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Abstract In this literature survey, we deal with the uniqueness problems of meromorphic
and entire functions that concerning differential polynomials sharing a finite set and obtain a
theorems it generalizes the recent results due to V. Husna .

1 Introduction, Definitions

Let f(z) and g(z) be two meromorphic and entire functions in the open complex plane C. For
a ∈ C = C ∪ {∞}, if f(z) − a and g(z) − a have the same zeros with the same multiplicities
then we say that f(z) and g(z) share a CM, if we do not consider the multiplicities then we
say that f(z) and g(z) share a IM. It is assumed that readers are known about the notations of
Nevanlinna’s value distribution theory such as T (r, f), m(r, f), N(r, f) and so on (see [21],
[7], [22]).
Let f(z) be a non-constant meromorphic function and α ∈ S̃(f) = S(f) ∪ {∞} and S be a
subset of S̃(f). We define

E(S, f) =
⋃
α∈S

{z : f(z)− α = 0, counting multiplicity},

E(S, f) =
⋃
α∈S

{z : f(z)− α = 0, ignoring multiplicity}.

If E(S, f) = E(S, g), then we say that f(z) and g(z) share the set S CM; if E(S, f) = E(S, g),
then we say that f(z) and g(z) share the set S IM. Especially, if S = {α} and E(S, f) = E(S, g),
then we say that f(z) and g(z) share α CM; and we say that f(z) and g(z) share α IM if
E(S, f) = E(S, g).

Set “E(a, f) = {z : f(z) − a = 0}", where a zero point with multiplicity k is counted k
times in the set. If the zero points are only counted once ,then we denote the set by E(a, f). Let
f and g be two non constant meromorphic and entire functions. If E(a, f) = E(a, g), then we
say that f and g share the value a CM . If E(a, f) = E(a, g), then we say that f and g share the
value a IM . We denote by Ek)(a, f) the set of all a points of f with multiplicities not exceeding
“k", where an a point is counted according to its multiplicity, Ek)(a, f) is the set of distinct a
points of f with multiplicities not greater than k. Here, we will define the counting function as
N(k

(
r, 1

f(z)−a

)
is the counting function of zeros of f(z) − a with multiplicity greater than or

equal to k. Nk)

(
r, 1

f(z)−a

)
is the counting function of zeros of f(z) − a with multiplicity less
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than or equal to k.
Here, again we define the reduced counting function as N (k

(
r, 1

f(z)−a

)
is the reduced counting

function of zeros of f(z)− a in which multiplicity is not counted. Nk)

(
r, 1

f(z)−a

)
is the reduced

counting function of zeros of f(z)− a in which multiplicity is not counted.
In 2001, Indrajit Lahiri [11] introduced the notion of weighted sharing, which measures how
close a shared value is to being shared CM or to being shared IM.

Definition 1.1. [11] For a complex number a ∈ C = C ∪ {∞}, we denote by Ek(a, f) the set of
all a points of “f(z)", where an a- point with multiplicity m is counted m times if m ≤ k and
k+ 1 times if m > k. For a complex number a ∈ C, such that Ek(a, f) = Ek(a, g), then we say
that f(z) and g(z) share the value a with weight k.

The definition implies that if f(z), g(z) share a value a with weight k, then z0 is a zero of f(z)−a
with multiplicity m(≤ k) if and only if it is a zero of g(z)− a with multiplicity m(≤ k) and z0 is
a zero of f(z)− a with multiplicity m(> k) if and only if it is a zero of g(z)− a with multiplicity
“n(> k)", where m is not necessarily equal to n. We write f(z), g(z) share (a, k) to mean that
f(z), g(z) share the value a with weight k. Clearly, if f(z), g(z) share (a, k) then f(z), g(z)
share (a, p) for all integers p, 0 ≤ p < k. Also we note that f(z), g(z) share a value a IM or
CM if and only if f(z), g(z) share (a, 0) or (a,∞) respectively.

Definition 1.2. [11] Let S be a set of distinct elements of C and k be a non-negative integer or
∞. We denote by Ef (S, k) the set

⋃
a∈S

Ek(a, f). Clearly, Ef (S) = Ef (S,∞) and Ef (S) =

Ef (S, 0).

W. K Hayman [7] proposed the following well-known conjecture.
Hayman’s Conjecture [7]
If an entire function satisfies fnf ′ ̸= 1 for all positive integers n ∈ N, then f is a constant.
In 1997, corresponding to the above famous conjecture of Hayman, Yang and Hua studied the
unicity of differential monomials and obtained the following theorem.

