \le n-2$ , assign  $c(e_i) = c(v_iv_{i+1})$  and  $c(p_i) = c(v_iv_{i-1})$  for  $2 \le i \le n-2$ . This gives a properly connected graph with  $pdiam_2(H_n, c) = n$ . Hence, the bound  $pdiam_2(H_n) \ge n$  is tight.

Let P be the path of maximum length between different pairs of non-adjacent vertices in  $H_n$ . Consider the following possibilities for a path P.

*Case 1:* Let  $v_i$  and  $v_j$  be the end vertices of *P*. Since  $u_i$  has degree 1, any path between  $v_i$  and  $v_j$ , when  $d(v_iv_i) \ge 1$ , will not have any  $u_i$  on it. Then, the maximum length of a *P* is n - 1, provided that the path has the vertex *w* on it.

*Case 2:* Let  $u_i$  and  $u_j$  be the end vertices of P.

Any path P between vertices  $u_i$  and  $u_j$  can include each  $v_i$ ,  $1 \le i \le n$  on it along with the vertex w. Then, the number of vertices on such a path would be 2 + n + 1 = n + 3. Therefore, the length of P is n + 2.

*Case 3:* Let  $u_i$  and w be the end vertices of P. Start with  $u_i$  and traverse through each  $v_i$  for all  $1 \le i \le n$ , and terminate the path at w. The number of vertices on such a path would be 1+n+1=n+2. Therefore, the length of P is n + 1.

Hence, the maximum length of a path between any pair of vertices in  $H_n$  is n + 2 when  $u_i$  and  $u_j$  are the end vertices for some  $1 \le i, j \le n$ .

Suppose  $u_i = u_1$ . Consider the following 2-coloring c of  $H_n$ .

Let  $P = u_1v_1wv_2, v_3, \ldots, v_nu_n$  be a path of length n + 2 between  $u_1$  and  $u_n$ . Let proper edge coloring of P begin with  $c(p_1) = 1$ . In order to prevent a shorter properly edge colored path between  $u_1$  and  $u_n$ , assign  $c(v_1v_n) = 1$ ,  $c(e_n) = c(v_1v_2) = 2$ ,  $c(p_2) = 2$ . For any  $3 \le i \le n-1$ , let  $c(e_i) = c(v_iv_{i+1})$  and  $c(p_i) = (v_iv_{i-1})$ . This is a properly connected 2-coloring of  $H_n$  with at least one proper path of length n + 2.

Therefore, there exists a 2-coloring of  $H_n$  such that  $H_n$  is properly connected with the maximum proper distance between any pair of vertices being n + 2. Hence,  $pdiam_n(H_n) \le n + 2$ .  $\Box$ 

**Example 3.7.** Fig.6 shows a 2-coloring of  $H_7$  that satisfies  $pdiam_2(H_7) = 7$  with  $pd(u_1u_6) = 7$ . For  $H_8$ , we have  $pdiam_2(H_8) = 7$  with  $pd(u_1u_7) = 8$ .

**Example 3.8.** Fig.7 shows a 2-coloring of  $H_7$  that satisfies  $pdiam_2(H_7, c) = 9$  with  $pd(u_1u_7) = 9$ . For  $H_8$ , we have  $pdiam_2(H_8, c) = 10$  with  $pd(u_1u_8) = 10$ .



**Figure 6.** Properly connected graphs of  $H_7$  and  $H_8$  with a 2-coloring *c* satisfying  $pdiam_2(H_n, c) = n$ .

**Theorem 3.9.** For any  $C_m$  and  $P_n$ ,  $pdiam_2(C_m \Box P_n) \le nm-4$ , when m is even and  $pdiam_2(C_m \Box P_n) \le nm-3$ , when m is odd.



**Figure 7.** Properly connected graphs of  $H_7$  and  $H_8$  with a 2-coloring *c* satisfying  $pdiam_2(H_n, c) = n + 2$ .

*Proof.* Let P be a Hamiltonian path between some pair of non-adjacent vertices. Consider a 2-coloring c of  $C_m \Box P_n$  such that P is the shortest properly edge colored path between corresponding vertices.