Theorem 1.3. [23] Let f(z) and g(z) be two non-constant entire functions, n ≥ 6 a positive
integer. If fnf ′ and gng′ share 1 CM, then either “f(z) = c1e

cz , g(z) = c2e
−cz", where c1, c2,

c are three constants satisfying (c1c2)n+1c2 = −1, or f(z) = tg(z) for a constant t such that
tn+1 = 1.

In 2018, V. H. An and H. H. Khoai [2] considered the set of roots of unity of degree d and studied
the relations of f(z) and g(z) when E(fn)(k)(S) = E(gn)(k)(S). Infact, they proved the following
result.

Theorem 1.4. [2] Let f(z) and g(z) be two non-constant meromorphic functions, and let n, d, k
be positive integers with n > 2k + 2k+8

d , d ≥ 2, and S = {a ∈ C : ad = 1}. If E(fn)(k)(S) =

E(gn)(k)(S), then one of the following two cases holds: (i) f(z) = c1e
cz and g(z) = c2e

−cz for
three non-zero constants c1, c2 and c such that (−1)kd(c1c2)nd(nc)2kd = 1; (ii) f(z) = tg(z)
with tnd = 1, t ∈ C.

In 2020, Chao Meng and Xu Li [12] proved the following results.

Theorem 1.5. [12] Let f(z) and g(z) be two non-constant meromorphic functions, and let
n, d, k be positive integers with n > 2k + 3k+9

d , d ≥ 2 and S = {a ∈ C : ad = 1}. If
E(fn)(k)(S, 1) = E(gn)(k)(S, 1) then one of the following two cases holds: (i) f(z) = c1e

cz and
g(z) = c2e

−cz for three non-zero constants c1, c2 and c such that (−1)kd(c1c2)nd(nc)2kd = 1;
(ii) f(z) = tg(z) with tnd = 1, t ∈ C.

Theorem 1.6. [12] Let f(z) and g(z) be two non-constant meromorphic functions, and let
n, d, k be positive integers with n > 2k + 8k+14

d , d ≥ 2 and S = {a ∈ C : ad = 1}. If
E(fn)(k)(S, 0) = E(gn)(k)(S, 0) then one of following the two cases holds: (i) f(z) = c1e

cz and
g(z) = c2e

−cz for three non-zero constants c1, c2 and c such that (−1)kd(c1c2)nd(nc)2kd = 1;
(ii) f(z) = tg(z) with tnd = 1, t ∈ C.
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In 2021,V. Husna [8] proved some theorems by the relationship between two meromorphic and
entire functions f(z) and g(z) by considering (fn(f − 1)s)(k) by taking n(≥ 1), s(≥ 1) are
integers.

Theorem 1.7. [8] Let f(z) and g(z) be two non-constant meromorphic functions, and let n, d, k, s,
be a positive integers with n > 2k − s + 3k+9

d , d ≥ 2 and S = {a ∈ C : ad = 1}. If
E(

fn(f−1)s
)(k)(S, 1) = E(

gn(g−1)s
)(k)(S, 1) then one of the following two cases holds: (i) f(z) =

c1e
cz and g(z) = c2e

−cz for three non-zero constants c1, c2 and c such that (−1)2kd(c1c2)(n+s)d((n+
s)c)2kd = 1; (ii) f = tg with t(n+s)d = 1, t ∈ C.

Theorem 1.8. [8] Let f(z) and g(z) be two non-constant meromorphic functions, and let n, d, k, s,
be a positive integers with n > 2k − s + 8k+14

d , d ≥ 2 and S = {a ∈ C : ad = 1}. If
E(

fn(f−1)s
)(k)(S, 0) = E(

gn(g−1)s
)(k)(S, 0) then one of the following two cases holds: (i) f =

c1e
cz and g = c2e

−cz for three non-zero constants c1, c2 and c such that (−1)kd(c1c2)(n+s)d((n+
s)c)2kd = 1; (ii) f = tg with tnd = 1, t ∈ C.

Theorem 1.9. [8] Let f(z) and g(z) be two non-constant entire functions, and let n, d, k, s,
be a positive integers with n > 2k − s + k+6

2d , d ≥ 2 and S = {a ∈ C : ad = 1}. If
E(

fn(f−1)s
)(k)(S, 1) = E(

gn(g−1)s
)(k)(S, 1) then one of the following two cases holds: (i) f(z) =

c1e
cz and g(z) = c2e

−cz for three non-zero constants c1, c2 and c such that (−1)2kd(c1c2)(n+s)d((n+
s)c)2kd = 1; (ii) f = tg with t(n+s)d = 1, t ∈ C.

Theorem 1.10. [8] Let f(z) and g(z) be two non-constant entire functions, and let n, d, k, s,
be a positive integers with n > 2k − s + k+11

2d , d ≥ 2 and S = {a ∈ C : ad = 1}. If
E(

fn(f−1)s
)(k)(S, 0) = E(

gn(g−1)s
)(k)(S, 0) then one of the following two cases holds: (i) f =

c1e
cz and g = c2e

−cz for three non-zero constants c1, c2 and c such that (−1)kd(c1c2)(n+s)d((n+
s)c)2kd = 1; (ii) f = tg with tnd = 1, t ∈ C.

2 Main Results

Theorem 2.1. Let f(z) and g(z) be two non-constant meromorphic functions, and let us define
a equation P (ω) = amωm + am−1ω

m−1 + · · · + a1ω + a0 is a polynomial where a0 ̸= 0 and
a1, · · · , am = 0 are complex constants, where n, d, k, s, m be a positive integers with n >
2k−ms+ 3k+9

d , d ≥ 2 and S = {a ∈ C : ad = 1} . If E(
fnP (f)s

)(k)(S, 1) = E(
gnP (g)s

)(k)(S, 1)
then one of the following two cases holds: (i) f(z) = c1e

cz and g(z) = c2e
−cz for three non-zero

constants c1, c2 and c such that (−1)2kd(c1c2)(n+ms)d((n + ms)c)2kd = 1; (ii) f = tg with
t(n+ms)d = 1, t ∈ C.

Theorem 2.2. Let f(z) and g(z) be two non-constant meromorphic functions, and let us define
a equation P (ω) = amωm + am−1ω

m−1 + · · · + a1ω + a0 is a polynomial where a0 ̸= 0 and
a1, · · · , am = 0 are complex constants, where n, d, k, s, m be a positive integers with n >
2k−ms+ 8k+14

d , d ≥ 2 and S = {a ∈ C : ad = 1}. If E(
fnP (f)s

)(k)(S, 0) = E(
gnP (g)s

)(k)(S, 0)
then one of the following two cases holds: (i) f(z) = c1e

cz and g(z) = c2e
−cz for three non-zero

constants c1, c2 and c such that (−1)2kd(c1c2)(n+ms)d((n + ms)c)2kd = 1; (ii) f = tg with
tnd = 1, t ∈ C.

Theorem 2.3. Let f(z) and g(z) be two non-constant entire functions, and let us define a equa-
tion P (ω) = amωm+am−1ω

m−1+· · ·+a1ω+a0 is a polynomial where a0 ̸= 0 and a1, · · · , am =
0 are complex constants, n, d, k, s, m be a positive integers with n > 2k−ms+ k+6

2d , d ≥ 2 and
S = {a ∈ C : ad = 1}. If E(

fnP (f)s
)(k)(S, 1) = E(

gnP (g)s
)(k)(S, 1) then one of the following

two cases holds: (i) f(z) = c1e
cz and g(z) = c2e

−cz for three non-zero constants c1, c2 and c
such that (−1)2kd(c1c2)(n+ms)d((n+ms)c)2kd = 1; (ii) f = tg with t(n+ms)d = 1, t ∈ C.
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Theorem 2.4. Let f(z) and g(z) be two non-constant entire functions, and let us define a equa-
tion P (ω) = amωm+am−1ω

m−1+· · ·+a1ω+a0 is a polynomial where a0 ̸= 0 and a1, · · · , am =
0 are complex constants, n, d, k, s, m be a positive integers with n > 2k −ms+ k+11

2d , d ≥ 2
and S = {a ∈ C : ad = 1}. If E(

fnP (f)s
)(k)(S, 0) = E(

gnP (g)s
)(k)(S, 0) then one of the follow-

ing two cases holds: (i) f = c1e
cz and g = c2e

−cz for three non-zero constants c1, c2 and c such
that (−1)kd(c1c2)(n+ms)d((n+ms)c)2kd = 1; (ii) f = tg with tnd = 1, t ∈ C.

3 Some Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We will denote by H the
following function:

H =

(
F ′′

F ′ − 2F ′

F − 1

)(
G′′

G′ − 2G′

G− 1

)
, (3.1)

Lemma 3.1. [21] Let f be a non-constant meromorphic function, and p,k be positive integers.
Then

Np

(
r,

1
f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r,

1
f
) + S(r, f),

Np

(
r,

1
f (k)

)
≤ kN(r, f) +Np+k(r,

1
f
) + S(r, f).