Let  $P = v_1 e_1 v_2 e_2, \ldots, v_{nm-1}, e_{nm-1}, v_{nm}$  be the representation of the path with the corresponding edges. Assign a proper edge coloring to P starting with  $c(e_1) = 1, c(e_2) = 2$ . To rule out a shorter properly connected path between  $v_1$  and  $v_{nm}$ , the following assignment of colors to the remaining edges can be made.

- For every edge  $x = v_i v_j \notin E(P), 1 \le i < j < nm$ , assign  $c(x) = c(e_j)$ .
- If  $y \notin E(P)$  is an edge incident on  $v_{nm}$  and some  $v_j$ ,  $1 \le j \le nm 3$ , we can have either  $c(y) = c(e_j)$  or  $c(y) = c(e_{j-1})$ .

If  $c(y) = c(e_j)$ , then there exists a properly colored path of length 2 from  $v_{j-1}$  to  $v_{nm}$  through  $v_j$ . Since  $pd(v_1v_j) \le nm - 4$ , we now have  $pd(v_1v_{nm}) \le nm - 2$ . Then, there exists a shorter properly edge colored path  $v_1v_2, \ldots v_{j-1}v_jv_{nm}$ .

If  $c(y) = c(e_{j-1})$ , then  $c(y) \neq c(e_j)$  and hence  $v_{j+1}v_jv_{nm}$  is properly connected. Since  $pd(v_1v_j) \leq nm - 4$ , we now have  $pd(v_1v_{nm}) \leq nm - 2$ . Then, there exists a shorter properly edge colored path  $v_1, \ldots v_{j+1}v_jv_{nm}$ . This is a contradiction to our assumption that c is a 2-coloring of  $C_m \Box P_n$  such that P is the shortest properly edge colored path between  $v_1$  and  $v_{nm}$ . Therefore, there exists no 2-coloring of  $C_m \Box P_n$  such that  $pdiam_2(C_m \Box P_n) = nm - 1$ .

Let  $Q = v_1 e_1 v_2 e_2, \ldots, e_{k-1} v_k$  be the shortest properly edge colored path of length k-1 between some pair of vertices  $v_1$  and  $v_k$ . Then, for every edge  $x = v_i v_j \notin E(Q)$ ,  $1 \le i < j < k$ , assign  $c(x) = c(e_j)$ . However, if  $v_k$  is adjacent to a vertex  $v_r \neq v_{k-1} \in Q$ , then there is always a shorter properly edge colored path due to  $v_r$  as observed in the case of a Hamiltonian path. Therefore, only one vertex  $v_j \in N(v_k)$  can be on the shortest properly connected path for which  $v_k$  is a terminal vertex. Hence,  $pdiam_2(C_m \Box P_n, c) = nm - 2$  is not achievable since at least two vertices  $v_r \in N(v_{nm-1})$  are on the shortest properly connected path between  $v_1$  and  $v_{nm-1}$ . Since  $\delta(C_m \Box P_n) = 3$ , if  $v_k$  is a vertex of degree 3 and if two vertices  $a, b \in N(v_{nm-2})$  are not on the shortest properly connected path between  $v_1$  and  $v_{nm-2}$ , then we may have  $pdiam_2(C_m \Box P_n, c) = nm - 3$ .

*Case 1:* Let *m* be odd and *c* be a 2-coloring of  $C_m \Box P_n$  such that *Q* is the shortest properly edge colored path of length nm - 3 between some pair of vertices and  $pdiam_2(C_m \Box P_n) = nm - 3$ . Let  $a, b \in N(v_{nm-2})$  be two vertices that are not on this path.

Let  $Q = v_1 e_1 v_2 e_2, \ldots, v_{nm-3}, e_{nm-3}, v_{nm-2}$  be the representation of the path with the corresponding edges. Assign a proper edge coloring to Q starting with  $c(e_1) = 1, c(e_2) = 2$ . To rule out a shorter properly connected path between  $v_1$  and  $v_{nm-2}$ , the following assignment of colors to the remaining edges can be made.

• For every edge  $x = v_i v_j \notin E(Q)$ ,  $1 \le i < j < nm - 2$ , assign  $c(x) = c(e_j)$ , provided that x does not share an endpoint with either a or b.