Lemma 3.2. [4] Let F and G be two non-constant meromorphic functions sharing (1, 1) and
H ̸≡ 0. Then

T (r, F ) ≤N2(r,
1
F
) +N2(r,

1
G
) +N2(r, F ) +N2(r,G) +

1
2
N(r,

1
F
)

+
1
2
N(r, F ) + S(r, F ) + S(r,G).

Lemma 3.3. [4] Let F and G be two non-constant meromorphic functions sharing (1, 0) and
H ̸≡ 0. Then

T (r, F ) ≤N2(r,
1
F
) +N2(r,

1
G
) +N2(r, F ) +N2(r,G) + 2N(r,

1
F
)

+N(r,
1
G
) + 2N(r, F ) +N(r,G) + S(r, F ) + S(r,G).

Lemma 3.4. [25] Let f(z) and g(z) be two non-constant entire functions and n, k be positive
integers, n > k. If (fn)(k)(gn)(k) = h, h ∈ C, h ̸= 0, then f(z) = l1e

lz and g(z) = l2e
−lz for

three non-zero constants l1, l2 and l such that (−1)k(l1l2)n(nl)2k = h.

Lemma 3.5. Let f(z) be a non-constant meromorphic function on complex plane C and n, k, s ∈
Z+, n+ s > 2k. Then

(n+ms− 2k)T (r, f) + kN(r, f) +N

(
r,

fn+ms−k(
fnP (f)s

)(k)
)

≤ T
(
r,
(
fnP (f)s

)(k))
+ S(r, f).

Proof. Using the same as in Lemma 2.6 [2], we can easily obtain Lemma 3.5.

4 Proof of Main Results

Proof of Theorem 2.1.
Let

F =

((
fnP (f)s

)(k))d

, G =

((
gnP (g)s

)(k))d

. (4.1)
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F1 =

((
fnP (f)s

)(k))
, G1 =

((
gnP (g)s

)(k))
. (4.2)

Since E(fnP (f)s)(k)(S, 1) = E(gnP (g)s)(k)(S, 1) and we see that F and G share (1, 1) .
If H ̸≡ 0 then by Lemma 3.2

T (r, F ) ≤ N2(r,
1
F
) +N2(r,

1
G
) +N2(r, F ) +N2(r,G) +

1
2
N(r,

1
F
)

+
1
2
N2(r,

1
F
) +

1
2
N(r,

1
F
) + S(r, F ) + S(r,G).

(4.3)

By Lemma 3.5, we obtain

(n+ms−2k)T (r, f) ≤ T
(
r, (fnP (f)s)(k)

)
+S(r, f) ≤ (k+1)(n+ms)T (r, f)+S(r, f). (4.4)

Similarly,

(n+ms−2k)T (r, g) ≤ T
(
r, (gnP (g)s)(k)

)
+S(r, g) ≤ (k+1)(n+ms)T (r, g)+S(r, g). (4.5)

Since,

T

(
r,
((

fnP (f)s
)(k))d)

= dT

(
r,
(
fnP (f)s

)(k))
+ S

(
r,
(
fnP (f)s

)(k))
, (4.6)

T

(
r,
((

gnP (g)s
)(k))d)

= dT

(
r,
(
gnP (g)s

)(k))
+ S

(
r,
(
gnP (g)s

)(k))
. (4.7)

It is easy to see that,

S

(
r,
((

fnP (f)s
)(k))d)

= S

(
r,
(
fnP (f)s

)(k))
= S(r, f), (4.8)

S

(
r,
((

gnP (g)s
)(k))d)

= S

(
r,
(
gnP (g)s

)(k))
= S(r, g). (4.9)

Again we know,

N2(r, F ) = N2(r,
((

fnP (f)s
)(k))d

) = 2N(r, f), (4.10)

N2(r,G) = N2(r,
((

gnP (g)s
)(k))d

) = 2N(r, g). (4.11)

By Lemma 3.1 we have,

N2

(
r,

1
F

)
= N2

(
r,

1((
fnP (f)s

)(k))d
)
,

= 2N

(
r,

1(
fnP (f)s

)(k)
)
,

≤ 2Nk+1

(
r,

1
fnP (f)s

)
+ 2kN

(
r, fnP (f)s

)
+ S(r, fn),

≤ 2(k + 1)N
(
r,

1
f

)
+ 2kN(r, f) + S(r, f). (4.12)
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1
2
N
(
r,

1
F

)
=

1
2
N

(
r,

1((
fnP (f)s

)(k))d
)
,

=
1
2
N

(
r,

1(
fnP (f)s

)(k)
)
,

≤ 1
2
Nk+1

(
r,

1
fnP (f)s

)
+

k

2
N
(
r, fnP (f)s

)
+ S(r, fnP (f)s),

≤ k + 1
2

N
(
r,

1
f

)
+

k

2
N(r, f) + S(r, f). (4.13)

On the other hand,

N2

(
r,

1
G

)
= 2N

(
r,

1(
fnP (g)s

)(k)
)
,

≤ 2

(
N

(
r,

1
gn+ms−k

)
+N

(
r,

gn+ms−k(
gnP (g)s

)(k)
))

,

≤ 2

(
N

(
r,

1
g

)
+N

(
r,

gn+ms−k(
gnP (g)s

)(k)
))

.

(4.14)

Similarly

N2

(
r,

1
F

)
≤ 2

(
N

(
r,

1
f

)
+N

(
r,

fn+ms−k(
fnP (f)s

)(k)
))

. (4.15)

Also,
N(r, F ) +N(r,G) = 2N(r, f). (4.16)

On combining all the above equations from (4.1), (4.8) - (4.12) we get,

T

(
r,
((

fnP (f)s
)(k))d) ≤ 2(k + 1)N

(
r,

1
f

)
+ (2k + 2)N(r, f)

+ 2

(
N

(
r,

1
f

)
+N

(
r,

fn+ms−k(
fnP (f)s

)(k)
))

+ S(r, f).

(4.17)

On combining all the above equations from (4.1), ( 4.8) - (4.11), (4.13) we get,

T

(
r,
((

gnP (g)s
)(k))d) ≤ 2(k + 1)N

(
r,

1
g

)
+ (2k + 2)N(r, g)

+ 2

(
N

(
r,

1
g

)
+N

(
r,

gn+ms−k(
gnP (g)s

)(k)
))

+ S(r, g).

(4.18)

Adding the inequalities (4.17) and (4.18) we obtain,

T

(
r,
((

fnP (f)s
)(k))d) ≤ 2(k + 1)N

(
r,

1
f

)
+ (2k + 2)N(r, f) + 2N(r,

1
g
)

+ 2N

(
r,

gn+ms−k(
gnP (g)s

)(k)
)
+ 2N(r, g) +N(r, f) + S(r, f) + S(r, g),

≤ (3k + 5)T (r, f) + 2kN(r, f) + 4T (r, g) + 2N

(
r,

gn+ms−k(
gnP (g)s

)(k)
)

+ S(r, f) + S(r, g).
(4.19)
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Similarly for G

T

(
r,
((

gnP (g)s
)(k))d) ≤ (3k + 5)T (r, g) + 2kN(r, g) + 4T (r, g) + 2N

(
r,

fn+ms−k(
fnP (f)s

)(k)
)

+ S(r, f) + S(r, g).
(4.20)

By Lemma 3.1 we have,

(n+ms−2k)dT (r, f)+kdN(r, f)+dN

(
r,

fn+ms−k(
fnP (f)s

)(k)
)

≤ dT (r, (fnP (f)s)(k))+S(r, f).

(4.21)

(n+ms− 2k)dT (r, g) + kdN(r, g) + dN

(
r,

gn+ms−k(
gnP (g)s

)(k)
)

≤ dT (r, (gnP (g)s)(k)) + S(r, g).

(4.22)
From (4.19), (4.20), (4.21), (4.22) we have,

(n+ms− 2k)dT (r, f) + kdN(r, f) + dN

(
r,

fn+ms−k(
fnP (f)s

)(k)
)

+ (n+ms− 2k)dT (r, g) + kdN(r, g) + dN

(
r,

gn+ms−k(
gnP (g)s

)(k)
)

≤ (3k + 9){T (r, f) + T (r, g)}+ 2N

(
r,

fn+ms−k(
fnP (f)s

)(k)
)

+ 2N

(
r,

gn+ms−k(
gnP (g)s

)(k)
)
+ S(r, f) + S(r, g).