• For very edge y incident on a and b, assign c(y) = 1 if  $c(e_{nm-3}) = 2$  and c(y) = 2 otherwise.

For the coloring c defined above, we get  $pdiam_2(C_m \Box P_n, c) = nm - 3$ . Therefore, when m is odd  $pdiam_2(C_m \Box P_n) \leq nm - 3$ .

*Case 2:* Let m be even. Each vertex in  $C_m \Box P_n$  belongs to two  $C_4$ 's and a  $C_m$ . Let v be the terminal vertex of a path Q such that deg(v) = 3. Suppose two vertices  $a, b \in N(v)$  are excluded from the path Q. If a and b are the two vertices that belong to the same  $C_4$  as v, then the fourth vertex of this  $C_4$  cannot be on the path Q. If a and b are not vertices in the same cycle  $C_4$ , then a vertex from  $C_m$  cannot be on the path Q. Therefore, the length of the path Q with a degree 3 terminal vertex cannot exceed nm - 4 in  $C_m \Box P_n$ .

Let c be a 2-coloring of  $C_m \Box P_n$  such that  $C_m \Box P_n$  is properly connected and S is the shortest properly edge colored path of length nm - 4 between two vertices of degree 3. Let  $a, b \in N(v_{nm-3})$  and c be the vertices not on this path such that c is a vertex adjacent to a or b.



**Figure 8.** A 2-coloring *c* of  $C_5 \Box P_5$  satisfying  $pdiam_2(C_m \Box P_n, c) = nm - 3$ 



**Figure 9.** A 2-coloring *c* of  $C_6 \square P_5$  satisfying  $pdiam_2(C_m \square P_n, c) = nm - 4$ 

Let  $S = v_1 e_1 v_2 e_2, \ldots, v_{nm-4} e_{nm-4} v_{nm-3}$  be the representation of the path with the correspond-

ing edges. Assign a proper edge coloring to S starting with  $c(e_1) = 1, c(e_2) = 2$ . To rule out a shorter properly connected path between  $v_1$  and  $v_{nm-3}$ , the following assignment of colors to the remaining edges can be made.

- For every edge  $x = v_i v_j \notin E(S)$ ,  $1 \le i < j < nm 3$ , assign  $c(x) = c(e_j)$ , provided that x does not share an end point with either a, b or c.
- For very edge y incident on a, b and c, assign c(y) = 1 if  $c(e_{nm-4}) = 2$  and c(y) = 2 otherwise.

This is a 2-coloring of  $C_m \Box P_n$ , such that  $pdiam_2(C_m \Box P_n, c) = nm - 4$ . Therefore,  $pdiam_2(C_m \Box P_n) \le nm - 4$ , when m is even.

**Example 3.10.** The 2-coloring c of  $C_5 \Box P_5$  in Fig.8 has  $pdiam_2(C_5 \Box P_5, c) = 22$  with  $pd(v_1v_{23}) = 22$ .

**Example 3.11.** Fig.9 shows a 2-coloring c of  $C_6 \Box P_5$  which has  $pdiam_2(C_6 \Box P_5, c) = 26$  with  $pd(v_1v_{27}) = 26$ .

To prove the next theorem, we use the bound  $pdiam_2(G) \le n - \kappa(G) + 1$  for a properly connected 2-colored graph of order  $n \ge 2$ , proved in [4].

**Theorem 3.12.** For any  $P_n$  and  $P_m$ ,  $2 \le pdiam_2(P_m + P_n) \le n - 1$ , when  $n \ge 3, m \ge 2$ , n > m.

*Proof.* Let  $u_1, u_2, \ldots, u_m$  and  $v_1, v_2, \ldots, v_n$  be the vertices on the paths  $P_m$  and  $P_n$  respectively. Then,  $P_m + P_n$  is a graph of order m + n. Since  $diam(P_m + P_n) = 2$ ,  $pdiam_2(P_m + P_n) \ge 2$  for any 2-coloring c.