(4.23)

Since d ≥ 2,

dN

(
r,

fn+ms−k(
fnP (f)s

)(k)
)

≥ 2N

(
r,

fn+ms−k(
fnP (f)s

)(k)
)
, (4.24)

dN

(
r,

gn+ms−k(
gnP (g)s

)(k)
)

≥ 2N

(
r,

gn+ms−k(
gnP (g)s

)(k)
)
, (4.25)

kdN(r, f) ≥ 2kN(r, f), (4.26)

kdN(r, g) ≥ 2kN(r, g). (4.27)

Therefore,

(nd+msd− 2kd− 3k − 9){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which is absurd with

n > 2k −ms+
3k + 9

d
, (4.28)

hence H ≡ 0.
By integration we get

1
G− 1

=
A

F − 1
+B, (4.29)

where A ̸= 0 and B are constants. Thus

G =
(B + 1)F + (A−B − 1)

BF + (A−B)
, (4.30)
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and

F =
(B −A)G+ (A−B − 1)

BG− (B + 1)
. (4.31)

Case 1. B ̸= 0,−1 ,then from (4.31)

N

(
r,

1
G− B+1

B

)
= N(r, F ). (4.32)

By using Nevanlinna Second fundamental theorem and (4.14)

T (r,G) ≤N(r,G) +N

(
r,

1
G

)
+N

(
r,

1
G− B+1

B

)
+ S(r,G),

≤N(r,G) +N2

(
r,

1
G

)
+N(r, F ) + S(r,G),

≤N(r, g) + 2

(
N

(
r,

1
g

)
+N

(
r,

gn+ms−k

(gnP (g)s)
(k)

))
+N(r, f) + S(r, g).

(4.33)

If A−B − 1 ̸= 0, then it follows (4.30) from that

N

(
r,

1
F − B+1−A

B

)
= N

(
r,

1
G

)
. (4.34)

Again by Nevanlinna second fundamental theorem and (4.15)

T (r, F ) ≤N(r, F ) +N

(
r,

1
F

)
+N

(
r,

1
F − B+1−A

B+1

)
+ S(r, F ),

≤ N(r, F ) +N2

(
r,

1
F

)
+N

(
r,

1
G

)
+ S(r, f),

≤ N(r, f) + 2

(
N

(
r,

1
F

)
+N

(
r,

fn+ms−k

(fnP (f)s)
(k)

))

+Nk+1

(
r,

1
gnP (g)s

)
+ kN(r, g) + S(r, f),

≤ N(r, f) + 2

(
N

(
r,

1
F

)
+N

(
r,

fn+ms−k

(fnP (f)s)
(k)

))

+ (k + 1)N
(
r,

1
g

)
+ kN(r, g) + S(r, f).

(4.35)

From (4.21)-(4.22), (4.33) and (4.35), we get

(n− 2k)dT (r, f) + kdN(r, f) + dN

(
r,

fn+ms−k

(fnP (f)s)
(k)

)

+ (n+ms− 2k)dT (r, g) + kdN(r, g) + dN

(
r,

gn+ms−k

(gnP (g)s)
(k)

)

≤N(r, f) + 2

(
N

(
r,

1
f

)
+N

(
r,
fn+ms−k

(fn)
(k)

))
+ (k + 1)N

(
r,

1
g

)

+ kN(r, g) +N(r, g) + 2

(
N

(
r,

1
g

)
+N

(
r,

gn+ms−k

(gnP (g)s)
(k)

))
+N(r, f) + S(r, f) + S(r, g).

(4.36)
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Since d ≥ 2

dN

(
r,

fn+ms−k

(fnP (f)s)
(k)

)
≥ 2N

(
r,

fn+ms−k

(fnP (f)s)
(k)

)
, (4.37)

dN

(
r,

gn+ms−k

(gnP (g)s)
(k)

)
≥ 2N

(
r,

gn+ms−k

(gnP (g)s)
(k)

)
, (4.38)

kdN(r, f) ≥ 2N(r, f), (4.39)

kdN(r, g) ≥ (k + 1)N(r, g). (4.40)

Using (4.37), (4.38), (4.39) and (4.40)

(nd+msd− 2kd− 2)T (r, f) + (nd+msd− 2kd− k− 3)T (r, g) ≤ S(r, f) + S(r, g), (4.41)

which contradicts with n > 2k −ms+ 3k+9
d . Hence A−B − 1 = 0. Then by (4.30)

N

(
r,

1
F + 1

B

)
= N(r,G). (4.42)

Again by Nevanlinna Second Fundamental theorem

T (r, F ) ≤N(r, F ) +N

(
r,

1
F

)
+N

(
r,

1
F + 1

B

)
+ S(r, f),

≤ N(r, F ) +N2

(
r,

1
F

)
+N(r,G) + S(r, f),

≤ N(r, f) + 2

(
N

(
r,

1
f

)
+N

(
r,

fn+ms−k

(fnP (f)s)
(k)

))
+N(r, g) + S(r, f).