Since  $\kappa(P_m + P_n) = m + 1$ , we have  $pdiam_2(P_m + P_n, c) \leq m + n - (m + 1) + 1 = n$ . Let c be a 2-coloring of  $P_m + P_n$ , such that  $pdiam_2(P_m + P_n, c) = n$ . Then, there exists a shortest properly connected path of length n between at least one pair of vertices in  $P_m + P_n$ . Let Q be such a path. The path of length greater than 1 can occur either between some  $v_i$  and  $v_j$  or  $u_i$  and  $u_j$ ,  $|i-j| \neq 1$ . Suppose the initial and terminal vertices of Q are  $v_1$  and  $v_n$ . Any path of length n between two vertices of  $P_n$  will have at least one vertex from  $P_m$ . Suppose  $Q = v_1u_iv_2, \ldots, v_n$ ,  $1 \leq i \leq m$  is a properly edge colored path starting with  $c(v_1u_i) = 1$ . To avoid a shorter properly edge colored path between  $v_1$  and  $v_n$ . If  $c(u_iv_n) = 2$ , then  $v_1u_1v_n$  is a shorter properly edge colored path between  $v_1$  and  $v_n$ . Since  $pd(v_1v_n) \leq 3$  in each case, we get a contradiction to our assumption that  $pdiam_2(P_m + P_n, c) = n$ .

Consider a 2-coloring of  $P_m + P_n$  such that the path  $P_n$  is properly edge colored with  $c(v_1u_1) = 1$ and every other edge in the graph is assigned the color 1. Two vertices  $u_i$  and  $u_j$  in the path  $P_m$ are connected by proper paths  $u_i e_k u_j$  of length 3, where  $e_k$  is any edge on path  $P_n$  such that  $c(e_k) = 2$ . This is a properly connected 2-coloring of  $P_m + P_n$  in which  $v_1$  and  $v_n$  are connected by the proper path of length n - 1, which is also the shortest properly edge colored path between  $v_1$  and  $v_n$ .

Hence,  $pdiam_2(P_m + P_n) \le n - 1$  and the bound is tight.

**Example 3.13.** Fig. 10 shows a properly connected 2-coloring c of  $P_5+P_6$  for which  $pdiam_2(P_5+P_6, c) = 2$  such that the proper distance between any two non-adjacent vertices is 2.

**Example 3.14.** Fig.11 shows a properly connected 2-coloring c of  $P_5+P_6$  for which  $pdiam_2(P_5+P_6,c) = 5$  with  $pd(v_1v_6) = 5$ .



**Figure 10.** Properly connected graph  $P_5 + P_6$  with a 2-coloring *c* satisfying  $pdiam_2(P_m + P_n, c) = 2$ 



**Figure 11.** Properly connected graph  $P_5 + P_6$  with a 2-coloring *c* satisfying  $pdiam_2(P_m + P_n, c) = n - 1$ 

# 4 Conclusion

The bounds on the proper diameter of the wheel graph, gear graph, helm graph, cartesian product of a cycle with a path and the join of two paths are established. These bounds hold true for the above class of graphs for any 2-edge coloring assigned to the graph, provided the graph is also properly connected.

## References

- [1] G. Chartrand, G.L. Johns, K.A. McKeon, and P. Zhang, Rainbow connection in graphs, Mathematica Bohemica, 133(1), 85–98, (2008).
- [2] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero and Z. Tuza, Proper Connection of Graphs, Discrete Mathematics., 312(17), 2550–2560,(2012).
- [3] X. Li and C. Magnant, Properly colored notions of connectivity- a dynamic survey, *Theory and Applications of Graphs*, **1**, (2015).
- [4] V. Coll, J. Hook, C. Magnant, K. McCready, and K. Ryan, The proper diameter of a graph, Discussiones Mathematicae: Graph Theory, **40(1)**, (2020).
- [5] F. Buckley and F. Harary, Distance in graphs, Addison-Wesley Redwood city, 2, (1990).

#### Author information

HR Deepika, Department of Mathematics, CHRIST (Deemed to be University), India. E-mail: deepika.hr@res.christuniversity.in

T.A. Mangam, Department of Mathematics, CHRIST (Deemed to be University), India. E-mail: tabitha.rajashekar@christuniversity.in

Received: 2024-04-11 Accepted: 2025-04-15