(4.43)

Combine (4.21), (4.22), (4.33) and (4.43), we have,

(n+ms− 2k)dT (r, f) + kdN(r, f) + dN

(
r,

fn+ms−k

(fnP (f)s)
(k)

)
+ (n+ms− 2k)dT (r, g)

+ kdN(r, g) + dN

(
r,

gn+ms−k

(gnP (g)s)
(k)

)

≤2N(r, f) + 2

(
N

(
r,

1
f

)
+N

(
r,

fn+ms−k

(fnP (f)s)
(k)

))

+ 2N(r, g) + 2

(
N

(
r,

1
g

)
+N

(
r,

gn+ms−k

(gnP (g)s)
(k)

))
+ S(r, f) + S(r, g).

(4.44)
Since d ≥ 2

dN

(
r,

fn+ms−k

(fnP (f)s)
(k)

)
≥ 2N

(
r,

fn+ms−k

(fnP (f)s)
(k)

)
, (4.45)

dN

(
r,

gn+ms−k

(gnP (g)s)
(k)

)
≥ 2N

(
r,

gn+ms−k

(gnP (g)s)
(k)

)
, (4.46)

kdN(r, f) ≥ 2N(r, f), (4.47)

kdN(r, g) ≥ 2N(r, g). (4.48)
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Using (4.45), (4.46), (4.47) and (4.48),

(nd+msd− 2kd− 2){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g), (4.49)

which violates our given assumption.
Case 2. B = −1. Then

G =
A

A+ 1 − F
,

and

F =
(1 +A)G−A

G
.

If A+ 1 ̸= 0. We obtain

N

(
r,

1
F −A− 1

)
= N(r,G),

N

(
r,

1
G− A

A+1

)
= N

(
r,

1
F

)
.

By similar arguments we can obtain a contradiction. Therefore A+ 1 = 0, then FG ≡ 1, that is(
(fnP (f)s)

(k)
)d (

(gnP (g)s)
(k)
)d

= 1,

we have (fnP (f)s)
(k)

(gnP (g)s)
(k)

= h, where hd = 1.
Suppose z0 is a zero of f with multiplicity p, then z0 is a pole of g with multiplicity q such
that np − k = nq + k. So n(p − q) − 2k = 0. Since n > 2k − ms + 3k+9

d , we can deduce
a contradiction. So f(z) ̸= 0. Similarly, we can prove f(z) ̸= ∞, g(z) ̸= 0 and g(z) ̸=
∞. So f(z) and g(z) are two non constant entire functions. According to Lemma 3.4, we
obtain f(z) = c1e

cz and g(z) = c2e
−cz for three non zero constants c1, c2 and c such that

(−1)kd (c1c2)
(n+ms)d

((n+ms)c)2kd = 1.
Case 3. B = 0. Then (4.30) and (4.31) gives G = F+A−1

A and F = AG+ 1 − A. If A− 1 ̸= 0,
then

N

(
r,

1
F +A− 1

)
= N

(
r,

1
G

)
,

and

N

(
r,

1
G+ 1−A

A

)
= N

(
r,

1
F

)
.

Proceeding similarly as in case 1 , we get a contradiction. Therefore A − 1 = 0, then F ≡ G,

that is,
(
(fnP (f)s)

(k)
)d

=
(
(gnP (g)s)

(k)
)d

. We have (fn(P (f))s)
(k)

= h (gnP (g)s)
(k) with

hd = 1. This completes the proof of Theorem 2.1.

Proof of Theorem 2.2.
By using F and G as defined in Theorem 2.1. Since E(fnP (f)s)(k)(S, 0) = E(gnP (g)s)(k)(S, 0) , we
see that F and G share (1, 0),if H ̸≡ 0, then by Lemma 3.3

T (r, f) ≤N2

(
r,

1
F

)
+N2(r, F ) +N2

(
r,

1
G

)
+ 2N

(
r,

1
F

)
+ 2N(r, F )

+N

(
r,

1
G

)
+N(r,G) + S(r, F ) + S(r,G).

(4.50)

By Lemma 3.5 we obtain

(n+ms− 2k)T (r, f) ≤ T
(
r, (fn)

(k)
)
+ S(r, f) ≤ (k+ 1)(n+ms)T (r, f) + S(r, f), (4.51)

(n+ms− 2k)T (r, g) ≤ T
(
r, (gn)

(k)
)
+ S(r, f) ≤ (k + 1)(n+ms)T (r, g) + S(r, g), (4.52)
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2N(r, F ) = 2N(r, f), (4.53)

2N(r,G) = 2N(r, g). (4.54)

2N
(
r,

1
F

)
= 2N

r,
1(

(fnP (f)s)
(k)
)d
 = 2N

r,
1(

(fnP (f)s)
(k)
)
 ,

≤ 2Nk+1

(
r,

1
fnP (f)s

)
+ 2kN (r, fn) + S (r, fnP (f)s) ,

= 2(k + 1)N
(
r,

1
f

)
+ 2kN(r, f) + S(r, f).

(4.55)

2N
(
r,

1
G

)
= 2N

r,
1(

(gnP (g)s)
(k)
)d
 = 2N

r,
1(

(gnP (g)s)
(k)
)
 ,

= 2(k + 1)N
(
r,

1
g

)
+ 2kN(r, g) + S(r, g).

(4.56)

Combining (4.50), (4.6), (4.9)-(4.10), (4.53)-(4.56) and (4.14) we have

T

(
r,
(
(fnP (f)s)

(k)
)d)

≤(6k + 8)T (r, f) + (2k + 6)T (r, g) + 2kN(r, f)

+ 2N

(
r,

gn+ms−k

(gnP (g)s)
(k)

)
+ S(r, f) + S(r, g).

(4.57)

Similarly for G

T

(
r,
(
(gnP (g)s)

(k)
)d)

≤(6k + 8)T (r, g) + (2k + 6)T (r, f) + 2kN(r, g)

+ 2N

(
r,

fn+ms−k

(fnP (f)s)
(k)

)
+ S(r, f) + S(r, g).

(4.58)

By Lemma 3.5 we have,

(n+ms− 2k)dT (r, f) + kdN(r, f) + dN

(
r,

fn+ms−k

(fnP (f)s)
(k)

)
≤ dT

(
r, (fn)

(k)
)
. (4.59)

(n+ms− 2k)dT (r, g) + kdN(r, g) + dN

(
r,

gn+ms−k

(gnP (g)s)
(k)

)
≤ dT

(
r, (gn)

(k)
)
. (4.60)

From (4.57)-(4.60), we have

(n+ms− 2k)dT (r, f) + kdN(r, f) + dN

(
r,

fn+ms−k

(fnP (f)s)
(k)

)

+ (n+ms− 2k)dT (r, g) + kdN(r, g) + dN

(
r,

gn+ms−k

(gnP (g)s)
(k)

)

≤(6k + 8)T (r, f) + (2k + 6)T (r, g) + 2kN(r, f) + 2N

(
r,

gn+ms−k

(gnP (g)s)
(k)

)

+ (6k + 8)T (r, g) + (2k + 6)T (r, f) + 2kN(r, g) + 2N

(
r,

fn+ms−k

(fnP (f)s)
(k)

)
+ S(r, f) + S(r, g).

(4.61)
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Since d ≥ 2

dN

(
r,

fn+ms−k

(fnP (f)s)
(k)

)
≥ 2N

(
r,

fn+ms−k

(fnP (f)s)
(k)

)
, (4.62)

dN

(
r,

gn+ms−k

(gnP (g)s)
(k)

)
≥ 2N

(
r,

gn+ms−k

(gnP (g)s)
(k)

)
, (4.63)

kdN(r, f) ≥ 2kN(r, f), (4.64)

kdN(r, g) ≥ 2kN(r, g). (4.65)

Therefore, on combining above all (4.62)-(4.65) equations

(nd+msd− 2kd− 8k − 14){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g), (4.66)

which contradicts with n > 2k − ms + 8k+14
d . Hence H ≡ 0. Similar to the arguments in

Theorem 2.1., we see that Theorem 2.2. holds.
Proof of Theorem 2.3.
Since F and G are entire functions, we have N(r, f) = N(r, g) = 0. Proceeding as in the proof
of Theorem 2.1. and applying Lemma 3.5 we shall obtain that Theorem 2.3. holds.
Proof of Theorem 2.4.
Since F and G are entire functions, we have N(r, f) = N(r, g) = 0. Proceeding as in the proof
of Theorem 2.2. and applying Lemma 3.5 we shall obtain that Theorem 2.4. holds.
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